The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier
Abstract
:1. Introduction
2. Endothelial Glycocalyx in the Brain
2.1. Glycocalyx Composition
2.2. Physical Barrier
2.3. Mechanosensing
2.4. Vascular Permeability
3. Disease and the Glycocalyx
3.1. Peripheral Organ Systems
3.2. Central Nervous System
Disease | Model System | Main Findings | Citation |
---|---|---|---|
Ischemic Stroke | Murine transient middle cerebral artery occlusion (t-MCAO) | GCX components hyaluronan and syndecan-1 display biphasic expression in recovery following stroke. | [42] |
t-MCAO | Decreased infarct size and inhibition of leakage following stroke achieved by inhibiting caveolae-mediated transcytosis at the BBB. | [63] | |
Alzheimer’s Disease | Humanized mouse/human amyloid precursor protein (APP) | Modification of the N-GCX component results in worse cognitive function in AD. | [64] |
APP mice | Positive correlation observed between syndecan-3 and amyloid plaque load in AD. | [65] | |
Mutant human presenilin 1 (PS1) mice | Loss of endothelial GCX may be driven by enhanced neutrophil-vascular interactions in AD. | [66] | |
Multiple Sclerosis | Experimental autoimmune encephalitis (EAE)-induced C57BL/6 J mice | Increased presence of GCX degradation markers heparin sulfate, hyaluronan, and syndecan-1 in MS. | [67] |
EAE-induced C57BL/6 J mice | Proteoglycan binding reduces inflammation and inhibits remyelination in MS. | [68] | |
DiGeorge Syndrome | Human brain microvascular endothelial cells (HBMECs) | BBB permeability increases with decreasing trans-endothelial electrical resistance in DS. | [69] |
HBMECs | Heparan sulfate expression is disrupted in DS resulting in loss of tight junction at the endothelial GCX. | [70] |
4. GCX in Model Systems
4.1. In Vivo Animal Models
4.2. In Vitro Models
Model Category | Model System | Main Advantages | References |
---|---|---|---|
Static Models | Static endothelial cell culture models | Provides a controlled environment for studying GCX components but lacks the complexity and physiological relevance of in vivo conditions. | [69,89,90,91] |
Co-culturing brain endothelial cells and pericytes | Enhances model relevance by better replicating the dynamic interactions and structure of the BBB, although some limitations remain. | [92,93] | |
Shear Flow Models | Endothelial cell cultures under flow conditions | Facilitates significant upregulation of GCX core proteins and galectins, resulting in a thicker and more physiologically accurate GCX structure compared to static cultures. | [36,37,38,40] |
Microfluidic devices | Provides dynamic conditions that closely mimic physiological flow and GCX structure, improving the accuracy of BBB and GCX studies despite fabrication and size challenges. | [94,95] | |
Microfluidic devices with co-cultured cells | Enhances model relevance by replicating the dynamic interactions between brain endothelial cells and other cell types under shear flow conditions, thereby improving the accuracy of GCX studies. | [94,95] | |
GCX Editing | GCX editing with small molecule inhibitors and analogs | Allows precise manipulation of GCX components to investigate their role in BBB function and has potential therapeutic applications for many disease states, including DS. | [70,96] |
GCX editing with synthetic glycopolymers | Facilitates detailed control over GCX composition and structure, enhancing the ability to replicate in vivo conditions and study GCX-related processes. | [97,98,99] | |
GCX editing with CRISPR/Cas9-based pruning. | Enables targeted exploration of specific GCX components, aiding understanding of their contributions to BBB permeability and immune responses. | [96] |
4.3. Ex Vivo Models
Characteristic Being Measured | Model System | Summary of Main Findings | References |
---|---|---|---|
GCX Thickness and Structure | Post-mortem tissue analysis with TEM | Provides structural insights but may underestimate GCX thickness due to collapse during preparation. Techniques such as rapid freezing have shown some success but still lead to underestimation. | [100,106] |
Post-mortem tissue analysis with stochastic optical reconstruction microscopy | Offers high-resolution insights but constrained by GCX delicacy in ex vivo conditions, leading to potential inaccuracies in thickness measurements. | [106] | |
Post-mortem tissue analysis of human umbilical veins | Highlights discrepancies in GCX thickness between ex vivo and in vitro models, underscoring the need for accurate model validation. | [109] | |
Protein and RNA Integrity | Post-mortem tissue analysis for protein and RNA integrity | Prolonged post-mortem intervals and handling techniques cause protein and mRNA degradation, significantly impacting transcriptomic analyses. | [104,105] |
GCX Component Analysis | Post-mortem tissue analysis with confocal and two-photon microscopy | Uses fluorescent markers to study GCX components but is limited by GCX fragility and potential artifacts from tissue handling and preparation. | [107,108] |
Post-mortem brain tissue analysis from children who died of CM | Analysis showed significant GCX shedding in CM, with decreased N-acetyl glucosamine and sialic acid residues. Elevated levels of inflammatory marker ICAM-1 highlights correlation between GCX breakdown and increased inflammation in CM patients. | [56] |
5. GCX Therapeutic Approaches
5.1. Targeting Therapeutics to the CNS via the GCX
5.2. Strategic Modification of the Host GCX
5.3. Disrupting the GCX for Enhanced Therapeutic Uptake
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAV | Adeno-associated virus |
ACE2 | Angiotensin converting enzyme 2 |
AD | Alzheimer’s disease |
BBB | Blood–brain barrier |
BECs | Brain endothelial cells |
CLP | Cecal ligation and puncture |
CNS | Central nervous system |
CKD | Chronic kidney disease |
CM | Cerebral malaria |
COVID-19 | Coronavirus disease-2019 |
ConA | Concanavalin A |
DM | Diabetes mellitus |
DS | DiGeorge syndrome |
DBA | Dolichos biflorus agglutinin |
GBM | Glioblastoma multiforme |
GAGs | Glycosaminoglycans |
GCX | Glycocalyx |
HA | Hyaluronic acid |
HAS2 | Hyaluronan synthase 2 |
HS | Heparan sulfate |
HSPG | Heparan sulfate proteoglycan |
HSase | Heparinase III |
HDAC | Histone deacetylase |
HES | Hydroxyethyl starch |
ICAM | Intercellular adhesion molecules |
LC-MS | Liquid chromatography mass spectrometry |
LOC | Lab-on-chip |
KLF2 | Krüppel-like factor 2 |
MACE-seq | Massive analysis of cDNA ends sequencing |
MS | Multiple sclerosis |
Neu5Ac | N-acetylneuraminic acid |
Neu5Gc | N-glycolylneuraminic acid |
NIHSS | National Institutes of Health Stroke Scale |
NSC | Neural stem cell |
NO | Nitric oxide |
PbA | Plasmodium berghei ANKA |
PECAM | Platelet endothelial cell adhesion molecules |
PAH | Pulmonary arterial hypertension |
RF/FS-TEM | Rapid freezing/freeze substitution transmission electron microscopy |
RBCs | Red blood cells |
Src | Sarcoma (proto-oncogene) kinase |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SAGRs | Smart anti-glycan reagents |
S-proteins | Spike proteins |
SE | Status epilepticus |
tDCS | Transcranial direct current stimulation |
t-MCAO | Transient middle cerebral artery occlusion |
TEM | Transmission electron microscopy |
tPA | Tissue plasminogen activator |
T2DM | Type 2 diabetes mellitus |
VLRs | Variable lymphocyte receptors |
VCAM | Vascular cell adhesion molecules |
WGA | Wheatgerm agglutinin |
References
- Foote, C.A.; Soares, R.N.; Ramirez-Perez, F.I.; Ghiarone, T.; Aroor, A.; Manrique-Acevedo, C.; Padilla, J.; Martinez-Lemus, L. Endothelial Glycocalyx. In Comprehensive Physiology; Prakash, Y.S., Ed.; Wiley: New York, NY, USA, 2022; pp. 3781–3811. ISBN 978-0-470-65071-4. [Google Scholar]
- Chen, Z.; Li, G. Immune Response and Blood–Brain Barrier Dysfunction during Viral Neuroinvasion. Innate Immun. 2021, 27, 109–117. [Google Scholar] [CrossRef]
- Yilmaz, O.; Afsar, B.; Ortiz, A.; Kanbay, M. The Role of Endothelial Glycocalyx in Health and Disease. Clin. Kidney J. 2019, 12, 611–619. [Google Scholar] [CrossRef]
- Tarbell, J.M.; Cancel, L.M. The Glycocalyx and Its Significance in Human Medicine. J. Intern. Med. 2016, 280, 97–113. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Arduini, A.; Onisto, M.; Gambaro, G. Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int. J. Mol. Sci. 2021, 22, 2996. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in Health and Disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Walter, F.R.; Santa-Maria, A.R.; Mészáros, M.; Veszelka, S.; Dér, A.; Deli, M.A. Surface Charge, Glycocalyx, and Blood-Brain Barrier Function. Tissue Barriers 2021, 9, 1904773. [Google Scholar] [CrossRef]
- Joshi, B.S.; Zuhorn, I.S. Heparan Sulfate Proteoglycan-mediated Dynamin-dependent Transport of Neural Stem Cell Exosomes in an in Vitro Blood–Brain Barrier Model. Eur. J. Neurosci. 2021, 53, 706–719. [Google Scholar] [CrossRef]
- Geoghegan, J.C.; Keiser, N.W.; Okulist, A.; Martins, I.; Wilson, M.S.; Davidson, B.L. Chondroitin Sulfate Is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo. Mol. Ther. Nucleic Acids 2014, 3, e202. [Google Scholar] [CrossRef]
- Ribeiro, M.M.B.; Domingues, M.M.; Freire, J.M.; Santos, N.C.; Castanho, M.A.R.B. Translocating the Blood-Brain Barrier Using Electrostatics. Front. Cell. Neurosci. 2012, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xie, Y.; Wong, M.; Lebrilla, C. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019, 8, 882. [Google Scholar] [CrossRef]
- McKitrick, T.R.; Goth, C.K.; Rosenberg, C.S.; Nakahara, H.; Heimburg-Molinaro, J.; McQuillan, A.M.; Falco, R.; Rivers, N.J.; Herrin, B.R.; Cooper, M.D.; et al. Development of Smart Anti-Glycan Reagents Using Immunized Lampreys. Commun. Biol. 2020, 3, 91. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–Endothelial Interactions at the Blood–Brain Barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- Barar, J.; Rafi, M.A.; Pourseif, M.M.; Omidi, Y. Blood-Brain Barrier Transport Machineries and Targeted Therapy of Brain Diseases. Bioimpacts 2016, 6, 225–248. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front. Physiol. 2020, 11, 914. [Google Scholar] [CrossRef]
- Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle Transport across the Blood Brain Barrier. Tissue Barriers 2016, 4, e1153568. [Google Scholar] [CrossRef]
- Stamatovic, S.; Keep, R.; Andjelkovic, A. Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier. Curr. Neuropharmacol. 2008, 6, 179–192. [Google Scholar] [CrossRef]
- Li, J.; Zheng, M.; Shimoni, O.; Banks, W.A.; Bush, A.I.; Gamble, J.R.; Shi, B. Development of Novel Therapeutics Targeting the Blood–Brain Barrier: From Barrier to Carrier. Adv. Sci. 2021, 8, 2101090. [Google Scholar] [CrossRef]
- Suzuki, A.; Tomita, H.; Okada, H. Form Follows Function: The Endothelial Glycocalyx. Transl. Res. 2022, 247, 158–167. [Google Scholar] [CrossRef]
- Mitsuda, S.; Uzawa, K.; Sawa, M.; Ando, T.; Yoshikawa, T.; Miyao, H.; Yorozu, T.; Ushiyama, A. Vascular Endothelial Glycocalyx Plays a Role in the Obesity Paradox According to Intravital Observation. Front. Cardiovasc. Med. 2021, 8, 727888. [Google Scholar] [CrossRef]
- Ando, Y.; Okada, H.; Takemura, G.; Suzuki, K.; Takada, C.; Tomita, H.; Zaikokuji, R.; Hotta, Y.; Miyazaki, N.; Yano, H.; et al. Brain-Specific Ultrastructure of Capillary Endothelial Glycocalyx and Its Possible Contribution for Blood Brain Barrier. Sci. Rep. 2018, 8, 17523. [Google Scholar] [CrossRef]
- Kutuzov, N.; Flyvbjerg, H.; Lauritzen, M. Contributions of the Glycocalyx, Endothelium, and Extravascular Compartment to the Blood–Brain Barrier. Proc. Natl. Acad. Sci. USA 2018, 115, E9429–E9438. [Google Scholar] [CrossRef]
- Sheng, Y.H.; Hasnain, S.Z. Mucus and Mucins: The Underappreciated Host Defence System. Front. Cell. Infect. Microbiol. 2022, 12, 856962. [Google Scholar] [CrossRef]
- Argüeso, P.; Woodward, A.M.; AbuSamra, D.B. The Epithelial Cell Glycocalyx in Ocular Surface Infection. Front. Immunol. 2021, 12, 729260. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Kubisiak, A.; Kloska, D.; Kopacz, A.; Grochot-Przeczek, A.; Szymonski, M. Endothelial Glycocalyx Shields the Interaction of SARS-CoV-2 Spike Protein with ACE2 Receptors. Sci. Rep. 2021, 11, 12157. [Google Scholar] [CrossRef]
- Papagni, R.; Novara, R.; Minardi, M.L.; Frallonardo, L.; Panico, G.G.; Pallara, E.; Cotugno, S.; Ascoli Bartoli, T.; Guido, G.; De Vita, E.; et al. Human African Trypanosomiasis (Sleeping Sickness): Current Knowledge and Future Challenges. Front. Trop. Dis. 2023, 4, 1087003. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Bacterial Meningitis: New Treatment Options to Reduce the Risk of Brain Damage. Expert. Opin. Pharmacother. 2020, 21, 97–105. [Google Scholar] [CrossRef]
- Conway, S.E.; Healy, B.C.; Zurawski, J.; Severson, C.; Kaplan, T.; Stazzone, L.; Galetta, K.; Chitnis, T.; Houtchens, M.K. COVID-19 Severity Is Associated with Worsened Neurological Outcomes in Multiple Sclerosis and Related Disorders. Mult. Scler. Relat. Disord. 2022, 63, 103946. [Google Scholar] [CrossRef]
- Zhao, F.; Zhong, L.; Luo, Y. Endothelial Glycocalyx as an Important Factor in Composition of Blood-brain Barrier. CNS Neurosci. Ther. 2021, 27, 26–35. [Google Scholar] [CrossRef]
- Chelazzi, C.; Villa, G.; Mancinelli, P.; De Gaudio, A.R.; Adembri, C. Glycocalyx and Sepsis-Induced Alterations in Vascular Permeability. Crit. Care 2015, 19, 26. [Google Scholar] [CrossRef]
- Vink, H.; Constantinescu, A.A.; Spaan, J.A.E. Oxidized Lipoproteins Degrade the Endothelial Surface Layer: Implications for Platelet-Endothelial Cell Adhesion. Circulation 2000, 101, 1500–1502. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, M.; Patterson, J.; Zhang, R.; Statz, J.K.; Reed, E.; Abutarboush, R.; Ahlers, S.T.; Kawoos, U. Temporal Alterations in Cerebrovascular Glycocalyx and Cerebral Blood Flow after Exposure to a High-Intensity Blast in Rats. Int. J. Mol. Sci. 2024, 25, 3580. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, S.; Vink, H.; Hiramatsu, O.; Kajita, T.; Shigeto, F.; Spaan, J.A.E.; Kajiya, F. Role of Hyaluronic Acid Glycosaminoglycans in Shear-Induced Endothelium-Derived Nitric Oxide Release. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H722–H726. [Google Scholar] [CrossRef] [PubMed]
- Florian, J.A.; Kosky, J.R.; Ainslie, K.; Pang, Z.; Dull, R.O.; Tarbell, J.M. Heparan Sulfate Proteoglycan Is a Mechanosensor on Endothelial Cells. Circ. Res. 2003, 93, e136–e142. [Google Scholar] [CrossRef] [PubMed]
- Gouverneur, M.; Spaan, J.A.E.; Pannekoek, H.; Fontijn, R.D.; Vink, H. Fluid Shear Stress Stimulates Incorporation of Hyaluronan into Endothelial Cell Glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H458–H452. [Google Scholar] [CrossRef] [PubMed]
- Santa-Maria, A.R.; Walter, F.R.; Figueiredo, R.; Kincses, A.; Vigh, J.P.; Heymans, M.; Culot, M.; Winter, P.; Gosselet, F.; Dér, A.; et al. Flow Induces Barrier and Glycocalyx-Related Genes and Negative Surface Charge in a Lab-on-a-Chip Human Blood-Brain Barrier Model. J. Cereb. Blood Flow Metab. 2021, 41, 2201–2215. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Tarbell, J.M. The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress. PLoS ONE 2014, 9, e86249. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Shimomura, M.; Ikeda, M.; Yamaguchi, R.; Tanishita, K. Effect of Glycocalyx on Shear-Dependent Albumin Uptake in Endothelial Cells. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2287–H2294. [Google Scholar] [CrossRef] [PubMed]
- Tsvirkun, D.; Grichine, A.; Duperray, A.; Misbah, C.; Bureau, L. Microvasculature on a Chip: Study of the Endothelial Surface Layer and the Flow Structure of Red Blood Cells. Sci. Rep. 2017, 7, 45036. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kostidis, S.; Tiemeier, G.L.; Sol, W.M.P.J.; De Vries, M.R.; Giera, M.; Carmeliet, P.; Van Den Berg, B.M.; Rabelink, T.J. Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 350–364. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Yin, J.; Hu, Y.; Gu, Y.; Pan, S. Glycocalyx Degradation Leads to Blood–Brain Barrier Dysfunction and Brain Edema after Asphyxia Cardiac Arrest in Rats. J. Cereb. Blood Flow Metab. 2018, 38, 1979–1992. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Ji, Z.; Wu, Y.; He, Y.; Liu, K.; Chang, Y.; Peng, Y.; Lin, Z.; Wang, S.; et al. Glycocalyx Is Critical for Blood-brain Barrier Integrity by Suppressing Caveolin1-dependent Endothelial Transcytosis Following Ischemic Stroke. Brain Pathol. 2022, 32, e13006. [Google Scholar] [CrossRef] [PubMed]
- DeOre, B.J.; Partyka, P.P.; Fan, F.; Galie, P.A. CD44 mediates shear stress mechanotransduction in an in vitro blood-brain barrier model through small GTPases RhoA and Rac1. FASEB J. 2022, 36, e22278. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.K.; Cooper, S.; Danielzak, L.; Leask, R.L. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow. PLoS ONE 2016, 11, e0167576. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.R.; Jiang, J.; Damiano, E.R. The Recovery Time Course of the Endothelial Cell Glycocalyx In Vivo and Its Implications In Vitro. Circ. Res. 2009, 104, 1318–1325. [Google Scholar] [CrossRef]
- Mulivor, A.W.; Lipowsky, H.H. Role of Glycocalyx in Leukocyte-Endothelial Cell Adhesion. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1282–H1291. [Google Scholar] [CrossRef]
- Rosenberg, G.A. Neurological Diseases in Relation to the Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1139–1151. [Google Scholar] [CrossRef]
- Mensah, S.A.; Nersesyan, A.A.; Ebong, E.E. Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Atherosclerosis and Cancer Metastasis. Cardiovasc. Eng. Technol. 2021, 12, 72–90. [Google Scholar] [CrossRef]
- Ermert, K.; Buhl, E.M.; Klinkhammer, B.M.; Floege, J.; Boor, P. Reduction of Endothelial Glycocalyx on Peritubular Capillaries in Chronic Kidney Disease. Am. J. Pathol. 2023, 193, 138–147. [Google Scholar] [CrossRef]
- Li, Q.; Shao, S.; Zhu, Z.; Chen, J.; Hao, J.; Bai, Y.; Li, B.; Dang, E.; Wang, G. An IGFBP7hi Endothelial Cell Subset Drives T Cell Extravasation in Psoriasis via Endothelial Glycocalyx Degradation. J. Clin. Investig. 2023, 133, e160451. [Google Scholar] [CrossRef]
- Cancel, L.M.; Ebong, E.E.; Mensah, S.; Hirschberg, C.; Tarbell, J.M. Endothelial Glycocalyx, Apoptosis and Inflammation in an Atherosclerotic Mouse Model. Atherosclerosis 2016, 252, 136–146. [Google Scholar] [CrossRef]
- Beurskens, D.M.; Bol, M.E.; Delhaas, T.; Van De Poll, M.C.; Reutelingsperger, C.P.; Nicolaes, G.A.; Sels, J.-W.E. Decreased Endothelial Glycocalyx Thickness Is an Early Predictor of Mortality in Sepsis. Anaesth. Intensive Care 2020, 48, 221–228. [Google Scholar] [CrossRef]
- Offeddu, G.S.; Hajal, C.; Foley, C.R.; Wan, Z.; Ibrahim, L.; Coughlin, M.F.; Kamm, R.D. The Cancer Glycocalyx Mediates Intravascular Adhesion and Extravasation during Metastatic Dissemination. Commun. Biol. 2021, 4, 255. [Google Scholar] [CrossRef] [PubMed]
- Mensah, S.A.; Nersesyan, A.A.; Harding, I.C.; Lee, C.I.; Tan, X.; Banerjee, S.; Niedre, M.; Torchilin, V.P.; Ebong, E.E. Flow-regulated Endothelial Glycocalyx Determines Metastatic Cancer Cell Activity. FASEB J. 2020, 34, 6166–6184. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.H.; Murphy, H.A.; George, E.M. The Glycocalyx: A Central Regulator of Vascular Function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R508–R518. [Google Scholar] [CrossRef] [PubMed]
- Hempel, C.; Milner, D.; Seydel, K.; Taylor, T. Specific Components Associated With the Endothelial Glycocalyx Are Lost From Brain Capillaries in Cerebral Malaria. J. Infect. Dis. 2022, 226, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka-Tojo, M. Vascular Endothelial Glycocalyx Damage in COVID-19. Int. J. Mol. Sci. 2020, 21, 9712. [Google Scholar] [CrossRef]
- Nian, K.; Harding, I.C.; Herman, I.M.; Ebong, E.E. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front. Physiol. 2020, 11, 605398. [Google Scholar] [CrossRef]
- DellaValle, B.; Hasseldam, H.; Johansen, F.F.; Iversen, H.K.; Rungby, J.; Hempel, C. Multiple Soluble Components of the Glycocalyx Are Increased in Patient Plasma After Ischemic Stroke. Stroke 2019, 50, 2948–2951. [Google Scholar] [CrossRef]
- Xu, B.; Yin, T.; Sun, T.; Li, Z.; Zhang, Z.; Lv, H.; Tian, C.; Wang, J.; Hao, J.; Zhang, L. Peripheral Blood Syndecan-1 Levels after Mechanical Thrombectomy Can Predict the Clinical Prognosis of Patients with Acute Ischemic Stroke. Acta Neurochir. 2024, 166, 153. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, R.; Huang, Y.; Li, L.; Zhong, L.; Hu, Y.; Han, Z.; Fan, J.; Liu, P.; Zheng, Y.; et al. Elevated Plasma Syndecan-1 as Glycocalyx Injury Marker Predicts Unfavorable Outcomes after Rt-PA Intravenous Thrombolysis in Acute Ischemic Stroke. Front. Pharmacol. 2022, 13, 949290. [Google Scholar] [CrossRef]
- Aldecoa, C.; Llau, J.V.; Nuvials, X.; Artigas, A. Role of Albumin in the Preservation of Endothelial Glycocalyx Integrity and the Microcirculation: A Review. Ann. Intensive Care 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Li, D.; Shen, Q.; Gao, L.; Zhuang, P.; Zhang, Y.; Guo, H. Storax Inhibits Caveolae-Mediated Transcytosis at Blood-Brain Barrier After Ischemic Stroke in Rats. Front. Pharmacol. 2022, 13, 876235. [Google Scholar] [CrossRef] [PubMed]
- Kizuka, Y.; Kitazume, S.; Fujinawa, R.; Saito, T.; Iwata, N.; Saido, T.C.; Nakano, M.; Yamaguchi, Y.; Hashimoto, Y.; Staufenbiel, M.; et al. An Aberrant Sugar Modification of BACE1 Blocks Its Lysosomal Targeting in Alzheimer’s Disease. EMBO Mol. Med. 2015, 7, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Hudák, A.; Letoha, A.; Vizler, C.; Letoha, T. Syndecan-3 as a Novel Biomarker in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 3407. [Google Scholar] [CrossRef] [PubMed]
- Smyth, L.C.D.; Murray, H.C.; Hill, M.; Van Leeuwen, E.; Highet, B.; Magon, N.J.; Osanlouy, M.; Mathiesen, S.N.; Mockett, B.; Singh-Bains, M.K.; et al. Neutrophil-Vascular Interactions Drive Myeloperoxidase Accumulation in the Brain in Alzheimer’s Disease. Acta Neuropathol. Commun. 2022, 10, 38. [Google Scholar] [CrossRef]
- DellaValle, B.; Manresa-Arraut, A.; Hasseldam, H.; Stensballe, A.; Rungby, J.; Larsen, A.; Hempel, C. Detection of Glycan Shedding in the Blood: New Class of Multiple Sclerosis Biomarkers? Front. Immunol. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Warford, J.R.; Lamport, A.-C.; Clements, D.R.; Malone, A.; Kennedy, B.E.; Kim, Y.; Gujar, S.A.; Hoskin, D.W.; Easton, A.S. Surfen, a Proteoglycan Binding Agent, Reduces Inflammation but Inhibits Remyelination in Murine Models of Multiple Sclerosis. Acta Neuropathol. Commun. 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, Y.; Zhu, H.; Luu, E.; Huang, G.; Sun, Y.; Sun, K.; Markx, S.; Leong, K.W.; Xu, B.; et al. Investigation of Neurodevelopmental Deficits of 22 Q11.2 Deletion Syndrome with a Patient-iPSC-Derived Blood–Brain Barrier Model. Cells 2021, 10, 2576. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Zhu, H.; Sun, Y.; Shteyman, D.B.; Markx, S.; Leong, K.W.; Xu, B.; Fu, B.M. Inhibition of Abl Kinase by Imatinib Can Rescue the Compromised Barrier Function of 22q11.2DS Patient-iPSC-Derived Blood–Brain Barriers. Cells 2023, 12, 422. [Google Scholar] [CrossRef]
- Yang, R.; Chen, M.; Zheng, J.; Li, X.; Zhang, X. The Role of Heparin and Glycocalyx in Blood–Brain Barrier Dysfunction. Front. Immunol. 2021, 12, 754141. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Sig. Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.G.; Romanescu, C.; Popescu, B.O. The Blood–Brain Barrier—A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Fang, F.; Gao, W.; Chen, H.; Wen, J.; Wen, X.; Chen, J. The Structure and Function of the Glycocalyx and Its Connection With Blood-Brain Barrier. Front. Cell. Neurosci. 2021, 15, 739699. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mwangi, J.G.; Stanley, T.K.; Mitra, R.; Ebong, E.E. Regeneration and Assessment of the Endothelial Glycocalyx To Address Cardiovascular Disease. Ind. Eng. Chem. Res. 2021, 60, 17328–17347. [Google Scholar] [CrossRef]
- Spruit, C.M.; Nemanichvili, N.; Okamatsu, M.; Takematsu, H.; Boons, G.-J.; De Vries, R.P. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021, 13, 815. [Google Scholar] [CrossRef] [PubMed]
- Hajal, C.; Le Roi, B.; Kamm, R.D.; Maoz, B.M. Biology and Models of the Blood–Brain Barrier. Annu. Rev. Biomed. Eng. 2021, 23, 359–384. [Google Scholar] [CrossRef] [PubMed]
- Song, H.W.; Foreman, K.L.; Gastfriend, B.D.; Kuo, J.S.; Palecek, S.P.; Shusta, E.V. Transcriptomic Comparison of Human and Mouse Brain Microvessels. Sci. Rep. 2020, 10, 12358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Q.Y.; Haqqani, A.S.; Leclerc, S.; Liu, Z.; Fauteux, F.; Baumann, E.; Delaney, C.E.; Ly, D.; Star, A.T.; et al. Differential Expression of Receptors Mediating Receptor-Mediated Transcytosis (RMT) in Brain Microvessels, Brain Parenchyma and Peripheral Tissues of the Mouse and the Human. Fluids Barriers CNS 2020, 17, 47. [Google Scholar] [CrossRef]
- Altman, M.O.; Gagneux, P. Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans—An Evolutionary Perspective. Front. Immunol. 2019, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, J.; Liu, K.; Hu, Y.; Huang, K.; Pan, S. Heparin Ameliorates Cerebral Edema and Improves Outcomes Following Status Epilepticus by Protecting Endothelial Glycocalyx in Mice. Exp. Neurol. 2020, 330, 113320. [Google Scholar] [CrossRef]
- Uzawa, K.; Ushiyama, A.; Mitsuda, S.; Ando, T.; Sawa, M.; Miyao, H.; Yorozu, T. The Protective Effect of Hydroxyethyl Starch Solution on the Glycocalyx Layer in an Acute Hemorrhage Mouse Model. J. Anesth. 2020, 34, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Margraf, A.; Herter, J.M.; Kühne, K.; Stadtmann, A.; Ermert, T.; Wenk, M.; Meersch, M.; Van Aken, H.; Zarbock, A.; Rossaint, J. 6% Hydroxyethyl Starch (HES 130/0.4) Diminishes Glycocalyx Degradation and Decreases Vascular Permeability during Systemic and Pulmonary Inflammation in Mice. Crit. Care 2018, 22, 111. [Google Scholar] [CrossRef]
- Hempel, C.; Hyttel, P.; Kurtzhals, J.A. Endothelial Glycocalyx on Brain Endothelial Cells Is Lost in Experimental Cerebral Malaria. J. Cereb. Blood Flow Metab. 2014, 34, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, Z.-C.; Liu, Y. Attenuating Pulmonary Hypertension by Protecting the Integrity of Glycocalyx in Rats Model of Pulmonary Artery Hypertension. Inflammation 2019, 42, 1951–1956. [Google Scholar] [CrossRef]
- Haeren, R.H.L.; Rijkers, K.; Schijns, O.E.M.G.; Dings, J.; Hoogland, G.; Van Zandvoort, M.A.M.J.; Vink, H.; Van Overbeeke, J.J. In Vivo Assessment of the Human Cerebral Microcirculation and Its Glycocalyx: A Technical Report. J. Neurosci. Methods 2018, 303, 114–125. [Google Scholar] [CrossRef]
- Sampei, S.; Okada, H.; Tomita, H.; Takada, C.; Suzuki, K.; Kinoshita, T.; Kobayashi, R.; Fukuda, H.; Kawasaki, Y.; Nishio, A.; et al. Endothelial Glycocalyx Disorders May Be Associated With Extended Inflammation During Endotoxemia in a Diabetic Mouse Model. Front. Cell Dev. Biol. 2021, 9, 623582. [Google Scholar] [CrossRef]
- Jucker, M. The Benefits and Limitations of Animal Models for Translational Research in Neurodegenerative Diseases. Nat. Med. 2010, 16, 1210–1214. [Google Scholar] [CrossRef]
- Brandl, S.; Reindl, M. Blood–Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int. J. Mol. Sci. 2023, 24, 12699. [Google Scholar] [CrossRef] [PubMed]
- Haymet, A.B.; Bartnikowski, N.; Wood, E.S.; Vallely, M.P.; McBride, A.; Yacoub, S.; Biering, S.B.; Harris, E.; Suen, J.Y.; Fraser, J.F. Studying the Endothelial Glycocalyx in Vitro: What Is Missing? Front. Cardiovasc. Med. 2021, 8, 647086. [Google Scholar] [CrossRef]
- Potter, D.R.; Damiano, E.R. The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo Is Absent In Vitro. Circ. Res. 2008, 102, 770–776. [Google Scholar] [CrossRef]
- Nakagawa, S.; Deli, M.A.; Nakao, S.; Honda, M.; Hayashi, K.; Nakaoke, R.; Kataoka, Y.; Niwa, M. Pericytes from Brain Microvessels Strengthen the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells. Cell Mol. Neurobiol. 2007, 27, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Cecchelli, R.; Aday, S.; Sevin, E.; Almeida, C.; Culot, M.; Dehouck, L.; Coisne, C.; Engelhardt, B.; Dehouck, M.-P.; Ferreira, L. A Stable and Reproducible Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells. PLoS ONE 2014, 9, e99733. [Google Scholar] [CrossRef]
- Brown, T.D.; Nowak, M.; Bayles, A.V.; Prabhakarpandian, B.; Karande, P.; Lahann, J.; Helgeson, M.E.; Mitragotri, S. A Microfluidic Model of Human Brain (μHuB) for Assessment of Blood Brain Barrier. Bioeng. Transl. Med. 2019, 4, e10126. [Google Scholar] [CrossRef]
- Raimondi, I.; Izzo, L.; Tunesi, M.; Comar, M.; Albani, D.; Giordano, C. Organ-On-A-Chip in Vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Front. Bioeng. Biotechnol. 2020, 7, 435. [Google Scholar] [CrossRef]
- Buffone, A.; Weaver, V.M. Don’t Sugarcoat It: How Glycocalyx Composition Influences Cancer Progression. J. Cell Biol. 2020, 219, e201910070. [Google Scholar] [CrossRef]
- Purcell, S.C.; Godula, K. Synthetic Glycoscapes: Addressing the Structural and Functional Complexity of the Glycocalyx. Interface Focus 2019, 9, 20180080. [Google Scholar] [CrossRef] [PubMed]
- Rabuka, D.; Forstner, M.B.; Groves, J.T.; Bertozzi, C.R. Noncovalent Cell Surface Engineering: Incorporation of Bioactive Synthetic Glycopolymers into Cellular Membranes. J. Am. Chem. Soc. 2008, 130, 5947–5953. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.C.; Zhang, M.H.; Honigfort, D.J.; Ng, H.J.C.; Michalak, A.L.; Godula, K. Cell Surface Photoengineering Enables Modeling of Glycocalyx Shedding Dynamics. Chem. Sci. 2022, 13, 6626–6635. [Google Scholar] [CrossRef]
- Ebong, E.E.; Macaluso, F.P.; Spray, D.C.; Tarbell, J.M. Imaging the Endothelial Glycocalyx In Vitro by Rapid Freezing/Freeze Substitution Transmission Electron Microscopy. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1908–1915. [Google Scholar] [CrossRef]
- Xia, J.-Y.; Zeng, Y.-F.; Wu, X.-J.; Xu, F. Short-Term Ex Vivo Tissue Culture Models Help Study Human Lung infections A Review. Medicine 2023, 102, e32589. [Google Scholar] [CrossRef]
- Mobini, S.; Song, Y.H.; McCrary, M.W.; Schmidt, C.E. Advances in Ex Vivo Models and Lab-on-a-Chip Devices for Neural Tissue Engineering. Biomaterials 2019, 198, 146–166. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [PubMed]
- Birdsill, A.C.; Walker, D.G.; Lue, L.; Sue, L.I.; Beach, T.G. Postmortem Interval Effect on RNA and Gene Expression in Human Brain Tissue. Cell Tissue Bank. 2011, 12, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.G.; Muñoz-Aguirre, M.; Reverter, F.; Sá Godinho, C.P.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R.; Pervouchine, D.; Carbonell-Caballero, J.; et al. The Effects of Death and Post-Mortem Cold Ischemia on Human Tissue Transcriptomes. Nat. Commun. 2018, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Schenck, H.; Netti, E.; Teernstra, O.; De Ridder, I.; Dings, J.; Niemelä, M.; Temel, Y.; Hoogland, G.; Haeren, R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front. Cell Dev. Biol. 2021, 9, 731641. [Google Scholar] [CrossRef] [PubMed]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; Van Zandvoort, M.A.M.J.; Oude Egbrink, M.G.A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch. Eur. J. Physiol. 2007, 454, 345–359. [Google Scholar] [CrossRef]
- Reitsma, S.; Oude Egbrink, M.G.A.; Vink, H.; Van Den Berg, B.M.; Lima Passos, V.; Engels, W.; Slaaf, D.W.; Van Zandvoort, M.A.M.J. Endothelial Glycocalyx Structure in the Intact Carotid Artery: A Two-Photon Laser Scanning Microscopy Study. J. Vasc. Res. 2011, 48, 297–306. [Google Scholar] [CrossRef]
- Chappell, D.; Jacob, M.; Paul, O.; Rehm, M.; Welsch, U.; Stoeckelhuber, M.; Conzen, P.; Becker, B.F. The Glycocalyx of the Human Umbilical Vein Endothelial Cell: An Impressive Structure Ex Vivo but Not in Culture. Circ. Res. 2009, 104, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Georgiadou, A.; Cunnington, A.J. Shedding of the Vascular Endothelial Glycocalyx: A Common Pathway to Severe Malaria? Clin. Infect. Dis. 2019, 69, 1721–1723. [Google Scholar] [CrossRef]
- Meyer, A.H.; Feldsien, T.M.; Mezler, M.; Untucht, C.; Venugopalan, R.; Lefebvre, D.R. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics 2023, 15, 1100. [Google Scholar] [CrossRef]
- Gribkoff, V.K.; Kaczmarek, L.K. The Need for New Approaches in CNS Drug Discovery: Why Drugs Have Failed, and What Can Be Done to Improve Outcomes. Neuropharmacology 2017, 120, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Bain, L.J.; Stroud, C.; Keren, N.I.; Norris, S.M.P. Therapeutic Development in the Absence of Predictive Animal Models of Nervous System Disorders: Proceedings of a Workshop; The National Academies Press: Washington, DC, USA, 2017; ISBN 978-0-309-45513-8. [Google Scholar]
- Bagchi, S.; Chhibber, T.; Lahooti, B.; Verma, A.; Borse, V.; Jayant, R.D. In-Vitro Blood-Brain Barrier Models for Drug Screening and Permeation Studies: An Overview. Drug Des. Dev. Ther. 2019, 13, 3591–3605. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Tsirka, S.E.; Cao, Y. Cell-Culture Models of the Blood–Brain Barrier. Stroke 2014, 45, 2514–2526. [Google Scholar] [CrossRef]
- Ruck, T.; Bittner, S.; Meuth, S. Blood-Brain Barrier Modeling: Challenges and Perspectives. Neural Regen. Res. 2015, 10, 889. [Google Scholar] [CrossRef]
- Sethi, B.; Kumar, V.; Mahato, K.; Coulter, D.W.; Mahato, R.I. Recent Advances in Drug Delivery and Targeting to the Brain. J. Control. Release 2022, 350, 668–687. [Google Scholar] [CrossRef] [PubMed]
- Achar, A.; Myers, R.; Ghosh, C. Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021, 9, 1834. [Google Scholar] [CrossRef]
- Evans, A.D.; Pournoori, N.; Saksala, E.; Oommen, O.P. Glycosaminoglycans’ for Brain Health: Harnessing Glycosaminoglycan Based Biomaterials for Treating Central Nervous System Diseases and in-Vitro Modeling. Biomaterials 2024, 309, 122629. [Google Scholar] [CrossRef]
- Yang, R.K.; Sondel, P.M. Anti-GD2 Strategy in the Treatment of Neuroblastoma. Drugs Fut. 2010, 35, 665. [Google Scholar] [CrossRef]
- Van Den Bijgaart, R.J.E.; Kroesen, M.; Wassink, M.; Brok, I.C.; Kers-Rebel, E.D.; Boon, L.; Heise, T.; Van Scherpenzeel, M.; Lefeber, D.J.; Boltje, T.J.; et al. Combined Sialic Acid and Histone Deacetylase (HDAC) Inhibitor Treatment up-Regulates the Neuroblastoma Antigen GD2. J. Biol. Chem. 2019, 294, 4437–4449. [Google Scholar] [CrossRef]
- Trieger, G.W.; Pessentheiner, A.R.; Purcell, S.C.; Green, C.R.; DeForest, N.; Willert, K.; Majithia, A.R.; Metallo, C.M.; Godula, K.; Gordts, P.L.S.M. Glycocalyx Engineering with Heparan Sulfate Mimetics Attenuates Wnt Activity during Adipogenesis to Promote Glucose Uptake and Metabolism. J. Biol. Chem. 2023, 299, 104611. [Google Scholar] [CrossRef]
- Chappell, D.; Jacob, M.; Hofmann-Kiefer, K.; Rehm, M.; Welsch, U.; Conzen, P.; Becker, B.F. Antithrombin Reduces Shedding of the Endothelial Glycocalyx Following Ischaemia/Reperfusion. Cardiovasc. Res. 2009, 83, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; Hofmann-Kiefer, K.; Jacob, M.; Rehm, M.; Briegel, J.; Welsch, U.; Conzen, P.; Becker, B.F. TNF-α Induced Shedding of the Endothelial Glycocalyx Is Prevented by Hydrocortisone and Antithrombin. Basic. Res. Cardiol. 2009, 104, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, Y.; Khalid, W.; Bikson, M.; Fu, B.M. Direct Current Stimulation Disrupts Endothelial Glycocalyx and Tight Junctions of the Blood-Brain Barrier in Vitro. Front. Cell Dev. Biol. 2021, 9, 731028. [Google Scholar] [CrossRef] [PubMed]
- Pulgar, V.M. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front. Neurosci. 2019, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Boado, R.J. IgG Fusion Proteins for Brain Delivery of Biologics via Blood–Brain Barrier Receptor-Mediated Transport. Pharmaceutics 2022, 14, 1476. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.S.; Wells, R.C.; Moshkforoush, A.; Chan, D.; Lechtenberg, K.J.; Tran, H.L.; Chow, J.; Kim, D.J.; Robles-Colmenares, Y.; Srivastava, D.B.; et al. CD98hc Is a Target for Brain Delivery of Biotherapeutics. Nat. Commun. 2023, 14, 5053. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.S.; Shusta, E.V. Strategies to Identify, Engineer, and Validate Antibodies Targeting Blood–Brain Barrier Receptor-Mediated Transcytosis Systems for CNS Drug Delivery. Expert. Opin. Drug Deliv. 2023, 20, 1789–1800. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shteyman, D.B.; Hachem, Z.; Ulay, A.A.; Fan, J.; Fu, B.M. Heparan Sulfate Modulation Affects Breast Cancer Cell Adhesion and Transmigration across In Vitro Blood–Brain Barrier. Cells 2024, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Sharma, P.; Bullock, K.M.; Hansen, K.M.; Ludwig, N.; Whiteside, T.L. Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int. J. Mol. Sci. 2020, 21, 4407. [Google Scholar] [CrossRef]
- Merkel, S.F.; Andrews, A.M.; Lutton, E.M.; Mu, D.; Hudry, E.; Hyman, B.T.; Maguire, C.A.; Ramirez, S.H. Trafficking of Adeno-associated Virus Vectors across a Model of the Blood–Brain Barrier; a Comparative Study of Transcytosis and Transduction Using Primary Human Brain Endothelial Cells. J. Neurochem. 2017, 140, 216–230. [Google Scholar] [CrossRef]
- Waters, E.A.; Shusta, E.V. The Variable Lymphocyte Receptor as an Antibody Alternative. Curr. Opin. Biotechnol. 2018, 52, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, J.M.; Katt, M.E.; Waters, E.A.; Herrin, B.R.; Shusta, E.V. Identification of Lamprey Variable Lymphocyte Receptors That Target the Brain Vasculature. Sci. Rep. 2022, 12, 6044. [Google Scholar] [CrossRef] [PubMed]
- Sterner, E.; Flanagan, N.; Gildersleeve, J.C. Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem. Biol. 2016, 11, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Woods, E.C.; Vukojicic, P.; Bertozzi, C.R. Precision Glycocalyx Editing as a Strategy for Cancer Immunotherapy. Proc. Natl. Acad. Sci. USA 2016, 113, 10304–10309. [Google Scholar] [CrossRef] [PubMed]
- Daniotti, J.L.; Vilcaes, A.A.; Torres Demichelis, V.; Ruggiero, F.M.; Rodriguez-Walker, M. Glycosylation of Glycolipids in Cancer: Basis for Development of Novel Therapeutic Approaches. Front. Oncol. 2013, 3, 306. [Google Scholar] [CrossRef] [PubMed]
- Nieuwdorp, M.; Meuwese, M.C.; Mooij, H.L.; Van Lieshout, M.H.P.; Hayden, A.; Levi, M.; Meijers, J.C.M.; Ince, C.; Kastelein, J.J.P.; Vink, H.; et al. Tumor Necrosis Factor-α Inhibition Protects against Endotoxin-Induced Endothelial Glycocalyx Perturbation. Atherosclerosis 2009, 202, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, H.H. The Endothelial Glycocalyx as a Barrier to Leukocyte Adhesion and Its Mediation by Extracellular Proteases. Ann. Biomed. Eng. 2012, 40, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, H.H. Protease Activity and the Role of the Endothelial Glycocalyx in Inflammation. Drug Discov. Today Dis. Models 2011, 8, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; Heindl, B.; Jacob, M.; Annecke, T.; Chen, C.; Rehm, M.; Conzen, P.; Becker, B.F. Sevoflurane Reduces Leukocyte and Platelet Adhesion after Ischemia-Reperfusion by Protecting the Endothelial Glycocalyx. Anesthesiology 2011, 115, 483–491. [Google Scholar] [CrossRef]
- Kolářová, H.; Ambrůzová, B.; Švihálková Šindlerová, L.; Klinke, A.; Kubala, L. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediat. Inflamm. 2014, 2014, 694312. [Google Scholar] [CrossRef]
- Hsu, J.; Rappaport, J.; Muro, S. Specific Binding, Uptake, and Transport of ICAM-1-Targeted Nanocarriers Across Endothelial and Subendothelial Cell Components of the Blood–Brain Barrier. Pharm. Res. 2014, 31, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.; Hoenicka, J.; Muro, S. Targeting, Endocytosis, and Lysosomal Delivery of Active Enzymes to Model Human Neurons by ICAM-1-Targeted Nanocarriers. Pharm. Res. 2015, 32, 1264–1278. [Google Scholar] [CrossRef] [PubMed]
- Manthe, R.L.; Loeck, M.; Bhowmick, T.; Solomon, M.; Muro, S. Intertwined Mechanisms Define Transport of Anti-ICAM Nanocarriers across the Endothelium and Brain Delivery of a Therapeutic Enzyme. J. Control. Release 2020, 324, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Varki, A. Biological Roles of Glycans. Glycobiology 2017, 27, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Zoldoš, V.; Grgurević, S.; Lauc, G. Epigenetic Regulation of Protein Glycosylation. BioMolecular Concepts 2010, 1, 253–261. [Google Scholar] [CrossRef]
- Kim, T.; Xie, Y.; Li, Q.; Artegoitia, V.M.; Lebrilla, C.B.; Keim, N.L.; Adams, S.H.; Krishnan, S. Diet Affects Glycosylation of Serum Proteins in Women at Risk for Cardiometabolic Disease. Eur. J. Nutr. 2021, 60, 3727–3741. [Google Scholar] [CrossRef]
Measured Characteristic | Model System | Summary of Main Findings | References |
---|---|---|---|
Soluble GCX components in plasma | Mouse model of SE | GCX degradation occurs post-SE. Heparin treatment mitigated GCX disruptions, leading to improved outcomes by reducing BBB permeability and protecting GCX integrity. | [81] |
Acute hemorrhage murine model | Fluid resuscitation with HES solution protected the GCX, decreased vascular permeability, and reduced plasma syndecan-1 levels, thereby improving survival rates and outcomes in hemorrhagic shock. | [82] | |
CLP mice for systemic and pulmonary inflammation | Observed reduction in thickness of endovascular GCX, and increased blood levels of syndecan-1, HA, and heparanase, indicating GCX shedding and degradation during systemic inflammation. | [83] | |
PbA-infected mice for cerebral malaria | Severe endothelial GCX depletion during infection terminal phase correlated with increased plasma levels of sulfated GAGs and HA, serving as early marker of endothelial cell activation, inflammation, and facilitating leukocyte interactions. | [84] | |
Human patients with acute ischemic stroke | Syndecan-1 levels in patient plasma can be used clinically as an indicator of patient prognosis following acute ischemic stroke treatment. | [60,61] | |
C57BL/6 J mice and Lewis rats | Shedding of the GCX can serve as a biomarker for MS, with soluble, sugar-based GCX components being associated with disease severity. | [67] | |
GCX component expression | Monocrotaline-treated rats for PAH | GCX destruction observed in PAH development, suggesting GCX integrity is crucial for maintaining normal pulmonary arterial pressure and function. | [85] |
APPSWE-Tau transgenic mice | SDC3 expression on monocytes has a positive correlation with amyloid plaque load in the brain. | [65] | |
GCX thickness | Mouse model of t-MCAO | Observed biphasic pattern of endothelial GCX degradation and reconstruction, correlating with BBB damage, increased endothelial transcytosis, and elevated plasma syndecan-1 levels. These changes contribute to brain edema and neurological dysfunction. | [42] |
Human patients undergoing resective brain surgery | SDF imaging shows potential for in vivo assessment and functional analysis of the cerebral microcirculation and GCX. | [86] | |
BBB permeability | Rat model of t-MCAO | Storax treatment inhibited caveolae-mediated transcytosis at the BBB, reduced infarction size, and brain water content, with specific dose-dependent effects on protein expression. | [63] |
Inflammatory cell migration | APP/PS1 mice | Endothelial GCX loss might be driven by enhanced neutrophil-vascular interactions in Alzheimer’s disease. | [66] |
Experimental Autoimmune Encephalomyelitis in mice | Surfen treatment reduced inflammation and immune cell infiltration in the CNS but inhibited remyelination by increasing CSPG expression. | [68] | |
Db/db mice model for T2DM | Endothelial GCX injury was observed prior to endotoxemia onset, worsening outcomes due to extended inflammatory cell migration that attenuated GCX synthesis, indicating early GCX damage in diabetes progression. | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dancy, C.; Heintzelman, K.E.; Katt, M.E. The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. Int. J. Mol. Sci. 2024, 25, 8404. https://doi.org/10.3390/ijms25158404
Dancy C, Heintzelman KE, Katt ME. The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. International Journal of Molecular Sciences. 2024; 25(15):8404. https://doi.org/10.3390/ijms25158404
Chicago/Turabian StyleDancy, Candis, Kaitlyn E. Heintzelman, and Moriah E. Katt. 2024. "The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier" International Journal of Molecular Sciences 25, no. 15: 8404. https://doi.org/10.3390/ijms25158404
APA StyleDancy, C., Heintzelman, K. E., & Katt, M. E. (2024). The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. International Journal of Molecular Sciences, 25(15), 8404. https://doi.org/10.3390/ijms25158404