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Abstract: Nearly six million people worldwide have died from the coronavirus disease (COVID-19)
outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Al-
though COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths,
the decline in vaccine-induced immunity over time and the continuing emergence of new viral
variants or mutations underscore the need for an alternative strategy for developing broad-spectrum
host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated
innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines
and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type
III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88,
plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of
Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies
have highlighted that infection with viruses upregulates MyD88 expression and impairs the host
antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral
infections, has been shown to modulate the host immune response by regulating viral entry and
activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory
cytokines and contributing to the overall inflammatory response, the so-called “cytokine storm”.
These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy
for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug
discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
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1. Introduction

COVID-19 is a consequence of SARS-CoV-2 infection, which was first reported in
China in late 2019, resulting in nearly six million deaths worldwide [1,2]. Although
COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths,
vaccine-induced immunity declines over time. Moreover, new virus variants or mutations
are continually emerging, posing a threat to global public health, which underscores the
need for a new strategy to develop broad-spectrum host-mediated therapeutics against
viral infections, including SARS-CoV-2. A key feature of severe COVID-19 is dysregulated
innate immune signaling, culminating in a high level of expression of numerous pro-
inflammatory cytokines and chemokines, such as IL-6, TNF-α, and IL-1β—the so-called
“cytokine storm”—as well as a lack of response from antiviral type I (α and β) and type III
(λ) interferons (IFNs) (known to be the most potent natural antiviral mediators) [3,4].

However, the lack of adequate type I and III interferon responses and their poten-
tial roles in controlling SARS-CoV-2 viral replication have not been fully addressed, al-
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though some studies have suggested that a dysregulated and delayed host interferon
response to SARS-CoV-2 virus infection contributes to a persistent viral presence and dis-
ease progression [5,6]. Given what is known about the dysregulated host innate response
to COVID-19, in a future scenario of a COVID-19-like viral pandemic, a rational approach
to a drug discovery platform would be to consider targeting a combination of host fac-
tor(s) at the cell surface level, preventing viral entry and shielding the intracellular host
factor(s) critically involved in regulating the immune signaling pathways that are crucial in
balancing host-mediated immunity.

Host exposure to microbial and viral pathogens or pathogen-associated molecular
patterns (PAMPs) is generally recognized by a set of pathogen recognition receptors (PRRs),
including Toll-like receptors (TLRs) [7–9]. The binding of PAMPs to TLR(s) initiates the
activation of innate immune signaling cascades, leading to the induction of inflammatory
responses, which later progress to antigen-driven precise adaptive immunity. Besides TLR3,
most TLR-initiated inflammatory responses are primarily mediated by the involvement
of a signaling adaptor protein, the myeloid differentiation primary response protein 88
(MyD88) [10,11]. MyD88 is a cytosolic anchor adaptor protein that plays an essential role in
inducing the innate and acquired immune responses that are driven by TLRs and receptors
of the interleukins IL-1 and IL-18 (IL-1R and IL-18R) [12,13].

In addition, a β-galactoside-binding lectin, galectin-3 (Gal3), has emerged as a pivotal
player in host–pathogen interactions and viral infections [14]. Gal3 is believed to function
as both a PRR and a danger-associated molecular pattern (DAMP) [15–17]. In the context
of SARS-CoV-2 infection, Gal3 has been shown to modulate the host immune response
through the regulation of viral entry and the activation of TLRs, the NLRP3 inflammasome,
and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the
overall inflammatory response, the so-called “cytokine storm” [14]. This review presents
future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the
role of SARS-CoV-2 or any future COVID-19-like emergent viral diseases in balancing
host immunity.

2. MyD88

The human MyD88 gene contains five exons and four introns, spanning 4.54 Kb. They
have an open reading frame of ~2.6 kb, which translates into a protein of approximately
33 kDa (296 amino acids) [18,19] (Figure 1). The MyD88 protein consists of three main
domains: an N-terminal death domain (DD); a Toll-interleukin-1 receptor (TIR) domain
at the C-terminus; and an intermediary domain (ID), which separates both IRAK and
TIR [11,20] (Figure 1).
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Figure 1. Schematic representation of MyD88 primary and tertiary structures. The 3D model of the
MyD88 TIR domain and the BB loop region (in dark blue) was adapted from Refs. [12,21]. DD, death
domain; ID, intermediary domain; TIR, Toll-interleukin-1 receptor.



Int. J. Mol. Sci. 2024, 25, 8421 3 of 20

The C-terminal TIR domain of MyD88 binds to the TIR domain of the receptor [22], and
the N-terminal DD is involved in binding to IL-1R-associated kinase (IRAK) 4 for further
signaling. The INT domain is also essential in signaling [23]. The structure of MyD88 is
unique, as its TIR domain is involved in both heterodimerization with the TIR domain of
other receptors such as TLR-IL-R1 and homodimerization with another MyD88 molecule
for the recruitment of downstream signaling molecules (Figure 2). The exposed BB loop
(aa196-202) in the TIR domain is critical for TIR–TIR interactions and the MyD88-mediated
inflammatory response [24].
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Figure 2. Schematic representation showing MyD88-mediated pro-inflammatory response and
plausible mechanism of MyD88 inhibition in restoring host-mediated immune responses.

In general, viral infection or viral products, such as double-stranded RNA (dsRNA)
produced during viral replication, are recognized by TLRs and RIG-I/MDA 5, which trigger
two key immune signaling pathways in which interferon regulatory factors (IRFs) and
NF-κB are critical elements. IRFs are crucial transcription factors for the expression of
IFN, leading to the first wave of the host cell response, and NF-κB is known to regulate
pro-inflammatory cytokines and type I IFNs during infection. The left box presents a
schematic representation, showing MyD88 heterodimerization with the TIR domain of the
receptor and homodimerization with another molecule of MyD88. MyD88 dimer formation
and its recruitment to the signaling cascade lead to the upregulation of NF-κB-mediated
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pro-inflammatory cytokines during viral infection. A synthetic compound named com-
pound 4210, designed based on the model of the tripeptide sequence of the BB loop in
the TIR sequence, can interfere with the dimerization of MyD88 inhibitors and downreg-
ulate pro-inflammatory cytokines (for details, see Ref. [11]). The right box shows that,
upon sensing pathogens or PAMPs, host innate immune receptors, PRRs such as TLRs,
and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs)/melanoma differentiation-
associated gene-5 (MDA-5) activate innate immune signaling cascades through the recruit-
ment of specific adaptor proteins, such as mitochondrial antiviral signaling protein (MAVS),
TANK-binding kinase (TBK1), and IkB kinase (IKK). During viral infection, MyD88 is
upregulated, and the interaction of MyD88 through its TIR domain with IRF-3/IRF-7
sequesters IRF-3/IRF-7. As shown in the schematic representation, a synthetic dimeric
MyD88 inhibitor, compound 4210, binds to the exposed BB loop of MyD88 [11,25], thereby
preventing the interaction of MyD88 with IRFs, and it interferes with the sequestering
ability of MyD88 and allows for the full activation of IRF-3 and IRF-7, including phos-
phorylation, dimerization, and translocation to the nucleus for a type I IFN response
(adapted from Ref. [11]; TRIF, TIR-domain-containing adaptor-inducing IFN-β). The
SARS-CoV-2 image was taken from the Centers for Disease Control and Prevention (CDC)
(https://stacks.cdc.gov/view/cdc/86942, accessed on 21 May 2024).

The host induction of the innate immune response at the onset of infection is mediated
and controlled by intracellular signaling cascades via the recruitment of MyD88 and its asso-
ciation with the MyD88 adaptor-like (Mal, also known as TIR-containing adaptor protein or
TIRAP). This association leads to the activation of downstream pro-inflammatory signaling
cascades [26]. The activation of host innate immunity is strongly dependent on the tightly
regulated function of MyD88. The dysregulation or uncontrolled activation of MyD88 may
cause an imbalance in the host immune response, leading to a wide range of inflammation-
associated syndromes and pathogeneses. In many viral infections, the upregulation of
MyD88 is associated with a decreased antiviral type I IFN response; however, MyD88-
deficient mice have shown an increased type I IFN response and survivability. For example,
infections with Coxsackie virus B3, Venezuelan equine encephalitis virus (VEEV), or Mar-
burg virus significantly increased MyD88 [27–29]. An increase in MyD88 in the cytosol has
been proposed to exert an inhibitory effect through MyD88 and IRF3/IRF7 interactions
and limit IRF availability, thereby curtailing the type l IFN response. Consistent with these
reports, it has been demonstrated that, following poly I:C (dsRNA) stimulation, IFN-beta
gene induction significantly increases MyD88 in Mal/TIRAP-deficient cells and in wild-
type cells treated with a Mal inhibitory peptide [30,31]. Reports suggest that, while MyD88
upregulation is required for the effective activation of the host innate immune response,
MyD88 upregulation through the interaction of multiple interferon regulatory factors such
as IRF3 and IRF7 contributes negatively, with this being initiated via other pathways of
innate immune signaling such as TLR3 and RIG-I/MDA, resulting in a decreased type I
IFN response and allowing for virus spread and disease progression [11]. Because of the
expanding role of anchor adaptor proteins in controlling the host immune response, MyD88
has emerged as an attractive drug target in restoring the host-mediated immune response.
Based on the BB loop’s conserved amino acid sequence in the TIR domain of MyD88, a
structure-based approach has been utilized to design small-molecule inhibitors of MyD88.
For example, we developed a synthetic small-molecule MyD88 inhibitor (compound 4210),
which blocked TIR–TIR domain homodimerization and showed therapeutic efficacy in
attenuating the MyD88-mediated inflammatory impact and increasing the antiviral type I
IFN response in an experimental mouse model of diseases [11,21,25].

2.1. Role of MyD88 in the Regulation of Host Immunity in Viral Infections—“Host Friendly”
or “Hostile”?

The innate and subsequent adaptive immune responses to viral infections, including
SARS-CoV-2, are generally initiated at the cellular level after viral evasion [32]. After viral
entry, the infected cell recognizes the presence of viral replication using any PRR. The
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physical engagement of these distinct structures (PRRs), such as TLRs/IL-R via MyD88-
TRIF, the RIG-I/MDA-5–MAVS axis, double-stranded RNA-dependent protein kinase
(PKR), the DNA receptor, DAI, and the cyclic GMP-AMP synthase (cGAS) stimulator of
interferon genes (STING) axis for cytosolic RNA and DNA, respectively, facilitates the
recognition of different pathogens; thus, they serve as sentinels for various microbes inside
and outside of the cell [33,34]. Double-stranded RNA, an intermediate byproduct of viral
replication, is also detected by intracellular PRRs [33], and the interaction of many virus-
specific RNAs culminates in receptor oligomerization and begins a concerted activation of
networks of innate immune signaling pathways and cellular immune responses against the
invading pathogens.

Briefly, in infected cells, a signaling chain is activated upon the detection of viral
double-stranded RNA (dsRNA) binding to RIG-I or MDA5, which are ubiquitously ex-
pressed in most tissues and appear to function in parallel with varying degrees of virus
specificity. RIG-I- or MDA5-mediated signaling for the interferon response occurs after
binding to downstream factors, called interferon beta promoter stimulator-1 (IPS-1) or
MAVS; this leads to the activation of IRF3 kinases, such as TBK-1 or IKKε, which are known
to phosphorylate IRF-3 or IRF-7. Phosphorylated IRF homodimerizes and translocates
into the nucleus, where it recruits the transcriptional co-activators p300 and CREB-binding
protein (CBP) to initiate IFN-β mRNA expression. NF-κB and AP-1 are also recruited in
a dsRNA-dependent way. As described earlier, the engagement of TLR3 using dsRNA
triggers downstream signaling via the adaptor molecule TRIF, which bypasses IPS-1/MAVS
and directly activates kinase TBK-1 and, subsequently, the IFN response, as described earlier.
Hence, these transcription factors strongly trigger the “first wave” of the IFN response.

In general, the initial activation of the antiviral innate immune response to viral in-
fections primarily depends on the expression of antiviral cytokines, such as type I and III
IFNs, which are produced by various cells [35–37] through the activation of downstream
transcription factors, such as IRFs and NF-kB, via MyD88-dependent and -independent
immune signaling pathways [38]. The transcriptional activation of IRFs and NF-kB upregu-
lates IFN-stimulated genes (ISGs) and antiviral proteins, such as dsRNA-activated protein
kinase R, 2-5 oligo-adenylate-synthase, and M × 1, ultimately mediating the antiviral
actions of IFN. Because of these strong host-directed innate immune responses, many viral
infections are generally resolved without further complications. To constitute a prolific
infection, viruses must escape and overcome these initial antiviral type I (IFN α/β) and
type III IFN (IFN-λ, 1-IV) responses. A lack of or the delayed host cell synthesis of IFNs in
sufficient quantities is a cause of failure in mounting a robust antiviral response [39]. Type
I IFNs also enhance the adaptive immune response through the activation of other cells of
the immune system, such as T cells, B cells, dendritic cells, and NK cells, and they thwart
pathogen dissemination and prevent disease progression [40]. Thus, as a first line of defense
against viral infections, the general perspective of immunity is that the interferon-mediated
antiviral immune response, which precedes pro-inflammatory responses, optimizes host
protection in balancing immunity and maintains collateral damage.

Many reports suggest that, for COVID-19 disease, the above paradigm does not
apply [41]. In particular, the untuned antiviral response observed in COVID-19 revealed
that both type I and type III IFNs were reduced or delayed, being induced only in a few
patients. In contrast, exacerbated pro-inflammatory cytokines, such as TNF-α, IL-6, and
IL-8, were produced for a long time prior to IFN synthesis in all patients, contributing
to persistent viral presence, hyperinflammation, and respiratory failure. Hatton et al. [5]
reported that an untuned or delayed induction of antiviral type I and III IFN responses in
COVID-19 mediates the permissiveness of nasal epithelial cells to SARS-CoV-2. However,
when provided prior to infection, recombinant IFN β or IFN λ 1 can efficiently induce an
antiviral condition that preserves epithelial barrier integrity and potentially restricts SARS-
CoV-2 spread [5]. More recently, Viox et al. reported that a mutated form of IFNalpha 2,
termed IFNmod, which can elicit weak IFN-I signaling, and the resultant type I IFN
response potentially inhibit SARS-CoV-2 replication and inflammation, with only moderate
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disease being observed in experimental rhesus macaques [6]. Due to its significant role
in antiviral defense, type I IFN has also been recommended for the recent COVID-19
pandemic [42].

Generally, in many viral infections, transcription factors, particularly IRFs, control
the expression of IFN, and pro-inflammatory cytokines are regulated by the activation
of NF-κB and type 1 IFNs. Other cellular factors, such as MAVS, TRIF, TRAF3/TRAF6,
and MyD88, and downstream kinases, such as IKK-e/TBK and IKB (but upstream of
IRFs and NF-κB), can facilitate the transcriptional activation of IRFs and NF-kB. It is also
important to note that dsRNAs are recognized by more than one PRR, such as TLRs
and RLRs/MDA-5, wherein the activation of IRF-3/IRF-7 is essential for regulating the
induction of IFN-α/β [43–46]. At the onset of viral infection, the produced type I IFN
interacts with the interferon receptor (IFNR). The binding of IFN α/β to the IFNR subse-
quently activates the JAK1-STAT pathway, leading to the assembly of IFN-stimulated gene
factor 3 (ISGF3). The ISGF3 complex, which consists of STAT1-STAT2 dimers and IRF9,
binds to IFN-stimulated response elements (ISREs) in the promoters of IFN-stimulated
genes (ISGs) to provide a robust expression of the second wave of various ISG genes. This
fully fledged activation of host innate immunity through autocrine and paracrine signaling
in surrounding uninfected cells creates an antiviral state. This can be achieved without
the constraints or limitations of IRF-3/IRF-7, which is required for IRF phosphorylation, a
critical element in the first wave of strong IFN-I induction [30,31,43,47,48]. The intracellular
sequestration of IRFs would limit the required IRF phosphorylation. It would result in
weak IFN-I signaling and a deficiency in IFN-I output, which is needed for robust antiviral
host immunity [30,31].

Thus, in the TLR immune signaling pathway that induces the type I IFN response,
MyD88 is used by all TLRs, except for TLR3, and it is shared by IL-1, IL-18, and IL-33
receptors, while TLR3 and TLR4 exclusively engage TRIF. Further, while the recruitment
and activation of MyD88 and TRIF are critical for a robust innate immune response, these
two proteins have been shown to be activated after viral infection [49] and often exert an
opposing effect on the expression of inflammatory genes [50]. It has been found that the
effects of TLR adaptors, namely, MyD88 and MAL/TIRAP, are involved in the negative
regulation of alternative TLRs [30,31,51,52]. While MyD88 is known to activate all TLRs, ex-
cept for TLR3, it has also been found that MyD88 functions negatively in the TLR3-initiated
immune signaling pathway. Besides TLR3, studies suggest that RIG-I and MDA-5 can
detect RNA viruses or analogs (poly I: C), resulting in antiviral IFN-β induction via the ac-
tivation of IRF-3 and IRF-7 [53]. Thus, TLRs and RLRs can work together or independently
through the recruitment of MyD88 or TRIF in the perpetuation of downstream signaling
networks to generate robust immune responses [53]. Yet, during many viral infections,
such as Coxsackie virus B3, Venezuelan equine encephalitis virus (VEEV), or Marburg virus
infection, the increase in MyD88 upregulation and MyD88-IRF3/IRF7 interaction leads to
the sequestering of IRF3/IRF7 (limiting the availability of IRF3/IRF7), thus exerting an
inhibitory effect on the TLR3- and TRIF-mediated downstream signaling of the type I IFN
response. In this way, MyD88 interaction with IRF3/IRF7 in a MyD88-independent immune
signaling pathway exerts weak immune signaling and curtails IFN-β induction, which is
critical for clearing infection at an early stage [25,30,31]. As a single infectious agent may
harbor multiple PRR agonists, which can trigger various PRRs, such as multiple TLRs,
RIG-I and MDA 5 initiate innate immune signaling such as the TLR3-TRIF-IRF3/IRF7 or
RIG-I/MDA5-MAVS axis (MyD88-independent signaling) for antiviral immune responses.
The upregulation of MyD88 and interaction with IRF3 or IRF7 limit the availability of IRFs
(sequester) and restrict fully fledged IRF phosphorylation, dimerization, and translocation
to the nucleus for IFN synthesis.

These views are supported by results showing that IFN-β gene induction in MyD88-
and Mal/TIRAP-deficient cells was significantly increased following poly I:C (dsRNA) stim-
ulation or when wild-type cells were treated with a Mal/TIRAP-inhibitory peptide [30,31].
These results strongly support the view that the significant upregulation of MyD88 and
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Mal/TIRAP also negatively regulates IFN-β induction [30,31]. In vivo data evidently sup-
port this notion. MyD88−/− mice were shown to have a significantly higher survival
rate (86%) than MyD88+/+ mice (35%) after CVB3 or HSV-1 infection [27,47]. In addition,
compared with MyD88+/+ DCs, a significant increase in IFN α/β, IRF1, IRF7, and ISGs
was also observed in MyD88−/− DCs following exposure to EBOV virus-like particles
(eVLPs) [54]. Thus, MyD88 upregulation impaired the type I IFN response during many
viral infections. In a mouse model of viral diseases, we showed that a small-molecule
inhibitor of MyD88, compound 4210, limited the sequestration of IRF3/IRF7, resulting in
increased IRF phosphorylation and type I IFN response; suppressed viral replication; and
improved survival, weight change, and clinical disease scores [25] (see Figure 2). Human
U87 cells, when stimulated with multiple TLR ligands in the presence of a MyD88 inhibitor
(compound 4210), concurrently increased the phosphorylation of IRF-3, which was con-
sistent with an increase in the type I IFN response. These results indicate an alternate
TRIF-IRF3 axis-mediated IFN-β induction [55].

Apart from the acquired immune response, host cells initiate strong defenses through
the innate immune response to viral infection. In many instances, viral infections occur
without any significant consequences. Patients recover with virus elimination or incor-
poration into a latent or persistent form without subsequent problems. An increase in
IFN is one of the most crucial events in this innate immune defense mechanism, and it
acts as a primary switch for initiating antiviral host immunity. Thus, IFN plays a pivotal
role in antiviral host defense against all types of viruses [11,25]. However, in this context,
it is also important to note that, during viral infection, a combination of host factor(s),
including MyD88, contributes to the innate immune signaling pathways, which can lead to
beneficial (friendly) or detrimental (more like friendly fire) outcomes of the IFN response.
In a normal immune activation process, type I IFNs (α and β) are known to have potent
antiviral activities and broad functions and effects, both direct (i.e., mediating resistance to
viral replication) and indirect (i.e., immune stimulation). Due to the significance of IFN in
the host cell in restricting viral infections, particularly in the absence of an effective antiviral
or vaccination strategy, IFN has been clinically approved (e.g., for the treatment of chronic
hepatitis B or C).

2.2. MyD88-Targeted Therapeutic Approach to Tackle Exuberant Inflammation and to Augment
Antiviral IFN Response to Viral Infections, Including SARS-CoV-2

The positive outcomes of early effective innate immune responses are largely dictated
by host immunity and the activation of various immune cells. With the occurrence of a
lack of or imbalance (dysregulation) in the immune control mechanism in host cells, viral
immune evasion may lead to pathogenesis and disease progression. In many instances, a
weak and delayed production of antiviral type I and III IFNs and an exuberant release of
pro-inflammatory cytokines contribute to severe forms of viral disease pathology, including
COVID-19 [56,57]. COVID-19 patients exhibit markedly elevated levels of pro-inflammatory
cytokines (such as IL-6) and chemokines [58,59], which are known to be associated with
severe pathology and impaired lung function. Although the dysregulation/overactivation
of MyD88 is known to contribute to an exacerbated inflammatory response, the so-called
“cytokine storm”, in COVID-19 patients, it is at least partly controlled by innate immune
signaling. It is yet to be determined whether the upregulation of MyD88 is linked to the
initial impairment of the type I IFN response in SARS-CoV-2 infection. It is known that the
key components of innate immune signaling networks, including MyD88, contribute to
an exacerbated inflammatory response [25]. In many viral infections, the upregulation of
MyD88 impaired the type I IFN response, and the inhibition of MyD88 improved the type
I IFN response, suppressed viral replication, and improved animal survival [25,27,60,61].
In general, following viral entry at the cell surface, and within the first few hours of viral
replication, the induction and magnitude of the host innate immune responses, including
type I and III IFN responses, determine the ability of the virus to spread and its subsequent
effects. The untuned antiviral immunity associated with SARS-CoV-2 indicates that type I
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and III interferons are notably reduced and delayed in most COVID-19 patients [41]. In
many cases, viral proteins are known to interfere with the induction of type I IFN and evade
host antiviral innate immune effector mechanisms; it is yet to be determined whether IFN
antagonists can be found in SARS-CoV-2 [56]. Studies have suggested that TLR adaptor
signaling generates a balanced protective immune response to highly pathogenic SARS
coronavirus infections, and TRIF-mediated immune signaling in particular has been shown
to contribute to the protective innate immune response [57]. It is not yet known whether
the upregulation of intracellular MyD88 is responsible for pro-inflammatory immune
signaling, resulting in severe inflammation while reducing the antiviral type I IFN response
through the sequestration of IRFs via TRIF pathways. In vertebrates, strong type I IFN
induction at the onset of infection is a prerequisite to controlling viral infections through
the modulation of the overall innate immune response, promoting antigen presentation in
a balanced manner and enhancing natural killer cell functions [62]. In COVID-19 patients,
an impaired T-cell response has been reported, leading to lymphopenia and the functional
exhaustion of CD4+ and CD8+ T cells [63]. This may be a consequence of deficient IFN
production. IFNs can also regulate the development of regulatory T cells (Treg) cells. In
COVID-19 patients, Treg cell counts are known to be inversely correlated with disease
severity [58,64]. As the MyD88-mediated overactivation of pro-inflammatory signaling
leads to a cytokine storm and as the production of antiviral type I IFNs is reportedly
blunted, the therapeutic targeting of MyD88 may be highly advantageous in limiting severe
inflammation and inducing vigorous TRIF-mediated immune signaling to augment the
antiviral type I IFN response. Using high-throughput screening, small molecules with
type 1 IFN-inducing properties have been identified; however, the molecular target and
mechanism associated with IFN induction are not yet known [65]. We have reported a
synthetic inhibitor of MyD88 (compound 4210) that functions as an immune-modulating
molecule via the deactivation of MyD88, thereby promoting type I and III IFN signaling,
which is central to IRF activation and a consequent strong host antiviral IFN response [19].
Similar to compound 4210, other small-molecule inhibitors of MyD88, such as T6167923
and S5 [21,66], have also been shown to induce type I IFNs (unpublished data). It is likely
that an imbalanced and delayed type I IFN response in the host to SARS-CoV-2 drives the
development of the severity of COVID-19 disease [59]. Therefore, it is anticipated that the
pharmacologic inhibition of MyD88 may induce antiviral type I IFNs and provide a TIR
blockade to limit pro-inflammatory cytokines. Compound 4210 has not yet been tested in a
COVID-19 model; it is tempting to speculate that the combination of these two-pronged
antiviral mechanisms is feasible for the potential therapy of COVID-19 or COVID-like
diseases in balancing host immunity.

3. Galectin-3

Galectin-3 (Gal3), a member of the β-galactoside-binding protein family, has been
shown to play a pivotal role in host–pathogen interactions and viral infections [14]. The
human Gal3 gene (LGALS3) contains six exons and five introns, spanning 17 Kb, with
an open reading frame of 750 bp translated into a protein of 250 amino acids with an
approximate molecular weight of 30,000 [67]. Of the fifteen galectin members with proto-,
tandem-repeat-, and chimera-type structures, Gal3 is the only member of the latter type
characterized by three domains: a C-terminal carbohydrate recognition domain (CRD), a
highly conserved short N-terminal domain (NTD) with 12 amino acids, and a long NTD
rich with proline and glycine [68–71] (Figure 3).

Gal3 can form dimers and pentamers through its NTD at a high concentration [71].
Gal3 can be found both extracellularly and intracellularly in the cytoplasm, transport vesi-
cles, and nucleus [69,71], and, thus, it is involved in diverse biological activities, including
cell growth, pre-mRNA splicing, cell adhesion, cell–cell interactions, apoptosis, angiogene-
sis, and inflammation [69,71]. Gal3 plays a pivotal role in various stages of viral infections,
including viral attachment and entry. Gal3 also mediates inflammatory responses and
causes an imbalanced production of pro-inflammatory cytokines [72].
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3.1. Role of Gal3 in Viral Infection, Including COVID-19

Viral entry is a crucial step in the viral infection process, and it involves the interaction
of viral proteins with host cell receptors. In human immunodeficiency virus (HIV), Gal3
is involved in the interaction with the viral envelope glycoprotein gp120, facilitating its
binding to host cells through surface receptors, such as CD4, and subsequently promoting
infection. It was found that intracellular Gal3 could promote HIV-1 budding through the
interaction of ALG-2-interacting protein X (Alix) with viral Gag p6 in T cells [73]. It was
also found that Gal3 could regulate virological synapse formation and facilitate intercellular
HIV-1 transfer among CD4 T cells, providing an alternative pathway for HIV-1 infection [74].
Additionally, high Gal3-expressing exosomes derived from HIV-1-infected dendritic cells
were shown to facilitate HIV-1 infection and dissemination through fibronectin and Gal3-
mediated cell fusion [75]. These findings suggest that Gal3 plays a critical role in regulating
viral release and synapse formation in HIV-1 infection, and, thus, Gal3 may represent a
promising therapeutic target for HIV-1 infection.

In ocular infections, Gal3 was found to be involved in the entry and attachment
of herpes simplex virus-1 (HSV-1), as the inhibition of Gal3 impaired HSV-1 infectivity
in human corneal keratinocytes [76]. At the onset of influenza A virus (IAV) infection,
Gal3—expressed and secreted in airway epithelial cells—bound strongly to the hemag-
glutinin (HA) protein of IAV and Streptococcus pneumoniae [77]. In addition, the neu-
raminidase of IAV could desialylate airway epithelial cells and enhance pneumococcal
adhesion via galectin interactions. These results suggest that Gal3 could contribute to
pneumococcal pneumonia after influenza infection. It was also found that the increased
expression of Gal3 could also promote lung inflammation in mice infected with avian
H5N1 IAV through the activation of the nucleotide oligomerization domain-like receptor
protein 3 (NLRP3) inflammasome [78].

Gal3 plays a vital role in the entry of SARS-CoV-2 into host cells, and, thus, the blocking
of Gal3 may prevent the progression of COVID-19 [72]. The S1 subunit of the SARS-CoV-2
spike protein, which is critical for viral entry into host cells, contains a receptor-binding
domain (RBD) at the C-terminal domain (CTD). The role of the CTD in viral entry is
well established, as it binds to angiotensin-converting enzyme 2 (ACE2) receptors [79].
Caniglia et al. proposed a dual attachment model, which states that the interaction between
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the NTD of the S1 spike protein (S1-NTD) and host sialic acids may be important for
viral entry to host cells as a means of stabilizing the interaction between the S1-CTD
and ACE2 [72] (Figure 4). Interestingly, the S1-NTD is structurally similar to the galectin
fold [72,80]. The structural similarity of the S1-NTD to human Gal3 has led to the hypothesis
that existing Gal3 inhibitors can be used as therapeutic drugs to block NTD–sialic acid
interactions [72].
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Figure 4. Schematic representation showing virus–host cell interactions and Gal3 inhibition blocking
viral entry to host cells. Gal3 is believed to play critical role in viral entry to host cells. Interac-
tion between the galectin-like S1-NTD (N-terminal domain of the virus S1 spike protein) and host
sialic acids could be critical for viral entry as means of stabilizing the interaction between S1-CTD
(C-terminal domain of the virus S1 spike protein) and ACE2. Moreover, host Gal3 may participate
in additional interactions with virus spike glycoprotein for further stabilization, contributing to
prolonged infection and severity of disease. Therefore, Gal3 inhibition may disrupt attachment
of SARS-CoV-2 to cell surface, preventing entry to host cells (adapted from Refs. [72,80]). The
SARS-CoV-2 image was taken from the Centers for Disease Control and Prevention (CDC) website
(https://stacks.cdc.gov/view/cdc/86942, access on 20 May 2024).

It is worth discussing the interesting correlation between the increased mortality in
COVID-19 patients with diabetes (12–22%) and hypertension (23.7–30%) [81–84] and the
increased expression of Gal3 in prediabetic, diabetic, and hypertensive patients in the
blood serum, lungs, alveolar cells, and respiratory tract mucus [16,85–88]. In general,
patients with severe COVID-19 show a high concentration of Gal3, which can serve as a
potential biomarker for predicting COVID-19 severity, prognosis, and treatment response,
as suggested by multiple studies [89–92]. Furthermore, the spike protein (both S1 and S2
subunits) is a glycoprotein containing one O-glycan and multiple N-glycan chains [93],
which can be readily bound by Gal3 (see Figure 4). In our studies, we confirmed Gal3
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binding to the SARS-CoV-2 spike glycoprotein. Thus, it is possible that host Gal3 might
establish additional interactions with the virus spike glycoprotein for further stabilization,
contributing to prolonged infection and the severity of the disease. These double- and
triple-attachment models suggest that the specific inhibition of Gal3 could be a promising
therapy for COVID-19.

3.2. Immunomodulation of Gal3 in Viral Infection, Including COVID-19

For enveloped viruses such as coronaviruses, there are two critical steps that need to
be completed for the successful entry of viruses into host target cells: (1) binding to a host
cell receptor and (2) viral envelope fusion with the host cell membrane [94–96]. In the latter
process, i.e., during the fusion of the viral envelope, the viral genome is released into the
cytoplasm, enabling viral replication. Both steps of viral entry to host cells are mediated
by a heavily glycosylated class I fusion protein (S protein), which is present in the virus
envelope [97].

During viral infections, Gal3 modulates the immune response through the activation
and recruitment of various immune cells, such as dendritic cells, macrophages, T cells,
and neutrophils [17]. Gal3 can promote the production of pro-inflammatory cytokines
and chemokines, such as TNF-α and IL-6, and it can increase neutrophil migration toward
infection sites and neutrophil recruitment to the lungs during influenza and Streptococcus
pneumoniae co-infection [17].

In the context of SARS-CoV-2 infection, Gal3 is believed to modulate the host immune
response, potentially contributing to disease severity [14] through the high-level production
and release of pro-inflammatory cytokines, such as TNF-α, IL1β, and IL-6 [66]. Elevated
levels of these cytokines are found in patients with severe COVID-19, leading to a “cytokine
storm”, ARDS, and multi-organ failure [98,99]. During SARS-CoV-2 infection, Gal3 can
activate the NLRP3 inflammasome, which is a critical component of the innate immune
response that detects and responds to pathogens [100]. The activation of the NLRP3
inflammasome can induce the production and release of pro-inflammatory cytokines,
including IL-1β and IL-18, which can contribute to the overall inflammatory response [92]
(Figure 5). Several studies have shown a significant association between high levels of Gal3
in the blood serum and COVID-19 severity [84–86], along with increased pro-inflammatory
cytokines (IL-1β, TNF-α, and IL-12), chemokine C-C, and chemokine receptor type 5
(CCR5) expression in T cells [92]. Overall, studies suggest that Gal3 may contribute to the
acquired pro-inflammatory immune response and intensify the innate pro-inflammatory
immune response in severe COVID-19 patients with or without pre-existing conditions or
co-morbidities.

Gal3 has been shown to influence the NF-κB signaling pathway, a critical transcription
factor known to regulate genes involved in immune and inflammatory responses [101].
Gal3 can activate NF-κB and produce pro-inflammatory cytokines or cytokine storms, as
observed in severe cases of COVID-19 [98,102,103]. Gal3 can also modulate other signaling
pathways involved in various cellular processes, such as JAK/STAT (Janus kinase/signal
transducers and activators of transcription), ERK (extracellular signal-regulated kinase),
and AKT (protein kinase B) [104]. Gal3 can dysregulate these pathways, leading to im-
paired immune responses and contributing to disease pathogenesis during viral infections.
We showed the binding of Gal3 to plastic-adsorbed TLR4 (unpublished data). Thus, in viral
infections, Gal3 can interact with TLR4 and regulate the NLRP3 inflammasome, thereby pro-
moting inflammasome assembly and activation, which potentially contributes to enhanced
inflammation and tissue damage [14,101,105]. Gal3 can also modulate the expression of
suppressor of cytokine signaling 1 (SOCS1), which is involved in the overall inflammatory
response, and it can influence retinoic acid-inducible gene I (RIG-I) expression during
influenza and Streptococcus pneumoniae co-infection, resulting in the dysregulated ex-
pression of pro-inflammatory cytokines [77]. Overall, Gal3’s fascinating role in immune
signaling pathways underscores its utility as a therapeutic target for COVID-19.
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Figure 5. Schematic representation of Gal3-mediated upregulation of pro-inflammatory cytokines
and Gal3 inhibition reversing it. During viral infection, Gal3 can interact with TLR4 to elicit
NF-κB-mediated pro-inflammatory cytokines. Gal3 can also activate NLRP3 inflammasome, leading
to secretion of pro-inflammatory cytokines. However, inhibition of Gal3 can prevent activation
of both NF-κB and NLRP3 inflammasome, abrogating pro-inflammatory signaling (according to
Ref. [14]). SARS-CoV-2 image was taken from the Centers for Disease Control and Prevention (CDC)
(https://stacks.cdc.gov/view/cdc/86942, access one 20 May 2024).

4. Development of MyD88 and Gal3 Inhibitors to Treat COVID-19

As discussed above, MyD88 upregulation impairs the host antiviral IFN-β response
(type I) [11,25,30,55] (see Figure 2) by interfering with signaling through the interaction
of IRF3/IRF7, for example, in the TLR3-TRIF-IRF-dependent pathway. Further, MyD88
induction is known not only for the activation of NF-κB and the subsequent expression of
IL-6, TNF-α, IL-1β, etc., but also for the downregulation of type I interferon (double-edged
sword) [11,25,55,106–108]. In the case of COVID-19, an impaired type I interferon response
associated with a persistent blood virus load and an exacerbated inflammatory response
driven by NF-κB, particularly by increased TNF-α and IL-6 production, were observed in a
cohort of fifty COVID-19 patients [109–111]. However, galectin-like S1-NTD interactions
with host sialic acids may be critical for SARS-CoV-2 cell entry as a means of stabilizing
the interaction between the S1-CTD and ACE2 [72,79,80] (see Figure 4). Moreover, it was
found that an increased expression of host Gal3 could promote viral attachment in the
airway through interactions with virus spike glycoproteins, and it could promote a pro-
inflammatory response. During SARS-CoV-2 infection, an increased expression of Gal3
could activate the NLRP3 inflammasome through TLR4 [100], resulting in the production
and release of pro-inflammatory cytokines, which contribute to the overall inflammatory
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response [92] (see Figure 5). Therefore, we hypothesize that the specific inhibition of Gal3
and MyD88 may represent a promising therapeutic strategy for the treatment of COVID-19.

Given that the BB loop region in the TIR domain is involved in dimerization, which
is necessary for MyD88-mediated signaling [10,24,26], many of the MyD88 inhibitors
that have been developed are based on the inhibition of either adaptor–adaptor homod-
imerization or receptor–adaptor heterodimerization. Originally, a synthetic molecule,
hydrocinnamoyl-L-valyl-pyrrolidine (AS1), mimicking the BB loop representing consen-
sus RDVLPGT (aa196-202), was shown to disrupt TLR/IL-1R signaling, particularly
by disrupting MyD88 and its associated IL-1R [112]. Later, another small molecule
(named compound 1) mimicking the BB loop was shown to interfere with MyD88-mediated
signaling [113] (Figure 6). Compound 1 was later modified by adding an aromatic benzene
ring, and the modified product (named EM-163) was found to be more effective than
compound 1 in both cell and animal studies [114]. Further, to increase flexibility in terms of
binding to the exposed BB loop of the TIR domain, we synthesized a dimeric compound,
named compound 4210. Compound 4210 is composed of two modules of compound 1,
which are covalently linked by a non-polar cyclohexane ring [115,116].

Int. J. Mol. Sci. 2023, 24, x  14 of 20 
 

 

 
Figure 6. Chemical structures and compositions of MyD88 and Gal3 inhibitors. Structures of com-
pound 1, EM163, and compound 4210 were adapted from Ref. [11]. Structure of T6167923 was 
adapted from Ref. [21]. Structures of TD139 and GB1211 were adapted from Ref. [117]. 

Compound 4210 was found to restrict severe pro-inflammatory IL-6, TNF-α, etc., but 
exhibit type I IFN-inducing properties and demonstrate antiviral activity through the up-
regulation of IFN-β and RANTES in various viral infections and mouse models of diseases 
[25]. Overall, studies have shown that compound 4210 can function as an immune-mod-
ulating molecule through the deactivation of MyD88, adjust biological pathways, and ac-
celerate type I—and potentially type III—IFN signaling through phosphorylated IRFs for 
a strong antiviral IFN response [25] (see Figure 2). Similar to compound 4210, a few other 

Figure 6. Chemical structures and compositions of MyD88 and Gal3 inhibitors. Structures of
compound 1, EM163, and compound 4210 were adapted from Ref. [11]. Structure of T6167923 was
adapted from Ref. [21]. Structures of TD139 and GB1211 were adapted from Ref. [117].



Int. J. Mol. Sci. 2024, 25, 8421 14 of 20

Compound 4210 was found to restrict severe pro-inflammatory IL-6, TNF-α, etc.,
but exhibit type I IFN-inducing properties and demonstrate antiviral activity through
the upregulation of IFN-β and RANTES in various viral infections and mouse models of
diseases [25]. Overall, studies have shown that compound 4210 can function as an immune-
modulating molecule through the deactivation of MyD88, adjust biological pathways, and
accelerate type I—and potentially type III—IFN signaling through phosphorylated IRFs
for a strong antiviral IFN response [25] (see Figure 2). Similar to compound 4210, a few
other small-molecule inhibitors of MyD88 (such as T6167923 and S5, capable of blocking
the TIR domain homodimerization of MyD88) [21,66] have also shown type I-inducing
properties (unpublished data). Overall, these data suggest that, during viral infection,
targeting MyD88 inhibition may facilitate an increased IFN response.

Several Gal3 inhibitors and antagonists, for example, small-molecule carbohydrates
such as TD139 (GB0139) and GB1211 (from Galecto, galecto.com), large-molecule natural
products such as GR-MD-02 and GM-CT-01 (from Galectin Therapeutics, galectintherapeu-
tics.com), Prolectin-series drugs (BioXyTran, bioxytraninc.com), and GM100-series biologics
(from GlycoMantra, glycomantra.com), are being developed for therapeutic applications
in various diseases [71] (see Figure 6). With reference to COVID-19, TD139 and GB0139
(DEFINE, NCT04473053) are being investigated in a Phase 2 trial to evaluate their efficacy
in pre-ventilator COVID-19 patients (n = 200). These are dosed with 5 mg twice daily for
the first two days and then 5 mg once daily for the remaining twelve days or are examined
until discharge or withdrawal from the hospital or trial. This study aims to determine
whether treatment with inhaled GB0139 can reduce viral load and disease severity, along
with any changes in blood biomarkers. Although the trial is ongoing, the preliminary
results from about one-quarter of the COVID-19 patients (n = 40) treated with GB0139 plus
SOC (standard of care) are encouraging [118]. This drug combination (GB0139 + SOC) was
well tolerated and achieved clinically relevant endpoints (a reduction in markers associated
with inflammation, coagulation, fibrosis, etc., compared with the SOC alone), underscoring
the efficacy of GB0139 in COVID-19 patients [118]. In a double-blind, placebo-controlled
clinical study (NCT04512027), ProLectin-M (a galactomannan-based oral drug developed
from guar gum by BioOxyTran) was performed in a small cohort of COVID-19 patients
(n = 10) with mild-to-moderate disease symptoms for a week to determine whether it
caused a reduction in the viral copy numbers. The results were encouraging, as the patients
in the treatment group, but not the placebo group, were found to be RT-PCR-negative for
SARS-CoV-2 from day 3 onwards [119]. We developed recombinant glycoproteins that
target Gal3 with picomolar affinity (GM100 series, patent pending) based on a few modifi-
cations of our patented drug TFD100 [71,120]. The interactions of Gal3 with its endogenous
ligands are typically strong (in the nanomolar range) [71], and, thus, our Gal3 antagonists
can out-compete Gal3’s intrinsic interaction with its endogenous ligands. We demonstrated
the pre-clinical efficacy of our Gal3 antagonists in various indications, such as metastatic
prostate cancer, liver fibrosis, and type 2 diabetes (glycomantra.com), in relevant animal
models without any adverse side effects. Our GM100-series drugs could be used alone or
in combination in various Gal3-mediated diseases.

5. Concluding Remarks

Overall, innate immunity constitutes the first line of defense against invading pathogens,
maintaining normal microbiota and homeostasis. The discovery of host-directed therapeu-
tic products can be beneficial in balancing the host’s internal defense mechanisms against
disease, limiting excess inflammation, or both, resulting in improved disease outcomes
such as fewer infection-associated deaths. Here, we discuss the possible strategies for
discovering small-molecule antiviral therapeutics for COVID-19 and potentially emerging
coronaviruses. A MyD88-targeted therapeutic approach in a Phase 1 clinical trial against
COPD has been proven to be successful in controlling inflammatory diseases, and this has
been validated [121]. Our studies revealed the mechanisms underlying the impairment
of antiviral type I IFN signaling and the role of upregulated MyD88 (MyD88–IRF interac-
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tions), which likely influence alternative MyD88-independent immune signaling pathways
during many viral infections [25]. The therapeutic inhibition of MyD88 has been shown to
restore the host antiviral type I IFN response in MyD88-independent pathways [11,25,55].
Data suggest that host-directed therapy can feasibly modulate the immune response by
stimulating host defense mechanisms and targeting pathways that are perturbed because
of pathogen exposure. Therefore, targeting host factors such as MyD88 involved in the
interference of innate immune modulation such as type I and III IFNs offers the opportunity
for discovering broad-spectrum antiviral drugs. Here, we discuss the notion that pharma-
cological blockade with short-term treatment with MyD88 inhibitors could induce type I
IFN while reducing the acute exacerbation of inflammatory cytokines. Various diseases, in-
cluding toxic shock, COPD, and COVID-19, are more like manifestations of an imbalance in
host innate immunity without the control of inflammation. In this context, MyD88-targeted
therapy would likely be advantageous for controlling severe inflammatory responses. The
available data suggest the benefit of MyD88-targeted therapy with broad-spectrum antiviral
type I IFN-inducing properties. However, more focused and in-depth studies are needed to
determine the suitability of this approach in limiting inflammation-associated syndromes
and infections in complex diseases such as COPD and COVID-19.

In addition, Gal3 has emerged as a multifaceted player in host–pathogen interactions
and viral infections. Gal3 functions not only as a PRR but also as a DAMP. In the context
of SARS-CoV-2 infection, Gal3 has been shown to modulate the host immune response,
potentially contributing to the severity of COVID-19. Gal3 can activate the NLRP3 inflam-
masome, a critical component of the innate immune response that detects and responds to
pathogens. The activation of the NLRP3 inflammasome by Gal3 results in the production
and release of pro-inflammatory cytokines, such as IL-1β, IL-18, and IL-33, contributing
to the overall inflammatory response during SARS-CoV-2 infection. The therapeutic po-
tential of Gal3 inhibitors, namely, GB0139 and Prolectin-M, in hospitalized patients with
COVID-19 has already been established. As a result, strategies ranging from the design
and preparation of potent synthetic small-molecule antagonists (i.e., glycomimetics) to
the acquisition of large biologics from natural sources are being employed to target Gal3
for therapeutic intervention against viral diseases, as well as other inflammatory diseases.
These Gal3 inhibitors and MyD88 inhibitors can be used separately as standalone drugs or
in combination to obtain optimal results against viral infections, including SARS-CoV-2.
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