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Abstract: Glutathione S-transferases (GSTs) are members of a protein superfamily with diverse
physiological functions, including cellular detoxification and protection against oxidative damage.
However, there is limited research on GSTs responding to cadmium (Cd) stress. This study classified
46 GST genes in Dendrobium officinale (D. officinale) into nine groups using model construction and
domain annotation. Evolutionary analysis revealed nine subfamilies with diverse physical and
chemical properties. Prediction of subcellular localization revealed that half of the GST members
were located in the cytoplasm. According to the expression analysis of GST family genes responding
to Cd stress, DoGST5 responded significantly to Cd stress. Transient expression of DoGST5-GFP in
tobacco leaves revealed that DoGST5 was localized in the cytoplasm. DoGST5 overexpression in
Arabidopsis enhanced Cd tolerance by reducing Cd-induced H2O2 and O2

− levels. These findings
demonstrate that DoGST5 plays a critical role in enhancing Cd tolerance by balancing reactive
oxygen species (ROS) levels, offering potential applications for improving plant adaptability to heavy
metal stress.

Keywords: Dendrobium officinale; glutathione S-transferase; cadmium tolerance; reactive oxygen species

1. Introduction

Dendrobium officinale (D. officinale), a renowned traditional Chinese medicinal herb, is
widely distributed in subtropical regions [1]. It is considered the most precious species
of the genus Dendrobium and is known for its diverse therapeutic effects [2]. In China,
fresh D. officinale can be used as a high-quality dietary supplement and is processed into
various products, such as D. officinale juice, functional wine, tea, capsules, and D. officinale
powder, according to consumer preference. Currently, D. officinale cultivation spans over
6000 hectares nationwide, producing over 20,000 tons of fresh product annually [3,4].
However, D. officinale currently suffers from cadmium (Cd) toxicity. Field survey results
indicate that the comprehensive pollution index of the heavy metal, Cd, in the cultivation
substrate of D. officinale is 1.33, causing significant damage to the crop [5].

Glutathione S-transferases (GST) comprise a substantial gene family that encodes
multifunctional enzymes primarily located in the cytoplasm. These enzymes play a signifi-
cant role in oxidative stress metabolism by conjugating numerous substrates, including
endobiotic and xenobiotic compounds, to detoxify harmful molecules [6,7]. The mechanism
includes nucleophilic attack on nonpolar toxic compounds, facilitating their sequestration
in vacuoles and eliminating toxic substances [8]. Investigation of the GST gene family
has uncovered a substantial number of members in various plants, including Arabidop-
sis (57), poplar (81), rice (83), tomato (90), sweet potato (42), pumpkin (32), Brassica rapa

Int. J. Mol. Sci. 2024, 25, 8439. https://doi.org/10.3390/ijms25158439 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25158439
https://doi.org/10.3390/ijms25158439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms25158439
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25158439?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 8439 2 of 14

(75), and Physcomitrella patens (37) [9–17]. This variation in and expansion of GST genes
have been linked to duplication events [12,18,19]. Different classes of GSTs in plants have
been identified based on their structural and functional characteristics. These classes in-
clude the tau, phi, theta, lambda, zeta, and gamma subunits of eukaryotic translation
elongation factor 1B (EF1Bγ), dehydroascorbate reductase, and tetrachlorohydroquinone
dehalogenase [9,12,15,20].

GST genes are involved in various physiological and developmental processes, as well
as in the responses to biotic and abiotic stresses in numerous plant species [21–25]. The
tau and phi classes have been extensively studied in the GST gene family. Overexpression
of certain members of these two classes has been demonstrated to improve tolerance to
drought, salt, oxidative stress, herbicides, heavy metals, and ultraviolet (UV) stressors in
transgenic plants [26–30], indicating their protective role against abiotic stress. Increased
transcript levels of tau class genes NbGSTU1 and NbGSTU3 were observed in Nicotiana
benthamiana infected with Colletotrichum [31]. A recent study demonstrated that members
of the tau class exhibit scavenging activity against highly toxic reactive carbonyl species
(RCS), such as acrolein, and suggested their role in the defense system against RCS [32].
Genes from these two classes have also been implicated in the transport and metabolism
of secondary compounds, such as Bz2 in maize [33], An9 in petunia [34], and TT19 in
Arabidopsis [35]. Plants overexpressing GST genes, such as Nt107 in tobacco and LeGSTU2
in Arabidopsis, have demonstrated increased tolerance to various stresses [36,37].

Advancements in whole-genome sequencing and genome-wide analysis have enabled
the identification and characterization of the GST gene family in various plant species.
Research findings have revealed that GSTs, as a multigene family, have varying genes
across different species. In Arabidopsis, 53 GST family members have been identified [38].
Seventy-nine members have been found in rice [12], 59 in Gossypium raimondii, 49 in G.
arboreum [18], 90 in tomato [11], 54 in peach [39], 69 in apple [40], 97 in kiwifruit [41], and 57
in pear [42]. Although the GST gene family has been extensively characterized in various
plant species, a comprehensive analysis of the GST family in D. officinale has not been
reported. This study aimed to identify GST family members in D. officinale and analyze
their expression patterns in response to Cd exposure. Subsequently, genes exhibiting
significant responsiveness were selected for functional validation, laying the groundwork
for further exploration of the mechanisms underlying Cd resistance mediated by DoGST
family genes.

2. Results
2.1. Identification of the GST Protein Family in D. officinale

A total of 138 known GST protein sequences from Arabidopsis and rice (56 and
82 sequences, respectively) were obtained to construct a Hidden Markov Model (HMM) for
a comprehensive understanding of the sequence characteristics of the GST family. Subse-
quently, the obtained sequences were processed using the Pfam A database and PfamScan
software (version 1.6) for annotation, with the requirement that the selected sequences
contain only two specific structures: GST_N and GST_C. Consequently, 46 members of the
GST family were identified in D. officinale (Table S1).

2.2. Phylogenetic Analysis of the GST Gene Family

Phylogenetic analysis of the GST gene family protein sequences from D. officinale,
rice, and Arabidopsis was performed using the maximum likelihood method in MEGA
software. After comparing the results, the GST proteins were categorized into nine groups,
including phi, EF1Bγ, theta, TCHQD, zeta, GHR, lambda, DHAR, and tau. Among them,
the tau branch comprised 22 family members, accounting for 47.8% and representing the
largest branch of the GST gene family in D. officinale. The phi, EF1Bγ, theta, TCHQD, zeta,
GHR, lambda, and DHAR branches contained 11, 2, 2, 1, 3, 0, 3, and 2 family members,
respectively (Figure 1).
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Figure 1. Phylogenetic tree of DoGSTs (contains GST family proteins of Dendrobium officinale, rice,
and Arabidopsis).

2.3. Physicochemical Property Analysis of the GST Gene Family

The ExPASy online platform was used to predict the physicochemical properties
of the 46 members of the GST gene family in D. officinale to obtain data on molecular
weight and other aspects (Table S2). The amino acid length ranged from 124 to 506, while
the molecular weight ranged from 14,034.32 to 57,214.76 kilodaltons, and the isoelectric
point ranged from 4.94 to 9.40. Eleven proteins, including DoGST2, DoGST27, DoGST35,
DoGST45, DoGST19, DoGST26, DoGST24, DoGST37, DoGST3, DoGST12, and DoGST7,
exhibited isoelectric points > 7, indicating alkaline proteins. However, the rest were acidic
proteins with isoelectric points < 7. The instability index ranged from 20.01 to 55.94, with
20 proteins having indices > 40, indicating instability, and the remaining proteins having
indices < 40, suggesting stability. The aliphatic index ranged from 57.06 to 111.71. The
average hydrophilicity of the protein coefficient ranged from −1.216 to 0.156. DoGST9
and DoGST36 had coefficients of −1.216 and −0.563, respectively, indicating hydrophobic
proteins. The remaining 44 proteins had coefficients > −0.5, indicating hydrophilic proteins
(Table S2).

2.4. Analysis of Gene Structure and Conserved Protein Motifs in the GST Gene Family

Exons and introns play vital roles in understanding evolutionary relationships among
species based on their positional information. The figure above depicts a comprehensive
analysis of all of the identified genes. Genes generally contained 1–10 exons, with genes 23
and 25 having the largest number of exons, each containing 10 exons. Conversely, DoGST22
and DoGST36 had the lowest number of exons, each containing only one exon (Figure 2A).
The MEME online tool for domain analysis results indicated that the GST family in D.
officinale possessed 15 types of motifs. Each member contained at least two GST domains.
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Specifically, DoGST37 had the fewest motifs, containing only 2 motifs, while DoGST15 had
the most, containing 13 motifs (Figure 2B).
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Figure 2. Gene structures and conserved motifs of DoGSTs. (A) Exon-intron organization of DoGST
genes. Exons are shown as red rectangles; introns are shown as gray lines. (B) Composition and
distributions of conserved motifs in DoGST proteins. The conserved motifs are represented by
different numbers and rectangle colors.

2.5. Subcellular Localization Prediction of GST Proteins

Subcellular localization prediction was performed for the 46 members of the GST
gene family in D. officinale using online tools. The results revealed that DoGST7 was
predicted to localize to the plasma membrane. DoGST2, DoGST21, DoGST23, DoGST24,
and DoGST25 were predicted to localize to the chloroplast. DoGST4, DoGST9, DoGST26,
and DoGST37 were predicted to localize to the extracellular space, indicating secretion
proteins. DoGST1, DoGST3, DoGST8, DoGST14, DoGST15, DoGST28, DoGST29, DoGST30,
DoGST39, DoGST41, DoGST42, DoGST43, and DoGST45 were predicted to localize to the
nucleus. The remaining 23 proteins were predicted to localize to the cytoplasm (Table S3).
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2.6. Prediction of TF Binding Sites on the Promoters of the GST Gene Family

The prediction results for the promoter elements revealed that the 46 members of the
GST gene family in D. officinale contained a rich variety of cis-acting elements (Figure 3).
These primarily included abiotic stress-related, hormone-responsive, and light-responsive
elements. Notably, the promoters of DoGST13 and DoGST6 contained the highest number of
cis-acting elements. These elements provided references for the future selection of upstream
regulatory factor promoter fragments and interaction sites between regulatory factors and
promoters (Figure 3).
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2.7. Analysis of Expression Patterns of the GST Gene Family in Response to Cd

The relative expression levels of GST genes in response to Cd stress were analyzed
using transcriptome data from our previous research [43]. The results revealed that 23
GST family genes were generally downregulated in response to Cd, while the remaining
23 were upregulated (Figure 4). Furthermore, we found that the expression levels of
DoGST5, DoGST11, and DoGST33 increased with increasing Cd treatment time, while
the expression levels of DoGST15, DoGST18, DoGST19, DoGST23, DoGST28, DoGST30,
DoGST41, and DoGST43 initially increased and then decreased after Cd treatment (Figure 4).
This suggested that these genes may be involved in the Cd tolerance response of D. officinale
and may be candidate genes for further analysis of Cd tolerance mechanisms.
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Figure 4. Expression analysis of GST family genes in response to Cd stress in Dendrobium officinale.
T01 represents 0 mg·L−1 Cd treatment as the control. T10, T11, and T12 represent three biological
repeats of 14 mg·L−1 Cd treatment for 15 days. T13, T14, and T15 represent three biological repeats
of 14 mg·L−1 Cd treatment for 30 days.
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2.8. Subcellular Localization Analysis of DoGST5 Protein

Based on the expression pattern analysis, we selected the D. officinale GST family
gene DoGST5, which showed a significant response to Cd, for further analysis. Firstly,
the subcellular localization of this gene was analyzed. In this study, a fusion protein
expression vector of DoGST5 protein fused with GFP protein (p35S::DoGST5::GFP) was
constructed. Then, the recombinant plasmid was transferred into tobacco epidermal cells
via Agrobacterium-mediated transformation and observed using confocal laser scanning
microscopy. The results indicated that DoGST5 protein was expressed in the cytoplasm of
tobacco epidermal cells, indicating that DoGST5 was localized in the cytoplasm (Figure 5).
This was consistent with the predicted subcellular localization of DoGST5 protein.
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Figure 5. Subcellular localization of DoGST5 in N. benthamiana epidermal cells. Upper panel: 35S:GFP
plasmid was transformed into N. benthamiana leaves. Lower panel: the fusion protein DoGST5::sGFP
was transiently co-expressed with the RFP-rk plasma membrane marker into N. benthamiana leaves,
bar = 20 µm.

2.9. Functional Analysis of DoGST5 in Cd Tolerance

Two transgenic Arabidopsis lines overexpressing DoGST5 were identified using semi-
quantitative PCR analysis. The results indicated that, at nearly identical brightness of the
AtActin band, Col-0 did not exhibit amplification bands, while the two overexpression lines
displayed brighter bands (Figure S1), indicating successful expression of DoGST5 in both
transgenic lines, making them suitable for subsequent experiments. Seeds of wild-type and
transgenic homozygous Arabidopsis lines were sown on 1/2 MS solid culture medium
containing 0 and 60 µM CdCl2 and placed in a growth chamber for two weeks. Phenotypic
differences were observed, photographs were taken, and the root length and biomass were
measured. As shown in Figure 6A,B, on culture medium containing 60 µM CdCl2, the
Arabidopsis lines overexpressing DoGST5 exhibited stronger resistance than the wild type.
The root length of the overexpression lines was significantly longer than that of the wild
type. The fresh weight of the overexpression lines was also significantly greater than that
of the wild type. However, there were no significant differences in root length and biomass
under control conditions (Figure 6C,D).



Int. J. Mol. Sci. 2024, 25, 8439 8 of 14
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  8  of  14 
 

 

 

Figure 6. Overexpression of DoGST5 enhances Cd tolerance in Arabidopsis by reducing the exces-

sive accumulation of ROS induced by Cd stress. (A,B) Phenotypic analysis of Cd tolerance in Ara-

bidopsis overexpressing DoGST5. Col-0 and DoGST5 overexpression Arabidopsis  lines were cul-

tured on 0 and 60 µM 1/2 MS solid medium for 14 days. (C,D) Primary root length and fresh weight 

of Col-0 and DoGST5 overexpression  lines. Data are means ± SD  (n = 5). (E,F) Overexpression of 

DoGST5 in Arabidopsis reduces excessive ROS levels induced by Cd stress. Columns with different 

letters indicate significant differences (p  <  0.05) using one-way ANOVA with Tukey’s test for mul-

tiple comparisons. 

2.10. Enhancement of Plant Cd Tolerance by DoGST5 via Balancing ROS Levels 

During GST reduction, GSH acts as an electron donor, reducing the organic perox-

ides in nucleotides and fatty acids to yield monohydric compounds. This reaction reduces 

the proportion of peroxides, effectively protects the cells, and prevents oxidative damage. 

Therefore, we measured the ROS content in wild-type and DoGST5 overexpression lines 

of Arabidopsis. The results indicated that the H2O2 and O2− levels in both Arabidopsis lines 

were increased significantly compared to the control group after Cd treatment. However, 

Col-0 GST5-OE1 GST5-OE2 Col-0 GST5-OE1 GST5-OE2

0 μM CdCl2 for 14 days 60 μM CdCl2 for 14 days

A B

C D

Col
-0

OE1
OE2

Col
-0

OE1
OE2

0.0

0.5

1.0

1.5

2.0

2.5 CK
Cd

a

b b
a a

a

Col
-0

OE1
OE2

Col
-0

OE1
OE2

H
2O

2
(μ

g/
g)

E F

Figure 6. Overexpression of DoGST5 enhances Cd tolerance in Arabidopsis by reducing the excessive
accumulation of ROS induced by Cd stress. (A,B) Phenotypic analysis of Cd tolerance in Arabidopsis
overexpressing DoGST5. Col-0 and DoGST5 overexpression Arabidopsis lines were cultured on
0 and 60 µM 1/2 MS solid medium for 14 days. (C,D) Primary root length and fresh weight
of Col-0 and DoGST5 overexpression lines. Data are means ± SD (n = 5). (E,F) Overexpression
of DoGST5 in Arabidopsis reduces excessive ROS levels induced by Cd stress. Columns with
different letters indicate significant differences (p < 0.05) using one-way ANOVA with Tukey’s test
for multiple comparisons.

2.10. Enhancement of Plant Cd Tolerance by DoGST5 via Balancing ROS Levels

During GST reduction, GSH acts as an electron donor, reducing the organic peroxides
in nucleotides and fatty acids to yield monohydric compounds. This reaction reduces
the proportion of peroxides, effectively protects the cells, and prevents oxidative damage.
Therefore, we measured the ROS content in wild-type and DoGST5 overexpression lines of
Arabidopsis. The results indicated that the H2O2 and O2

− levels in both Arabidopsis lines
were increased significantly compared to the control group after Cd treatment. However,
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the DoGST5 overexpression lines exhibited significantly lower H2O2 and O2
− levels than

wild-type Arabidopsis after Cd treatment (Figure 6E,F), indicating that overexpression of
DoGST5 could reduce the excessive accumulation of ROS induced by Cd stress in plants,
thereby reducing cell damage and enhancing plant Cd tolerance.

3. Discussion

Plant GSTs are multifunctional small soluble proteins widely distributed in organisms.
Plant GSTs catalyze the reaction of the tripeptide, glutathione, transferring it to a common
substrate, thus producing polar S-glutathione reaction products. Subsequently, these
metabolites are transported to vacuoles, exerting detoxification effects. In this study,
46 members of the D. officinale GST gene family were identified based on the published
genome and clustered into eight major classes, including phi, EF1Bγ, theta, TCHQD, zeta,
lambda, DHAR, and tau. The number of GST genes in D. officinale was lower than that in
Arabidopsis (66 GST genes) [44], rice (59 GST genes) [12], poplar (81 GST genes) [15], tomato
(90 GST genes) [11], and soybean (101 GST genes) [45], but higher than that in potato (42 GST
genes) [10]. The GST family members in Arabidopsis were divided into eight subfamilies,
including phi, tau, theta, zeta, lambda, EF1Bγ, DHAR, and TCHQD [17]. D. officinale
contains many GST subfamilies, suggesting that the D. officinale GST family may have
undergone more sequence and functional differentiation during evolution. Phylogenetic
studies have demonstrated that plant GSTs evolve gradually after plant differentiation, with
the tau and phi subfamilies being particularly special and widely distributed in plants [46].
Tau and phi class genes play important roles in responses to salt, oxidative stress, herbicides,
heavy metals, and UV stressors in plants [26–30]. Moreover, we found that D. officinale
contains 12 and 14 genes for the tau and phi classes, respectively, belonging to the largest
branches, indicating their crucial roles in stress response.

A study of cis-acting elements in the GST gene promoter regions revealed that many
family members include MYC elements. External abiotic stress response regulation methods
primarily include two types: ABA-dependent and non-dependent types. The roles of
DRE and ABRE elements are significant in these two regulatory mechanisms. The first
type primarily includes MYC and MYB elements, and the signaling system uses ABA
to regulate MYC and other transcription factors, thereby expressing downstream stress-
resistance genes [47]. For the second type, when the signal activates the sensor protein
in the regulation process, it is transferred to DREB, which then binds to DRE to achieve
expression [48]. ABRE is also important for plant abiotic stress. The induction of many
specific proteins through ABA response mechanisms plays a regulatory role in plants.
Consequently, these cis-acting elements may play important roles in the abiotic stress
response of D. officinale.

GSTs are involved in multiple biochemical reactions and play a role in plant stress
tolerance. Plant GSTs regulate reversible S-glutathionylation of protein thiol residues,
protecting proteins from oxidation under stress [49]. Transgenic overexpression of GSTs has
provided insight into their role in abiotic stress acclimatization. Overexpression of tau class
GSTs from species like Glycine soja, Arabidopsis, and Prosopis juliflora resulted in enhanced
stress tolerance through oxidative stress tolerance, induction of antioxidant machinery,
and changes in redox state [36,50–52]. Overexpression of rice OsGSTU4 led to pleiotropic
effects, including reduced sensitivity to ABA and auxin, and upregulation of defense-related
pathways [29]. Zeta class GSTs have also contributed to abiotic stress tolerance despite
lacking significant GST/GPOX activity. Overexpression of OsGSTZ2 in rice and ThGSTZ1 in
Tamarix hispida increased stress tolerance and GST/GPOX activity [53–56]. GSTZ isomerase
activity may reduce oxidant accumulation, aiding antioxidant machinery [57].

However, there are no reports on the resistance of the GST gene family in D. officinale.
This study is the first time to report expression analysis of the GST gene family in D. officinale
under Cd stress. Differentially expressed genes can serve as genetic resources for breeding
D. officinale with heavy metal tolerance. The Cd-induced significant up-regulation of the
DoGST5 gene was preliminarily validated for Cd tolerance. Our evolutionary analysis
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showed that DoGST5 belongs to the tau family. Overexpression of DoGST5 in Arabidopsis
increased its tolerance to Cd by reducing levels of Cd-induced H2O2 and O2

−. The results
of the subcellular localization analysis showed that DoGST5 was localized in the cytoplasm.
Its presence in the cytoplasm could be associated with detoxifying ROS and other harmful
compounds, which is crucial for maintaining cellular homeostasis. The results indicated
that overexpression of DoGST5 can reduce excessive accumulation of ROS induced by Cd
stress in plants, thereby alleviating plant cell damage and enhancing plant Cd tolerance.
The studies mentioned above suggested that the protective functions of GSTs against abiotic
stress are linked to protein abundance and catalytic activity. However, silencing AtGSTU17
resulted in increased drought and salt stress tolerance, accompanied by anatomical and
physiological changes such as a smaller stomatal aperture, lower transpiration rate, in-
creased root growth, and higher ABA and GSH contents [58]. These findings highlight the
signaling functions of GSTs beyond their catalytic activities, offering potential for enhancing
plant robustness under abiotic stress.

4. Materials and Methods
4.1. Identification of Family Member Proteins

Based on the GST protein family sequences, a Hidden Markov Model (HMM) was
constructed using HMMER software (version 3.0) to search for and identify the complete
coding protein sequences in D. officinale and to comprehensively understand the family. For
the GST family reference sequences, a BLASTp search was conducted against all protein
sequences, with an e-value threshold set to 1 × 10−10. Sequences that successfully matched
were considered candidate sequences, combined to obtain the candidate GST family protein
sequences. The obtained sequences were subjected to structural domain annotation using
PfamScan software (version 1.6) and the Pfam A database to confirm sequences containing
only the GST_N and GST_C domains as the final GST sequences.

4.2. Evolutionary Tree Analysis of GSTs

After identification, a series of GST protein family sequences from other plants was
obtained, enabling the construction of a maximum likelihood tree. The construction method
involved multiple sequence alignment using MAFFT and subsequent tree building using
MEGA software. To assess the confidence of the calculated evolutionary tree branches,
the parameters were set as follows: substitution model—the Jones–Taylor–Thornton (JTT)
model, site coverage cutoff—95%, bootstrap—1000 replicates. The other parameters were
set to default.

4.3. Motif Structure Analysis of GST Family Proteins

MEME software (http://meme.nbcr.net/meme, version 4.11.2, accessed on 20 April
2020) was employed to analyze the conserved motifs in the GST family. The parameter for
motif discovery was set as 15.

4.4. Gene Structure Analysis of GST Family

The obtained GST protein sequences were submitted to the MEME online tool (https:
//meme-suite.org/meme/tools/meme, accessed on 20 April 2020) to identify conserved
motifs (Motifs), with the maximum value for motif parameters set to 10. The identified
motifs from the protein sequences and structural information such as exons, introns, and
untranslated regions (UTRs) extracted from the genome annotation files were visualized
using the “Visualize Gene Structure” tool in TBtools software (version 0.6, accessed on
20 April 2020).

4.5. Subcellular Localization Prediction of GST Family

The subcellular localization of GST family members in D. officinale was predicted using
ProtComp online software (http://www.softberry.com/berry.phtml?topic=protcomppl&
group=help&subgroup=proloc, version 9.0, accessed on 20 April 2020).

http://meme.nbcr.net/meme
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
http://www.softberry.com/berry.phtml?topic=protcomppl&group=help&subgroup=proloc
http://www.softberry.com/berry.phtml?topic=protcomppl&group=help&subgroup=proloc
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4.6. Subcellular Localization

The CDS of DoGST5 without a stop codon was cloned into the binary vector 35S::GFP
(modified from pCAMBIA1300). The primers used are listed in Table S3. The resultant
DoGST5-GFP vector was transformed into Agrobacterium tumefaciens and cultured in 4 mL
of LB medium containing kanamycin resistance. The culture was shaken at 28 ◦C and
200 rpm until the OD600 reached approximately 0.6. After centrifugation at 8000 rpm for
6 min, the supernatant was discarded, and the same volume of MES solution (10 mM MES
with pH = 5.6, 10 mM MgCl2, and 0.2 mM acetosyringone) was used for resuspension.
After centrifugation, the pellet was resuspended in an equal volume of MES solution and
incubated at room temperature for 2 h. Tabacco (cultivated for 45 days) was injected
into the backs of the leaves using a sterile syringe and incubated for three days. The
GFP fluorescence of the leaves near the injection site was observed using a laser confocal
microscope (LSM880: Karl Zeiss, Leica, Germany).

4.7. Arabidopsis Transgenic Experiment

The CDS of DoGST5 with a stop codon was cloned into the binary vector 35S::GFP. The
primers used are listed in Table S3. The Agrobacterium carrying the 35S::DoGST5 plasmid
was cultured in LB liquid medium (containing 50 µg·mL−1 kanamycin and 50 µg·mL−1

rifampicin) until the OD600 reached approximately 0.8. The cells were centrifuged and
resuspended in an inoculation solution (1/2 MS liquid medium, 5% sucrose, 0.03% Silwet
L-77 (Solarbio Science & Technology, Beijing, China), 0.01 µg·mL−1 6-BA, and 20 mg·L−1

AS, pH adjusted to 5.7 with KOH). The plants were then immersed in the suspension
solution for 5 min. After 24 h of dark treatment, the plants were transferred to normal
growth conditions. Positive seedlings were screened on 1/2 MS solid medium containing
50 µg·mL−1 hygromycin. T3 generation seeds were obtained for subsequent experiments.

4.8. Determination of H2O2 and O2
− Concentrations

The H2O2 and O2
− concentrations were measured using assay kits (Suzhou Keming

Biotech Co. Ltd., Jiangsu, China). For the H2O2 assay, 0.1 g of leaves was added to 1 mL of
reagent 1, homogenized in an ice bath, then transferred to an EP tube, adjusted to 1 mL
with reagent 1, and centrifuged at 8000× g for 10 min at 4 ◦C. For the O2

− assay, 100 mg
of frozen leaves was added to 1 mL of extracting solution, homogenized in an ice bath,
and centrifuged at 10,000× g for 20 min at 4 ◦C. The absorbance of the supernatant was
measured at 415 nm for H2O2 and 530 nm for O2

−.

5. Conclusions

In conclusion, this study investigated the GST gene family in D. officinale, particularly
its response to Cd stress. We identified 46 GST genes and classified them into nine groups,
with the tau group being the most prominent. Phylogenetic and physicochemical analyses
revealed diverse properties of these genes. Subcellular localization predictions indicated
that half of the GSTs were cytoplasmic. Expression analysis under Cd stress identified
DoGST5 as significantly responsive. The transient expression of DoGST5-GFP in tobacco
confirmed its cytoplasmic localization. Overexpression of DoGST5 in Arabidopsis enhanced
Cd tolerance by reducing ROS levels and mitigating cell damage. Functional analyses
revealed that DoGST5 overexpression improved root length and biomass under Cd stress,
while ROS measurements exposed lower H2O2 and O2

− levels in transgenic lines than
in wild-type plants. These findings suggest that DoGST5 plays a vital role in enhancing
Cd tolerance by balancing ROS levels, offering potential applications for improving plant
resilience to heavy metal stress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25158439/s1.

https://www.mdpi.com/article/10.3390/ijms25158439/s1
https://www.mdpi.com/article/10.3390/ijms25158439/s1
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