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Abstract: Gastrochilus is an orchid genus containing about 70 species in tropical and subtropical
Asia with high morphological diversity. The phylogenetic relationships among this genus have
not been fully resolved, and the plastome evolution has not been investigated either. In this study,
five plastomes of Gastrochilus were newly reported, and sixteen plastomes of Gastrochilus were
used to conduct comparative and phylogenetic analyses. Our results showed that the Gastrochilus
plastomes ranged from 146,183 to 148,666 bp, with a GC content of 36.7–36.9%. There were 120 genes
annotated, consisting of 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. No contraction
and expansion of IR borders, gene rearrangements, or inversions were detected. Additionally, the
repeat sequences and codon usage bias of Gastrochilus plastomes were highly conserved. Twenty
hypervariable regions were selected as potential DNA barcodes. The phylogenetic relationships
within Gastrochilus were well resolved based on the whole plastome, especially among main clades.
Furthermore, both molecular and morphological data strongly supported Haraella retrocalla as a
member of Gastrochilus (G. retrocallus).

Keywords: Gastrochilus; Haraella retrocalla; molecular markers; phylogenomics; plastome evolution

1. Introduction

Gastrochilus D. Don (Aeridinae, Vandeae, Epidendroideae, Orchidaceae) is an epiphytic
orchid genus comprising about 70 species, and widely distributed in tropical and subtrop-
ical Asia [1–4], with a species diversity center in the South-East Asian archipelago [5,6].
Because of its high morphological diversity and brightly colored flowers, it has potential
horticultural value for pot culture, hanging baskets, and tree mounting [2,7]. Additionally,
it can be used as a medicine to treat mastitis, body aches, and detoxification due to its
phytochemical production such as bioactive alkaloids [2,8].

Recently, phylogenetic analyses confirmed that the genus Gastrochilus was mono-
phyletic, but the infrageneric relationships were not completely resolved. Based on ITS
and four plastid markers (atpI-atpH, matK, psbA-trnH, and trnL-F), Zou et al. [9] showed
that the nine Gastrochilus species formed a clade with high Bayesian inference supporting
value, and similar results were obtained in other phylogenetic studies with ITS and several
chloroplast DNA markers. Unfortunately, the relationships within Gastrochilus were not
consistent with each other [3,4,6]. Specifically, Liu et al. [6] proposed that Gastrochilus can
be divided into five clades based on five DNA regions (ITS, matK, psbA-trnH, psbM-trnD,
and trnL-F). Recently, Zhang et al. [4] also employed the same five markers and divided
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Gastrochilus into six sections. However, these infrageneric classifications of this genus
were not supported by Li et al. [3] based on the combination of ITS and seven chloroplast
DNA markers. Further, Liu et al. [10] reconstructed the phylogenetic relationships within
the Cleisostoma-Gastrochilus clades (Aeridinae) based on 68 plastid genes, and strongly
supported the idea that Gastrochilus is close to Pomatocalpa. Particularly, the position of
Gastrochilus retrocallus (Hayata) Hayata (Haraella retrocalla (Hayata) Kudo) was controversial.
G. retrocallus is an epiphytic species endemic to Taiwan, China. It was firstly described as
Saccolabium retrocallum by Hayata [11], and then recognized as a member of Gastrochilus
as G. retrocallus [12]. Because this species lacks a saccate hypochile, Kudo [13] established
a new genus, Haraella, including two species H. retrocalla and H. odorata Kudo. Later,
Smith [14] transferred H. odorata into Gastrochilus as G. odoratus (Kudo) J.J.Sm. After a
detailed morphological examination, Tsi [1] revised the genus Gastrochilus and treated G.
odoratus and G. retrocallus as synonyms of H. retrocalla. However, this taxonomic treatment
has not been adopted by some taxonomists, and they still recognized them as G. retrocal-
lus (e.g., [2,15], https://powo.science.kew.org/, accessed on 7 June 2024). Additionally,
recent phylogenetic studies based on combined ITS and plastid DNA markers have still
not effectively addressed its systematic position. For example, Zou et al. [9] indicated that
H. retrocalla was sister to Gastrochilus with low supporting values (PPBI = 0.65, BSML < 50),
while Liu et al. [6] deemed it nested in Pomatocalpa (PPBI = 1.00). Therefore, it is crucial to
employ more effective molecular markers to resolve the phylogenetic relationships within
Gastrochilus, and further clarify the taxonomic position of H. retrocalla.

Plastomes have recently played crucial roles in investigating plant phylogenetic re-
lationships (e.g., [16–18]). For example, phylogenetic analyses indicated that whole plas-
tomes realized a fast and efficient identification of the relationships within Polygonatum
(Asparagaceae) [19]. In particular, plastomes were successful in elucidating intergeneric
relationships within Orchidaceae. Phylogenetic analysis based on the complete plastome
indicated that Aerides (Aeridinae) was monophyletic and can be divided into three ma-
jor clades [20]. Moreover, robust phylogenetic relationships of Angraecum (Angraecinae)
were established based on plastomes [21]. Additionally, plastomes are advantageous in
resolving the phylogenetic relationships in other Orchidaceae genera, such as Pholidota
(Coelogyninae) [22] and Epidendrum (Epidendrinae) [23].

In this study, we newly sequenced, assembled, and annotated the plastomes of five
Gastrochilus species, and combined them with 11 previously reported plastomes of Gas-
trochilus to conduct comparative analyses, DNA barcoding investigation, and phylogenetic
reconstruction within Gastrochilus. Our objectives were (1) to investigate general features
and understand the evolutionary pattern of Gastrochilus plastomes; (2) to identify some
hypervariable regions as potential DNA barcodes for future species identification within
Gastrochilus; and (3) to explore the phylogenetic relationships of Gastrochilus and discuss
the systematic position of H. retrocalla.

2. Results
2.1. Plastome Features and Gene Contents

The plastomes of the five Gastrochilus species displayed a typical quadripartite struc-
ture (Figure 1). The plastome sizes of Gastrochilus ranged from 146,183 bp (G. fuscopunctatus
(Hayata) Hayata) to 148,666 bp (G. acinacifolius Z.H.Tsi) (Table S1). The plastomes contained
a pair of inverted repeats (IRs; 25,725–26,025 bp), a large single-copy (LSC; 83,125–85,759 bp)
region, and a small single-copy (SSC; 10,805–11,331 bp) region. The GC content of the
plastomes ranged from 36.7% to 36.9%. The GC content of the IR and LSC regions ranged
from 43.0% to 43.2% and 33.9% to 34.2%, respectively, while the GC content of the SSC
region ranged from 28.0% to 28.6% (Table S1). Each Gastrochilus plastome consisted of
120 genes, comprising 74 protein-coding genes (CDSs), 38 transfer RNA (tRNA) genes, and
8 ribosomal RNA (rRNA) genes.

https://powo.science.kew.org/
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Figure 1. Plastome structure of five Gastrochilus species. The darker gray in the inner circle corre-
sponds to the GC content. Bars of different colors indicate different functional groups. Genes on the 
inside of the circle are transcribed clockwise, while genes annotated outside the circle are tran-
scribed counterclockwise. LSC: large single-copy region; SSC: small single-copy region; IRa and IRb: 
two inverted repeat regions. 

2.2. Plastome Structural Variations 
The IR boundary map was generated by comparing the plastomes of 16 Gastrochilus 

species using IRscope (Figure 2). At the junction between LSC and IRb (JLB), the rpl22 
gene in all species spanned from LSC to IRb with 31–44 bp departed in IRb. Moreover, the 
trnN and rpl32 genes of Gastrochilus plastomes were found adjacent to the junction be-
tween the SSC and IRb (JSB), while none of them spanned the junction. In addition, the 
ycf1 gene spanned from SSC to IRa in 15 plastomes at the junction between SSC and IRa 
(JSA), with a range of 11 to 195 bp, while the ycf1 gene of G. guangtungensis Z.H.Tsi was 
entirely located in the SSC region. As for the junction between IRa and LSC (JLA), the 
rps19 and psbA genes were detected on the left and right side of the JLA line, respectively. 
The collinearity analysis revealed no gene rearrangements or inversions in the Gastrochilus 
plastomes (Figure S1). 

Figure 1. Plastome structure of five Gastrochilus species. The darker gray in the inner circle corre-
sponds to the GC content. Bars of different colors indicate different functional groups. Genes on the
inside of the circle are transcribed clockwise, while genes annotated outside the circle are transcribed
counterclockwise. LSC: large single-copy region; SSC: small single-copy region; IRa and IRb: two
inverted repeat regions.

2.2. Plastome Structural Variations

The IR boundary map was generated by comparing the plastomes of 16 Gastrochilus
species using IRscope (Figure 2). At the junction between LSC and IRb (JLB), the rpl22
gene in all species spanned from LSC to IRb with 31–44 bp departed in IRb. Moreover,
the trnN and rpl32 genes of Gastrochilus plastomes were found adjacent to the junction
between the SSC and IRb (JSB), while none of them spanned the junction. In addition, the
ycf1 gene spanned from SSC to IRa in 15 plastomes at the junction between SSC and IRa
(JSA), with a range of 11 to 195 bp, while the ycf1 gene of G. guangtungensis Z.H.Tsi was
entirely located in the SSC region. As for the junction between IRa and LSC (JLA), the
rps19 and psbA genes were detected on the left and right side of the JLA line, respectively.
The collinearity analysis revealed no gene rearrangements or inversions in the Gastrochilus
plastomes (Figure S1).
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Figure 2. Comparison of the boundaries between the LSC, SSC, and IR regions in the sixteen Gas-
trochilus plastomes. The topology on the left was the ML tree based on plastomes (excluding IRa). 
JLB: LSC/IRb junctions; JSB: SSC/IRb junctions; JSA: SSC/IRa junctions; JLA: LSC/IRa junctions. 

Figure 2. Comparison of the boundaries between the LSC, SSC, and IR regions in the sixteen
Gastrochilus plastomes. The topology on the left was the ML tree based on plastomes (excluding IRa).
JLB: LSC/IRb junctions; JSB: SSC/IRb junctions; JSA: SSC/IRa junctions; JLA: LSC/IRa junctions.
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2.3. Examination of Repeats and Codon Usage Bias

The results of SSRs, tandem repeats, and dispersed repeats in the 16 Gastrochilus
plastomes are shown in Figure 3 and Table S2. A total of 763 SSRs were detected in the
16 Gastrochilus plastomes, of which 480 SSRs (62.91%) were located in the LSC region,
183 SSRs (23.98%) in the SSC region, and 100 SSRs (13.11%) in the two IR regions. Six types
of SSRs (mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide repeats) were identified, with
541 SSRs (70.90%) being mono-nucleotide type, particularly A and T repeat motifs. We
also identified 98 di-nucleotide repeats (12.84%), 52 tri-nucleotide repeats (6.82%), 53 tetra-
nucleotide repeats (6.95%), 15 penta-nucleotide repeats (1.97%), and 4 hexa-nucleotide
repeats (0.52%). Mono-, di-, tri-, and tetra-nucleotide repeat categories were observed
in all species, while penta-nucleotide repeats were absent in 5 species. Hexa-nucleotide
repeats were only present in G. japonicus (Makino) Schltr. and G. prionophyllus H.Jiang,
D.P.Ye & Q.Liu. In each species, a total of 40 (G. sinensis Z.H.Tsi) to 58 (G. retrocallus) SSRs
were identified.
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Figure 3. Plot of each SSR repeat pattern number of 16 Gastrochilus plastomes. The topology on the
left is the ML tree based on plastomes (excluding IRa).

A total of 706 tandem repeats were detected, ranging from 30 (G. japonicus) to 53 (G.
retrocallus). There were 626 long repeats in the Gastrochilus plastomes, comprising four
types: palindrome, forward, reverse, and complement. Among them, palindrome repeats
were the dominant type of long repeats, followed by forward repeats, with percentages of
65.81% and 30.19%, respectively, while reverse and complement repeats only accounted for
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only 3.51% and 0.48%, respectively. All types of long repeats were detected only within
two species (G. distichus (Lindl.) Kuntze and G. prionophyllus). The total number of long
repeats ranged from 31 (G. japonicus) to 51 (G. retrocallus) in each Gastrochilus plastome.

To quantify the degree of the codon usage bias, we estimated the relative synonymous
codon usage (RSCU) ratio of 16 Gastrochilus plastomes using CodonW, which is visualized in
Figure S2. There were 30 preferred codons (RSCU > 1), 2 non-preferred codons (RSCU = 1),
and 32 less frequently used codons (RSCU < 1). Most of the preferred codons typically
ended with A or U, except for UUG. Moreover, leucine (Leu, encoded by UUA, UUG,
CUU, CUC, CUA, and CUG) was the most frequently encoded amino acid, while cysteine
(Cys, encoded by UGU and UGC) had the lowest frequency. The codons AGA and UUA
exhibited the highest RSCU values, with average values of 1.92 and 1.89, respectively, while
the codons CGC and CGG had the lowest RSCU values, with average values of 0.31 and
0.34, respectively.

2.4. Plastome Sequence Divergence and Barcoding Investigation

The divergence of the complete plastome sequences among the 16 Gastrochilus species
was analyzed using the mVISTA with Pomatocalpa spicatum Breda as reference (Figure S3).
The whole genome alignment revealed that sequence variations in the conserved non-
coding regions (CNS; colored in pink bars) were greater than that in the protein-coding
regions (exon; colored in purple bars). The variation rates of both coding regions and
non-coding regions in the two IR regions were lower than those in the LSC and SSC regions.
Additionally, the non-coding intergenic regions were highly divergent, such as trnSGCU-
trnGGCC, rpl32-trnLUAG, and psaC-rps15, while the rRNA genes were highly conserved
compared with other genes.

To further explore the mutation hotspots of Gastrochilus plastomes to develop specific
DNA barcodes, nucleotide diversity (Pi) values were calculated using DnaSP6 (Figure 4).
The average Pi value among the 16 plastomes was 0.00719, with the IR region averaging
0.00206, the LSC region averaging 0.00804, and the SSC region averaging 0.01388. According
to the ranking of Pi values, the top ten hypervariable regions of whole plastomes were
identified: rpl32-trnLUAG, ccsA-ndhD, matK-rps16, trnSGCU-trnGGCC, psaC-rps15, rbcL-accD,
accD-psaI, rps16-trnQUUG, trnEUUC-trnTGGU, and petA-psbJ. In terms of the 68 CDSs, we also
found the top ten hypervariable regions: ycf1, rpoC2, ccsA, matK, rpoA, accD, rpl20, rps16,
rps11, and rps8 (ranked by Pi values). These hypervariable regions may be used as DNA
barcodes for further phylogenetic analyses and species identification.

2.5. Phylogenomic Analysis

The topologies based on the whole plastome (excluding IRa) and 68 CDSs were ba-
sically concordant. BI and ML analyses also yielded nearly identical topologies, with
some differences in the supporting values of certain nodes (Figure 5A,B). The species of
Gastrochilus formed a well-supported monophyletic group (PPBI = 1.00, BSML = 100), which
was revealed as a sister to Pomatocalpa. The G. retrocallus (formerly treated as Haraella retro-
calla) diverged firstly as clade I, and the remaining species of Gastrochilus could be divided
into three monophyletic clades with strong supporting values (PPBI = 1.00, BSML = 100).
Specifically, G. gongshanensis Z.H.Tsi and G. obliquus (Lindl.) Kuntze formed clade II.
Clade III consisted of a pair of sister groups with strong supporting values (PPBI = 1.00,
BSML = 100): one included G. formosanus (Hayata) Hayata, G. sinensis, and G. distichus, and
the other included G. acinacifolius and G. guangtungensis. Finally, the remaining species
formed clade IV, which also included two monophyletic subclades with strong supporting
values (PPBI = 1.00, BSML = 100). However, clade II and III formed as sister groups with
weaker support based on the two datasets.
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In addition, to test the resolution of potential DNA barcodes for phylogenetic analyses,
we reconstructed the phylogenetic relationships of Gastrochilus based on the top 10 hyper-
variable regions in the whole plastome and 68 CDSs. The two phylogenetic trees presented
the same topologies (Figure 5C,D). All sampled Gastrochilus species formed a monophyletic
group with high support values (PPBI = 0.98 and 1, BSML = 85 and 98, respectively). Re-
markably, the monophyly of clades II, III, and IV was strongly supported (PPBI = 1.00,
BSML = 100), while the relationships among the four clades were poorly resolved.
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in Gastrochilus species. (A) Whole plastomes (excluding IRa). (B) Sixty-eight CDSs. (C) Top ten
hypervariable regions of whole plastomes. (D) Top ten hypervariable regions of 68 CDSs. Numbers
above the branches are Bayesian posterior probabilities and ML bootstrap values, respectively. A
dash (-) indicates that the supporting values are less than 50%.

3. Discussion
3.1. Plastome Evolution within Gastrochilus

In this study, we firstly reported five Gastrochilus plastomes and provided genetic
resources for understanding the evolution of plastomes in this group. All Gastrochilus
plastomes had a typical quadripartite structure (Figure 1), consisting of one LSC region,
one SSC region, and two IR regions, which were similar to the other orchids and most of
the angiosperms (e.g., [21,24]). Limited variation in plastome size was detected among
Gastrochilus species: G. fuscopunctatus possessed the smallest plastome at 146,183 bp, and G.
acinacifolius had the largest at 148,666 bp. Plastome size falls within the previously reported
range of Orchidaceae plastomes, which ranged from 19,047 bp (Epipogium roseum (D.Don)
Lindl.) [25] to 212,688 bp (Cypripedium tibeticum King ex Rolfe) [26], and near to the size
of other genera in Aeridinae, such as Aerides (147,244–148,391 bp) [20], Paraphalaenopsis
(147,311–149,240 bp) [27], and Chiloschista (143,223–145,463 bp) [28]. Similar GC content and
gene number were found among Gastrochilus plastomes in this study, which are similar with
other Aeridinae species (e.g., [20,27,28]). In addition, our study showed that all ndh genes
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in Gastrochilus plastomes were lost or pseudogenic, which has been observed universally in
Epidendroideae [29], such as Aerides [20], Angraecum [21], and Bulbophyllum [30].

No visible gene rearrangement was detected among Gastrochilus plastomes (Figure S1),
which was also observed in other orchid genera (e.g., Aerides [20]; Epidendrum [23]). In
addition, our results revealed that all IR boundaries were conserved without distinct
contraction or expansion (Figure 2). We only observed a slight difference in the JSA
boundary regions of Gastrochilus plastomes. In most Gastrochilus plastomes, the ycf1 gene
extended from SSC to IRa for 11–195 bp except G. guangtungensis. Similarly, the ycf1 gene
in the SSC region of other orchids (such as Epidendrum [23] and Pholidota [22]) was also
observed crossing over JSA, extending into the IRa region. Our results also indicated that
codon usage bias was highly conserved among 16 Gastrochilus plastomes (Figure S2), which
was consistent with previous studies of codon preference in Orchidaceae (e.g., [21,23,30]),
and further demonstrates the high level of plastome conservation in Gastrochilus.

In addition, our results visually showed that species with closer phylogenetic rela-
tionships tend to have more similar plastome structures and sequence divergence patterns
(Figures 2 and S3). For example, the whole ycf1 gene of G. guangtungensis was located in
SSC, and ycf1 in its sister species only extended from SSC to IRa for 11 bp, while the three
species with the longest span (195 bp) of ycf1 formed a subclade (Figure 2). Additionally,
unique sequence divergence at about 99.5 kb and 132 kb only appeared in clade II, and
the species with significant sequence divergence at about 54 kb and 60.5 kb formed as a
monophyly (Figure S3). Similar phenomena were also observed in other studies, such
as Chiloschista [28], Pholidota [22], and Epidendrum [23]. Therefore, we speculated that the
structure and sequence divergence of plastomes may also contain important evolution-
ary information.

3.2. Genetic Molecular Markers

SSRs were often used as genetic molecular markers in phylogenetic studies of closely
related species (e.g., [31–33]). In this study, a total of 763 SSRs were identified in the
plastomes of 16 Gastrochilus species, with 70.90% of them being mono-nucleotide repeats.
A/T SSRs were found to be more abundant compared to G/C SSRs (Figure 3; Table S2),
which may result from a bias towards A/T in plastomes [30]. Most di- to hexa-nucleotide
SSRs among Gastrochilus species were specific to each species (Figure 3). These SSRs were
widely distributed through the plastome, and more than half of SSRs (62.91%) were located
in the LSC region, which is similar to other angiosperm plastomes (e.g., [24,34]). The
diversity and richness of SSR types vary across different species and may be attributed to
the genetic variations among species [30].

The variation in the non-coding region was higher than that in the coding region, with
the variation in the SC region being higher than that in the IR region (Figures 4A and S3),
which is consistent with other angiosperm lineages (e.g., [24,34]). Top ten hypervariable
regions of whole plastome (rpl32-trnLUAG, ccsA-ndhD, matK-rps16, trnSGCU-trnGGCC, psaC-
rps15, rbcL-accD, accD-psaI, rps16-trnQUUG, trnEUUC-trnTGGU, and petA-psbJ) and CDSs (ycf1,
rpoC2, ccsA, matK, rpoA, accD, rpl20, rps16, rps11, and rps8) were identified in Gastrochilus
(Figure 4). In addition, most of the 20 hypervariable regions were also identified in other
orchid lineages with high nucleotide diversity values, such as rpl32-trnLUAG, rbcL-accD,
ycf1, and matK in Bulbophyllum [30]; trnSGCU-trnGGCC, rbcL-accD, ycf1, rps16, and rps8
in Angraecum [21]; rpl32-trnLUAG, trnSGCU-trnGGCC, matK-rps16, and rps16-trnQUUG in
Coelogyninae [35]; and psaC-rps15, accD-psaI, trnEUUC-trnTGGU, ycf1, ccsA, and matK in
Chiloschista [28]. Interestingly, the mVISTA percent identity plot showed some intergenic
regions which were highly divergent, such as trnSGCU-trnGGCC, rpl32-trnLUAG, and psaC-
rps15. These hypervariable regions were also identified in the nucleotide diversity analysis
with high Pi values.

Hypervariable regions explored for phylogenetic and identification analyses have been
reported in Orchidaceae [36,37], and many orchid lineages such as Cleisostoma-Gastrochilus
clades [10] and Chiloschista [28]. In this study, the phylogenetic relationships solved based
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on ten hypervariable regions of the whole plastome and CDSs were nearly the same as
those based on the whole plastome and 68 CDSs (Figure 5); therefore, we propose that the
top ten hypervariable regions of the whole plastome and CDSs might be powerful markers
for the phylogenetic analysis of Gastrochilus.

3.3. The Systematic Position of Haraella retrocalla and Phylogenomics of Gastrochilus

The phylogenetic results based on the whole plastome (excluding IRa), 68 CDSs,
and ten hypervariable regions strongly supported that H. retrocalla (G. retrocallus) was
grouped with Gastrochilus species with high supporting values (Figure 5). Especially the
phylogenetic result of the whole plastome supported well the idea that H. retrocalla was a
sister to Gastrochilus. H. retrocalla was previously recognized as a member of Haraella [1,5,13],
or Gastrochilus [2,12,15]. In this study, 14 morphological characters (representing stem, leaf,
and flower) of 42 Gastrochilus species, H. retrocalla, and three Pomatocalpa species were
analyzed (Table S3). Except for the absence of saccate hypochile in Haraella, H. retrocalla and
Gastrochilus species are very similar in stem, leaf, and flower size, as well as in the number
of flowers in one inflorescence. Additionally, principal component analysis (PCA) also
revealed that H. retrocalla has no differentiation from Gastrochilus species, but is obviously
distinct from Pomatocalpa (Figure S4). Therefore, our results supported the inclusion of H.
retrocalla into Gastrochilus as G. retrocallus based on morphological and molecular evidence.

All four phylogenetic results of Gastrochilus strongly supported the monophyly of
Gastrochilus species (Figure 5). G. retrocallus was sister to other Gastrochilus species with
high supporting values based on the whole plastome. The phylogenetic relationships
of Gastrochilus were better resolved based on the whole plastome than other datasets.
In addition, the monophyly of the other three clades were fully supported (PPBI = 1.00,
BSML = 100%) based on the whole plastome and 68 CDSs, which was consistent with
the results in Liu et al. [10] based on 68 CDSs. Moreover, the relationships between the
three clades were not completely resolved, which may be due to the rapid divergence of
Gastrochilus during the late Miocene [3]. Many studies indicated that the phylogenetic
relationships of recent radiation plant lineages, such as Rhododendron [38], Astragalus [39],
and Acacia, were not clear [40]. Therefore, we speculated that more samplings and more
molecular data (such as mitogenome and transcriptomes) are needed to better understand
the phylogenetic relationships within Gastrochilus.

4. Materials and Methods
4.1. Sampling and Sequencing

In this study, five new plastomes of Gastrochilus species were obtained, including G.
acinacifolius, G. distichus, G. malipoensis X.H.Jin & S.C.Chen, G. prionophyllus, and G. yunna-
nensis Schltr. Another eleven published plastomes of Gastrochilus were downloaded from
GenBank and the annotations in Geneious v9.1.4 [41] were manually updated. Additionally,
two species of the Gastrochilus clade in Aeridinae (Pomatocalpa spicatum and Trichoglottis
philippinensis Lindl.) were selected as outgroups based on Liu et al. [10]. The detailed
information of the samples is listed in Table S4.

Leaf samples of five new sampled Gastrochilus species were cultivated and obtained
from the Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan.
We extracted total DNA from silica gel-dried leaves using the modified CTAB method [42].
Library construction was performed with the NEB Next® Ultra DNA Library Prep Kit (NEB,
Ipswich, MA, USA), and libraries for paired-end 150 bp sequencing were created using an
Illumina HiSeq 2000 platform at the Kunming Institute of Botany, Chinese Academy of Sci-
ences (Yunnan, China). Finally, approximately 4 Gb of data were obtained for each species.

4.2. Plastome Assembly and Annotation

We assessed the quality of raw sequence reads in FastQC v0.11.9 [43] and filtered the
adapters and low-quality reads using Trimmomatic v0.39 [44]. Then, the clean reads were
assembled using GetOrganelle v1.7.3.2 [45], and the assembled genomes were checked
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and visualized in Bandage v0.7.1 [46]. Finally, we obtained five high-quality and complete
plastomes.

The obtained plastomes were annotated and manually checked in Geneious v9.05 [41]
with G. calceolaris (Buch.-Ham. ex Sm.) D.Don (NC_042686) and Amborella trichopoda
Baill. (NC_005086) as references. The annotation circle maps were drawn using OGDRAW
(https://chlorobox.mpimp-golm.mpg.de/OGDraw.html, accessed on 7 June 2024). The
assembled and annotated chloroplast genome information (GenBank accession numbers:
PP963516-PP963520) was uploaded to the NCBI database.

4.3. Structure and Sequence Divergence Analyses

To evaluate the possible expansion and contraction of the IR boundary, the genes
on the boundary regions of LSC/IRb/SSC/IRa were visualized using IRscope v3.1 [47].
Moreover, to detect the gene arrangement, Mauve v1.1.3 [48] plugin in Geneious v9.1.4 [41]
was used to conduct the collinearity analysis with default parameters. The online program
mVISTA [49] was used to analyze the sequence divergence of Gastrochilus plastomes using
the Pomatocalpa spicatum (MN124411) plastome as a reference.

4.4. Repetitive Sequence and Codon Usage Analyses

Three types of repeat sequences of sixteen plastomes of Gastrochilus were analyzed,
including SSRs, tandem repeats, and long repeats. Specifically, SSRs were detected us-
ing MISA v2.1 [50] and visualized using R packages “ggpubr v0.6.0” [51] and “ggplot2
v3.4.3” [52]. Different lengths of SSRs were determined by a settled minimum threshold
of 10, 5, 4, 3, 3, and 3 repeat units for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides,
respectively. Tandem repeats were found using Tandem Repeats Finder v0.9 [53]. Finally,
we identified the four types of long repeats (including forward, reverse, complement, and
palindromic) in REPuter [54] following the detailed parameter settings in Cauz-Santos
et al. [55].

Additionally, we estimated the RSCU ratio of sixteen Gastrochilus plastomes using
CodonW v1.4.2 [56]. RSCU > 1 indicates a positive codon usage bias, while RSCU < 1
indicates a less frequent usage [57]. Finally, R package “pheatmap” [58] was used to create
the heatmap for the RSCU analysis.

4.5. Evolutionary Hotspots and Phylogenetic Analyses

In order to avoid the impact of two IR regions on phylogenetic reconstruction, we
identified the hypervariable regions and conducted the phylogenetic analyses with IRa
excluded. We identified the hypervariable regions of 16 Gastrochilus species based on the
following two matrices: (1) whole plastomes with IRa excluded and (2) 68 CDSs. The two
matrices were aligned using MAFFT v7 [59] and manually adjusted in BioEdit v7.0 [60].
We further evaluated the Pi value using DnaSP v6.12.03 [61] with sliding window analysis
by setting step size to 200 bp and window length to 800 bp.

After adding two species as outgroups, the phylogenetic relationships were inferred
based on following four matrices: (1) whole plastome sequences (excluding IRa); (2) con-
catenation of 68 CDSs; (3) top ten hypervariable regions of whole plastomes (excluding
IRa); (4) top ten hypervariable regions of 68 CDSs. The four matrices with 18 species
were aligned by MAFFT v 7 [59] and manually adjusted in BioEdit v7.0 [60]. Phylogenetic
analyses were carried out using maximum likelihood (ML) and Bayesian inference (BI)
methods for each combined matrix, respectively. We conducted ML analyses in RAxML
v8.2.12 [62], and the best-fit model of sequence evolution was estimated using the Akaike
information criterion in jModeltest v2.1.4 [63]. BI analyses were performed in MrBayes
v3.2.6 [64] with 10,000,000 generations and sampled every 1000 generations. The majority
rule (>50%) consensus tree was obtained after removing the first 25% of the sampled trees
as “burn-in”.

https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
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4.6. Morphological Character Analysis

To test whether morphological differentiation corroborates the phylogenetic relation-
ship of H. retrocalla, we collected 14 morphological traits of stem, leaves, and flowers that
were considered taxonomically important in systematic studies of Gastrochilus. All morpho-
logical traits were collected from existing studies (e.g., [1,5,65,66]). Then, we conduct PCA
in R package “vegan” [67] to delimitate genus boundaries, included the morphological
data from H. retrocalla, 42 species of Gastrochilus, and 3 species of Pomatocalpa, which is the
sister group of Gastrochilus [10]. In this analysis, the first two coordinates were selected
to draw the PCA scatter plot. The 14 morphological traits of 46 species are provided in
Table S3.

5. Conclusions

In this study, we obtained the plastomes of five Gastrochilus species (G. acinacifolius,
G. distichus, G. malipoensis, G. prionophyllus, and G. yunnanensis) and compared them with
another eleven Gastrochilus plastomes to investigate plastome evolution and phylogenetic
relationships. The plastome characteristics and comparative analysis results indicated that
the genomic size, GC content, gene content, IR boundary, structure, repeat sequences, and
codon usage bias of Gastrochilus plastomes are highly conserved. Additionally, according
to the ranking of Pi values, the top ten hypervariable regions of whole plastome and
68 CDSs were identified for DNA barcodes in Gastrochilus, including 10 non-coding regions
(rpl32-trnLUAG, ccsA-ndhD, matK-rps16, trnSGCU-trnGGCC, psaC-rps15, rbcL-accD, accD-psaI,
rps16-trnQUUG, trnEUUC-trnTGGU, and petA-psbJ) and 10 CDSs (ycf1, rpoC2, ccsA, matK, rpoA,
accD, rpl20, rps16, rps11, and rps8), respectively. Combined with the morphological data,
our results strongly supported the idea that Haraella retrocalla was included in Gastrochilus
(G. retrocallus). Based on the whole plastome (excluding IRa), G. retrocallus was the basal
clade and the remaining 15 Gastrochilus species can be divided into three monophyletic
clades with high supporting values.
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