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Abstract: The expression of inflamma-miRs and human leukocyte antigen (HLA) haplotypes could
indicate mild cognitive impairment (MCI) and Alzheimer’s disease (AD). We used international
databases to conduct a systematic review of studies on HLA variants and a meta-analysis of re-
search on microRNAs (miRNAs). We aimed to analyze the discriminative value of HLA variants
and miRNAs in MCI, AD and controls to evaluate the protective or causative effect of HLA in
cognitive decline, establish the role of miRNAs as biomarkers for the early detection of AD, and
find a possible link between miRNAs and HLA. Statistical analysis was conducted using Com-
prehensive Meta-analysis software, version 2.2.050 (Biostat Inc., Englewood, NJ, USA). The effect
sizes were estimated by the logarithm base 2 of the fold change. The systematic review revealed
that some HLA variants, such as HLA-B*4402, HLA-A*33:01, HLA-A*33:01, HLA-DPB1, HLA-DR15,
HLA-DQB1*03:03, HLA-DQB1*06:01, HLA-DQB1*03:01, SNPs on HLA-DRB1/DQB1, and HLA-DQA1,
predisposed to cognitive decline before the occurrence of AD, while HLA-A1*01, HLA-DRB1∗13:02,
HLA-DRB1*04:04, and HLA-DRB1*04:01 demonstrated a protective role. The meta-analysis iden-
tified let-7 and miR-15/16 as biomarkers for the early detection of AD. The association between
these two miRNA families and the HLA variants that predispose to AD could be used for the early
screening and prevention of MCI.

Keywords: Alzheimer’s disease; mild cognitive impairment; human leukocyte antigens; microRNAs;
biomarkers; neuroinflammation

1. Introduction

Age-related cognitive decline remains a major medical and social problem. The aging
phenotype is characterized by increased cellular senescence, reduced stem cell population,
and altered proteostasis, which activate the inflammasome, i.e., the multiprotein oligomer
responsible for inflammation, change in intercellular communication, and loss of telomere
function [1]. The entire aging-associated pathology, known as age-related diseases (ARDs),
which include Alzheimer’s disease (AD), cancer, atherosclerosis, and metabolic diseases,
is coordinated by increased levels of pro-inflammatory cytokines through the nuclear
factor-kappa B transcription factor (NF-kB) pathway [2,3].
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Statistics show that more than 16 million people in the United States are living with
cognitive impairment and 6.7 million have AD [4]. According to the World Health Organi-
zation (WHO), 55 million people have dementia, with 7.7 million new cases occurring every
year worldwide. The prevalence of dementia, particularly AD, is increasing fast in both
developed and developing countries [5]. The worldwide prevalence of persons at risk for
dementia or cognitive impairment due to AD was estimated at 315 million [6]. By 2050, it
is expected that one in 85 people will be affected by this pathological condition worldwide,
especially since the evolution of patients with mild cognitive impairment (MCI) toward
dementia can now be accurately predicted using deep learning models and changes in
dynamic magnetic resonance imaging (MRI) markers [7]. A medial temporal lobe atrophy
on MRI can differentiate between healthy aging and AD, with such information being
included in new research diagnostic criteria for AD, prodromal AD, and MCI due to AD.
MRI also has more than 80% sensitivity and specificity in differentiating AD from vascular
dementia or dementia with Lewy bodies, at the same time predicting the progression from
MCI to AD with almost the same level of accuracy [8].

The concept of MCI or the pre-dementia stage is highly significant in the field of
aging, since MCI is regarded as a borderline condition between normal aging and very
early dementia. Individuals with MCI have a high risk of developing dementia and higher
mortality rates compared to cognitively normal people [9]. Depending on the cause, patients
with MCI remain stable, return to normal, do not develop AD, or develop AD [10]. Due to
the scarcity of disease-modifying treatments for dementia, the importance of diagnosing
and initiating early treatment during the MCI stage has been widely recognized as a key
strategy for the effective management of this condition, with early intervention offering the
potential for improved long-term outcomes.

The rate of progression from mild MCI to AD is estimated at 10% per year and can
reach up to 80–90% after six years [11]. The identification of individuals at a high risk of
developing AD before the occurrence of cognitive decline is crucial so that such patients
can benefit from curative interventions. The methods and procedures for diagnosing MCI,
which combine neuropsychological assessment, biomarkers, and neuroimaging techniques,
have already been applied in clinical practice [12], although an accurate diagnosis of central
nervous system (CNS) pathology may be costly, invasive, and potentially dangerous [13].
Some of the limitations of the currently available techniques include the inability to identify,
with high sensitivity, individuals who are in the symptomatic pre-dementia stage of AD,
or who are pre-symptomatic but at a high risk of experiencing the clinical onset of MCI,
as well as measuring and tracking very subtle cognitive changes over time in these same
individuals [14–16]. The older criteria for MCI diagnosis were regarded as incomplete
when research concluded that not all the patients with MCI developed dementia and that
memory impairment was not the only cognitive domain altered [10]. Therefore, a more
comprehensive definition of MCI was required to facilitate the diagnosis and monitoring of
MCI patients [10,17].

MCI can be classified according to the category of the cognitive domain affected:
learning and memory, complex attention, social cognition, executive function, visuospatial
function, and language. MCI is regarded as non-amnestic when the patient’s memory is
relatively intact, although progression to AD dementia is possible; and amnestic, which
is the more common form characterized by deficits in one or several cognitive domains,
predominantly memory, and a high risk of progression to AD. According to a comprehen-
sive neuropsychological classification system implemented in 2009, MCI can be amnestic,
when it impairs recall and recognition; mixed, when it affects domains such as language,
executive function, recall and recognition, or visuospatial functioning; dysexecutive, if it
impairs attention, executive, and visuospatial functions, but the memory remains intact;
and visuospatial, if only one measure of visual construction is affected [10,17,18]. The phe-
notypic classification of MCI with clinical information and laboratory tests can currently
contribute to establishing the probable cause of MCI and predict its evolution. For instance,
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patients with dysexecutive MCI (dMCI) are less likely to progress to Alzheimer’s- type
dementia but more likely to have a stroke [10].

A better characterization of the intermediate stage between normal aging and the
diagnosis of clinically probable very early AD may contribute to improved diagnostic
mechanisms, including fluid biomarkers and timely therapeutic measures for MCI [19–21].
The aging society and increased life expectancy are the strongest risk factors for MCI. How-
ever, some protective factors, which are associated with a reduced incidence of dementia
or delayed dementia onset, may also protect against MCI. Thus, higher education, bilin-
gualism, and cognitively stimulating activities protect cognition, and lifestyle factors such
as the Mediterranean diet, physical activity, smoking cessation, mild-to-moderate alcohol
consumption, and participation in social activities are associated with a reduced risk of
cognitive impairment [10,18]. All these protective factors increase the cognitive reserve,
thus improving tolerance to more neuropathologies without cognitive and functional de-
cline and slowing down the development of dementia. The cognitive reserve is influenced
by the anatomical substrate of the brain or the adaptability of cognition, depending on the
above-mentioned factors [22–24].

As aging progresses, the chronic inflammatory process known, as age-related diseases
(ARDs), which include tumors, dyslipidemia, hypertension, and oxidative stress, are more
likely to occur [2] due to the potential involvement of mechanisms that include neuroin-
flammation, synaptic dysfunction, epigenetic modifications, oxidative stress responses,
proteasomal impairment, and abnormal immune responses [25].

2. Inflammatory microRNAs as New Players in MCI and AD

The discovery of microRNAs (miRNAs) revealed another level of genetic and epige-
netic alterations involved in cognitive decline. Besides its impact on cognitive functions,
AD is characterized by extracellular amyloid plaques composed of the amyloid-β peptide
(Aβ), loss of synapses and intracellular aggregates of hyperphosphorylated Tau protein.
MicroRNA dysregulation was repeatedly reported in association with key genes that regu-
late Aβ synthesis, cleavage, and clearance. The modulatory role of miRNAs in cognitive
decline covers at least three areas: Tau pathology (phosphorylation induced by miR-
125, miR-138, miR-146 and aggregation by the protective miR-132, miR-369, miR-483-5p,
miR-181c, miR-212), neuroinflammation (induced by miR-155, miR-34a, miR-181a), and Aβ

disruption (production and metabolism by protective miRNAs such as miR-200, miR-137,
miR-15b, miR-98, and miR-101, and clearance by miR-34a and miR-29b) [26]. Similar to an
inflammatory process, the expression in blood of inflamma-miRNAs such as miR-126-5p,
miR-29a, and miR-125b could be indicative of AD progression, thus becoming diagnostic
biomarkers of AD. In addition, inflamma-miRNAs may also be promising therapeutic
targets in AD patients [27].

High-throughput technologies currently enable miRNA profiling studies able to iden-
tify miRNA differential expression in cognitively healthy individuals and persons who are
experiencing very subtle cognitive changes that may signal the early onset of MCI. Over
70% of the identified miRNAs are expressed in the human brain and have a crucial role in
multiple inflammatory processes, so they can be regarded as promising blood biomarkers
for MCI [11,28].

miRNAs also have the advantage of being stable in bodily fluids and less invasive,
thus contributing positively to patient care and outcomes. Persistent inflammation is an
omnipresent feature of the aging process and most ARDs. Research has recently shown
that the spectrum of miRNAs is highly specific to different pathologies, which contributes
to distinct patterns of gene expression. The fact that a single miRNA has multiple targets
is crucial for understanding the role of miRNAs in normal and pathological processes.
The target mRNAs of a given miRNA could be predicted using homologies between the
miRNA seed region and the complementary site of the target mRNA 3′-untranslated region
(UTR) [28,29].



Int. J. Mol. Sci. 2024, 25, 8544 4 of 14

The discovery of extracellular miRNAs enabled the use of small non-coding molecules
for monitoring the biomarkers of aging. Until 2018, there was no agreement on whether
miRNAs were the key players in aging. Researchers were particularly interested in the
inflammatory response and found that a few miRNAs had an important role in this respect.
They also showed that some small non-coding RNAs modulate inflammation. Three of
them, namely miR-21, miR-126, and miR-146a, as well as their target mRNAs belong to
the NF-kB pathway, which is the master modulator of the pro-inflammatory status in
ARDs [28]. Similarly, our preliminary studies revealed that inflamma-miRNAs modulate
the NF-kB signaling pathway manifested by increased levels of pro-inflammatory cytokines,
thus lying at the intersection between aging and inflammation [28,30].

Besides these results, our previous findings also showed that miRNA profiling seems
to be involved in hippocampus-dependent functions, such as learning or episodic and
working memory. The role of miRNAs in aging was demonstrated through their relation-
ship with the learning and memory function. The inhibition of miR-124 resulted in an
enhanced capacity of spatial learning and working memory. Conversely, miR-9 was found
to support the capacity of spatial learning [3,27,30].

Moreover, miR-9-5p alleviated Aβ-induced synaptotoxic impairment by inhibiting
calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2); it decreased the clear-
ance of Tau proteins by targeting ubiquitin conjugating factor E4 B (UBE4B), and it was
related to the amyloid cascade hypothesis and memory loss by targeting several transcrip-
tion factors, such as β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), silent
information-regulator sirtuin 1 (SIRT1), and CAMKK2 [31–33]. Therefore, we confirmed the
links between the pro-inflammatory mechanism underlying ARDs and the precise function
of certain miRNAs in cellular senescence (CS) [29,30].

The identification of miRNA profiles in cognitive impairment is an important step
toward MCI diagnosis and prognosis. At the same time, the extracellular nature of the
transport mechanisms of miRNAs allows for the measurement of genetic material from
the central nervous system through bodily fluids, such as saliva, blood, and serum. Recent
studies on saliva-based miRNAs in autism disorders, correlated with adaptive behavior,
provided compelling evidence for the addition of miRNA biomarker screening to the
diagnosis of MCI [34,35].

3. Human Leukocyte Antigen (HLA) Genetic Variants in MCI and AD

Another area of genetic research has focused on the effects of HLA genetic variants
on MCI and AD. The polygenic major histocompatibility complexes I and II (MHC-I and
MHC-II), known as the HLA complexes, are glycoproteins that code for peptides found
on the surface of antigen-presenting cells (APCs); thus, HLA discriminates between self
and non-self T lymphocytes. Both classes of proteins share the same binding platform, a
functional trimeric complex composed of two domains originating from a single heavy
α-chain (HC) in the case of MHC class I and two chains in the case of MHC class II (α-
and β-chains). As far as HLA class II is concerned, one immunoglobulin (Ig) domain is
present in each chain, while the second Ig-type domain of HLA class I is represented by the
non-covalent association between β2-microglobulin (β2M), which is a short invariable light
chain subunit, and HLA class I molecules on the surface of cytotoxic CD8+T cells. Moreover,
transmembrane helices anchor the HC of HLA class I and both HLA class II chains in the
cell membrane [36].

The genomic map of the HLA gene complex revealed that the HLA class I gene complex
corresponds to the genes coding for the HLA-A, HLA-B, and HLA-C molecules, while
the HLA class II region encodes for HLA-DR, HLA-DQ, and HLA-DP. In addition, there
are many non-classical HLA class I genes, including MHC class I chain-related proteins
A and B (MICA and MICB), HLA-E, HLA-G, HLA-F, and the human homeostatic iron
regulator protein (HFE). There are also two genes encoding the transporter associated
with Ag processing (TAP), which is a heterodimeric member of the ATP-binding cassette
transporter family located in the HLA class II region close to the immunoproteasome genes
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(Lmp2 and Lmp7). The TAP-binding protein (TAPBP) gene is situated at the edge of the
HLA locus. LMP 2, LMP 7, TAP-1, and TAP-2 are involved in the processing and transport
of peptides presented by both types of HLA molecules [37,38].

A third class of genes, which includes genes for tumor necrosis factors (TNFs), com-
plement components such as C2 and C4, 21-hydroxylase and others, is located between
the class I and II regions [37]. The HLA gene variants within MHC class I and II regions
associated with cognitive decline in Alzheimer’s disease (AD) include HLA class I genes
(HLA-A2, HLA-A1, HLA-A24, HLA-B*4402, HFE H63D, HFE C282Y), HLA class II genes
(HLA-DQB1*06 (HLA-DQ), rs9271192, HLA-DRB1*15, HLA-DRB1*04, HLA-DR15 haplotype
(HLA-DR)), and TAP2 SNP rs241448 [38].

The neuronal expression of MHC-I has recently been shown to control synaptic plastic-
ity and neurite outgrowth. MHC-I is destabilized in the brains of AD patients and neuronal
cells treated with oligomeric β-amyloid (Aβ) [39].

Fine-mapping of the human leukocyte antigen (HLA) region highlighted the neuro-
logical and immune-mediated disease haplotype HLA-DR15 as a risk factor for late onset
Alzheimer’s disease (LOAD) when symptoms occur after the age of 65 [40]. In addition
to mutations in the most important causative genes for familial AD (FAD), such as amy-
loid precursor protein and presenilins, recent research has identified other genes with a
possible contribution to the progression of FAD. Such genes, involved in inflammation,
cholesterol metabolism, and the innate immune system of the brain, include clusterin
(CLU), ATP-binding cassette transporter subfamily A member 7 (ABCA7), bridging inte-
grator 1 (BIN1), triggering receptor expressed on myeloid cells 2 (TREM2), sortilin-related
receptor-1 (SORL1), phosphatidylinositol-binding clathrin assembly protein (PICALM),
CD33CD2-associated protein (CD2AP), complement component (3b/4b) receptor 1 (CR1),
and phospholipase D3 (PLD3) [41].

HLA-DRB1/DQB1 gene variants modulate the susceptibility of AD [42]. Statistical
evidence supports the existence of a real link between the HLA-DRB1 polymorphism and
LOAD, thus revealing that carriers of C allele at rs9271192 present an increased risk of
developing short- and long-term memory loss due to late-onset dementia [43].

There is a paucity of data on the localization, expression, and aberrant immune
regulation in AD physiopathology of the HLA pathway, which functions pleiotropically in
the CNS of both males and females with cognitive decline. HLA has multiple functions in
the CNS, such as synaptic plasticity and refinement, thus participating in activity-dependent
structural remodeling processes. Currently available studies characterized the cellular
expression of HLA in the human brain as a result of DNA promoter methylation, leading
to the different gene expression of the HLA class I complex according to neural regions,
ages, and genders. Under certain conditions, HLA-I reduces glutamatergic and GABAergic
synapse density, and inhibits synaptic plasticity, thus being a potential pathway of brain
aging. Additionally, genetic variations modify HLA charge distribution, hydrophobicity,
geometry, peptide interactions, and the severity of certain diseases [44,45].

The challenges of finding suitable case control and cohort studies for a systematic
review include ethnic diversity, the organization of the HLA region, the numerous sequenc-
ing methods available, as well as the non-uniform sensitivity and specificity of the statistical
parameters used to quantify the diagnostic and prognostic potential of HLA variants in
AD. Starting from these limitations, our workflow aimed to discriminate between AD and
normal controls (NC) according to the HLA haplotypes.

4. Systematic Review Methods

The article was reported according to PRISMA, and the research protocol is avail-
able at INPLASY–International Platform of Registered Systematic Review and Meta-
analysis Protocols https://inplasy.com/ (accessed on 11 July 2024) (registration number
INPLASY202470045; DOI number 10.37766/inplasy2024.7.0045).

https://inplasy.com/
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4.1. Information Sources

For the systematic review, PubMed and Web of Science were searched for case control
and cohort studies published in English between January 2015 and June 2024.

4.2. Search Strategy

We used the following keywords: Alzheimer’s disease, mild cognitive impairment
and HLA, diagnostic, biomarker, and haplotype to find relevant articles. We previously
identified let-7 and miR-15/16 as biomarkers for the early detection of AD [1]. Therefore,
the following keywords were used to search for studies published in English in Medline
and EMBASE: neurodegenerative disease, Alzheimer’s disease, microRNAs and diagnosis,
biomarkers, and microRNA profiling. The PubMed search strategy was the following:
“((“alzheimer disease” [MeSH Terms] OR (“alzheimer” [All Fields] AND “disease” [All
Fields]) OR “alzheimer disease” [All Fields] OR (“alzheimer s” [All Fields] AND “disease”
[All Fields]) OR “alzheimer s disease” [All Fields]) AND (“cognitive dysfunction” [MeSH
Terms] OR (“cognitive” [All Fields] AND “dysfunction” [All Fields]) OR “cognitive dysfunc-
tion” [All Fields] OR (“mild” [All Fields] AND “cognitive” [All Fields] AND “impairment”
[All Fields]) OR “mild cognitive impairment” [All Fields]) AND (“hla” [Title/Abstract]
OR “hla” [All Fields]) AND (“diagnosis” [MeSH Terms] OR “diagnosis” [All Fields] OR
“diagnostic” [All Fields] OR “diagnostical” [All Fields] OR “diagnostically” [All Fields] OR
“diagnostics” [All Fields]) AND (“biomarker s” [All Fields] OR “biomarkers” [MeSH Terms]
OR “biomarkers” [All Fields] OR “biomarker” [All Fields]) AND “haplotype” [All Fields])”.
For neurodegenerative disease the following search strategy was added: “(“neurodegen-
erative diseases” [MeSH Terms] OR (“neurodegenerative” [All Fields] AND “diseases”
[All Fields]) OR “neurodegenerative diseases” [All Fields] OR (“neurodegenerative” [All
Fields] AND “disease” [All Fields]) OR “neurodegenerative disease” [All Fields])”.

4.3. Eligibility Criteria

The inclusion criteria included original articles on HLA haplotypesin AD patients
compared with the controls. We included the case control and cohort studies of patients
with AD validated with Mini Mental State Examination and tested for HLA subtypes.
Abstracts, reviews and studies with incomplete data were excluded. Relevant systematic
reviews were examined for relevant data sources. The selected studies included human
patients with AD validated by magnetic resonance imaging (MRI) or the Mini Mental State
Examination (MMSE).

4.4. Selection Process

Two authors (CSC and LD) screened the titles and abstracts of the identified articles.
In case of disagreement, the articles were selected by discussion. The same two authors
assessed the full text of the selected articles. Here too, in case of disagreement, the articles
were selected by discussion.

4.5. Data Collection Process and Data Items

For each study, data on HLA class, effects on cognitive impairment, and HLA frequen-
cies were extracted. The main outcomes are represented by fold change.

5. Meta-Analysis Methods

Due to the heterogeneity of the results, out of the 74 studies initially found, we selected
only 8 studies that used fold change as the effect measure. Statistical analysis was conducted
using version 2.2.050 of Comprehensive Meta-analysis software and the effect sizes were
estimated by the logarithm base 2 of the fold change (FC). The up-regulated miRNAs
correspond to positive logarithmic values, while the down-regulated non-coding RNAs
correspond to negative logarithmic values. Forrest plots were used to present the results.



Int. J. Mol. Sci. 2024, 25, 8544 7 of 14

6. Results

For the systematic review, we identified 184 potentially relevant studies based on an
electronic search in PubMed and Web of Science. After thoroughly analyzing all these
studies, we selected 32 studies that presented the link between cognitive ability and HLA
class I and II (Figure 1). The genetic association between HLA and cognitive impairment
from AD is presented in Table 1.

Table 1. Selected studies for the overall discrimination between AD and NC.

HLA Type Effects on Cognitive Impairment References

HLA class II

HLA-DR15 haplotype

− causes neuroinflammation [40]
− carriers showed cognitive decline

over time [46]

− risk factor for dementia [47]
− decline in the function of the adaptive

immune system in AD [48]

TAP2 rs241448
HLA-DRB1 (linkage disequilibrium)
in Caucasian populations

− increase susceptibility to AD by
facilitating the access of herpes simplex
virus type 1(HSV-1) to the brain

[49–51]

HLA-DQB1*06:01
(Asian populations)

− modulates the atrophy of the left posterior
cingulate volume [42,52,53]

HLA-DQB1*03:01 (all populations) − increases susceptibility to AD [42,52,53]

Single-nucleotide polymorphisms
(SNP) on HLA-DRB1/DQB1:
rs9271192, rs35445101, rs1130399,
rs2854275, and rs28746809

− cause neurodegeneration [42,43,52,54–56]

HLA-DRB1*09:01

− causes neuroinflammation
− facilitates the alteration of the left

posterior cingulate region
− increases susceptibility to AD

[42,52,54,57–60]

HLA-DRB1∗13:02 − protect against AD and neural network
age-related deterioration

[59]
HLA-DRB1*04:04 [61]
HLA-DRB1*04:01 [62]

HLA-DQA1

− causes neuroinflammation
− is overexpressed in microglia
− is associated with immune activation

and inflammation
− carries increased risk of developing AD

[57,60,62–65]

HLA class I

HLA-B
HLA-B*4402

− cause brain atrophy
− produce cognitive decline

[66–68]

HLA-A2
HLA-A*33:01

− maintain synapses
− have stimulatory effect on the risk that

depends on genetic loadings
− establish a link between

neurodegenerative and immune processes
− alter hippocampal volume

[42,69,70]

HLA-A1
HLA-A1*01 − delay AD development [69,71,72]

Homeostatic iron regulator (HFE)
(HLA-H)-C282Y
HFE (HLA-H)-H63D mutation
(high iron)

− cause synaptic dysfunction
− increase Tau phosphorylation [73–77]

HLA-DPB1 − causes neurodegeneration [59]

For the meta-analysis, out of the 74 possibly relevant studies, 31 provided targeted
data about the miRNAs involved in AD, but only 8 used the fold change as statistical
indicators, with the other 22 therefore being excluded. The results were presented as two
forest plots of up- and down-regulated microRNAs in AD patients [78].
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The results also revealed the encouraging role of miRNAs, especially the let-7 (8/12 members)
and miR-15/16 (4 members) families (Figure 2). These biomarkers used in the diagnosis, moni-
toring, and early detection of AD have the advantage of being low-cost and non-invasive. We
previously confirmed the diagnostic value of miRNAs expressed in different body fluids by
analyzing the discriminative value of miRNAs in both groups (control subjects versus AD pa-
tients) [78]. MCI is known to have several outcomes, since patients can remain stable, revert to
normal or progress to AD. Our current systematic review identified that some HLA variants
predispose to cognitive decline before the occurrence of AD.

The let-7 family, containing 8–12 members and miRNAs-15/16 with 4 members, was
found to be dysregulated in AD compared to normal controls. The members were up- or
down-regulated, and had a significant impact in the progression to AD [1]. The target pop-
ulation includes pre-symptomatic and symptomatic MCI individuals who could undergo
early screening to assess the conversion from amnestic MCI to AD besides neuropsychiatric
tests such as the clock drawing test (CDT) and Mini Mental State Examination (MMSE).
Thus, such predictive biomarkers are part of personalized prevention if the target pop-
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ulation is screened early using biological fluids such as saliva, which is a non-invasive
procedure. Therefore, future studies should establish which intrinsic or extrinsic external
factors can influence the reversion of MCI to normal cognition, indicated by improved
patterns in the execution of the CDT.
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7. Discussion

Our systematic review revealed that some HLA variants predispose to cognitive decline
before the occurrence of AD. These variants are HLA class II: HLA-DR15 haplotype, HLA-
DQB1*03:03; HLA-DQB1*06:01 (Asian populations), HLA-DQB1*03:01 (all populations),
SNPs on HLA-DRB1/DQB1 (rs9271192, rs35445101, rs1130399, rs2854275, and rs28746809),
HLA-DQA1; and HLA class I: HLA-B*4402, HLA-A*33:01, HLA-A*33:01, and HLA-DPB1.
Conversely, other HLAs, such as HLA-A1*01, HLA-DRB1∗13:02 HLA-DRB1*04:04 or HLA-
DRB1*04:01, protect against age-related cognitive deterioration.

Besides the above-mentioned HLAs, there is also HLA-G, a non-classical member
of HLA class I, known for its immunomodulatory properties, which could be a crucial
next-generation immune checkpoint in cancer and other diseases. Since HLA-G can be
shed from the cell surface or released by various cells as free soluble HLA-G (sHLA-G)
or as part of extracellular vesicles (EVs), namely HLA-G-bearing EVs (HLA-GEV), the
potential of sHLA-G and HLA-GEV as predictive biomarkers was studied in various types
of inflammation [79].

Pro-inflammatory responses were also described for HLA-G molecules, the HLA-
G homodimer being shown to induce the secretion of the pro-inflammatory cytokines
interleukin-6 and -8, and the tumor necrosis factor alpha from both decidual macrophages
and natural killer cells [80].

Chronic inflammation was also validated through modified expression levels of miR-
NAs in different stages of AD development, as well as in different brain regions. For
example, inflamma-miRs, such as miR-34c, miR-146a-5p, and miR-16, were up-regulated in
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early AD, while miR-107, miR-128a, miR-16, and miR-146a-5p were down-regulated in late
AD [81].

Similarly, our meta-analysis revealed the encouraging roles of miRNAs in the diagnosis
of AD, especially let-7 (8/12 members) and miR-15/16 (4 members) families, which were
both up- and down-regulated. However, the heterogeneity of miRNA expression in the
hippocampus, cerebrospinal fluid and peripheral blood, as well as the small sample size
of the studies and the different methods for miRNA detection were the main obstacles in
interpreting the results.

Establishing interactions between the HLA and miRNA families identified by our
systematic review and meta-analysis is crucial for future miRNA-based therapeutics in MCI
and AD. For example, the interaction between HLA-DRB1 and miR-3928 was established in
inflammatory diseases such as rheumatoid arthritis [82].

A previous study highlighted that miR-15, 16, and miR-744 had opposing roles in mod-
ulating classical and non-classical MHC class I molecules by targeting the coding sequence
(CDS) in other neurological disorders. It also demonstrated that MHC class I regulation
showed, for the first time, miRNA-dependent control mediated by the CDS. CDS-located
miRNA binding sites could improve the general use of miRNA-based therapeutic ap-
proaches, as these sites are highly independent of structural variations (e.g., mutations) in
the gene body [83]. microRNAs (miRNAs) are known to be essential for controlling gene
expression, their deregulation being associated with the development and progression
of various diseases, including AD. In this respect, a discordant messenger RNA/protein
expression leading to extensive post-transcriptional regulation of MHC class I molecules
was already revealed by our systematic review. Unfortunately, only a very limited number
of miRNAs that target these molecules was discovered [83].

Another interaction between HLA-DPB1, which, according to our systematic review
is involved in neurodegeneration, and miR-let-7b-5p, which is known to prevent AD
progression, was previously identified in other studies focusing on inflammation in sepsis.
HLA-DPB1 and transcription factor Spi-B were identified as promising targets for the miR-
let-7 family, because they play a key role in maintaining the pluripotency of endogenous
stem cells, which is essential in different medical conditions [84,85].

A recent study used the precise statistical analysis of RNA data derived from the blood
samples of a human cohort population to demonstrate, for the first time, that many HLA
and non-HLA genes (multilocus expression units) and splicing mechanisms were regulated
by eight structurally polymorphic SINE-VNTR-Alu (SVAs) within the MHC genomic region.
Thus, SVAs within the MHC region were shown to be important regulators or rheostats of
gene co-expression, with potential roles in diversity, health, and disease [86]. R_SVA_85 and
NR_SVA_381 were found to have regulatory effects on the expression of HLA-DPA1 and
-DPB1 transcription. A homozygous R_SVA_85 insertion (PP) increased the transcription of
HLA-DPB1, whereas a homologous NR_SVA_381 insertion (PP) decreased the transcription
levels of HLA-DPA1 and HLA-DPB1 in a Parkinson’s Progression Markers Initiative (PPMI)
cohort [87].

The currently available research has revealed that certain HLA haplotypes and mi-
croRNAs can be used to select populations at risk of developing cognitive decline. Salivary
screening for miR-15, 16 and let-7 families, which are dysregulated in AD, facilitates the
selection process. Thus, efficient measures can be taken to increase the cognitive reserve
and stimulate reversion rates from MCI to normal cognition, which prevents progression
to dementia. MCI assessment and genetic analysis represent relatively easy and low-cost
screening methods that could be used to avoid the progression of amnestic MCI to AD.

Limitations

There are several limitations in the evidence included in the review. One of the most
important is the inability to identify, with high sensitivity, people who are in the pre-
dementia stage of AD or who are pre-symptomatic but at a high risk of developing the
clinical onset of MCI, as well as the inability to measure and monitor extremely subtle
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changes in cognition over time in these same people. There is an important clinical het-
erogeneity in the stage of the disease: HLA types and haplotypes. Concerning the review
process, only two databases were used to identify the available literature.

The findings of this systematic review suggest that specific HLA variants can be used as
biomarkers for the early identification of individuals at a risk of cognitive decline, allowing
for timely interventions. Incorporating HLA genotyping into clinical assessments could
facilitate personalized management strategies for MCI and AD. The identified protective
HLA variants provide a basis for risk stratification and tailored preventive measures.
miRNAs have potential as non-invasive diagnostic tools for early AD detection, despite
challenges in expression heterogeneity and detection methods. This knowledge encourages
the development of precise and early diagnostic tests and personalized treatment plans.

8. Conclusions

The identification of a network of interactions between different exogenous miRNAs
and the HLA complex could also have beneficial effects in minor cognitive impairment by
preventing irreversible AD dementia. In-depth studies are further required to establish
how HLA control can be modulated by miRNAs. This would provide protective effects
in the early stages of cognitive decline and thus avoid the occurrence of the age-related
pathology affecting millions of people worldwide.
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