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Abstract: During gliotoxin biosynthesis in fungi, the cytochrome P450 GIiF enzyme catalyzes an
unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle,
which may have relevance to drug synthesis reactions in biotechnology. However, as the details of
the reaction mechanism are still controversial, no applications have been developed yet. To resolve
the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we
ran a combination of molecular dynamics and density functional theory calculations on the structure
and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models.
The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I,
an initial proton transfer transition state is followed by a fast electron transfer en route to the radical
intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical
intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that,
through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure
and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the
model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind
the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on
the arene to form an epoxide, are high in energy and are ruled out.

Keywords: density functional theory; enzyme catalysis; inorganic reaction mechanisms; cytochrome
P450 enzymes; mono-oxygenases

1. Introduction

Gliotoxin is a mycotoxin synthesized by several fungi types, including Aspergillus fumiga-
tus, Eurotium chevalieri, Gliocladium fimbriatum and Penicillium species [1-3]. Myco-toxins are
secondary metabolites of fungi that can cause disease and death in humans after intake due to
their inhibition of cytokines released by leukocytes. Furthermore, gliotoxin has been reported
to inhibit picornavirus RNA synthesis and can disrupt protein synthesis [3]. However, there
are also beneficial health effects of gliotoxin intake in humans as it has been reported to have
antiviral, antibacterial and immunosuppressive properties [4,5]. In particular, there are reports
that it has antiviral activity against Nipah, Hendra and influenza A viruses [5]. Furthermore,
gliotoxin may have benefits as a result of anti-cancer activity by inducing the apoptosis of
cancer cells [6-9]. To be specific, it targets the neurogenic locus notch homolog 2 protein, as
well as the Wnt/ 3-catenin pathway, and the transferases farnesyl transferase and geranyl
transferase L. Besides these examples, gliotoxin can inhibit the growth of Adriamycin-resistant
non-small-cell lung cancer cell lines by inducing mitochondria-dependent apoptosis. As
such, gliotoxin is an important natural product; however, it is challenging to synthesize using
organic chemistry approaches.

Gliotoxin is an epipolythiodioxopiperazine compound that contains a transannular
disulfide bridge across a piperazine ring; Scheme 1. It is synthesized in a cascade of
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reactions, whereby the oxidative ring-closure reaction of its precursor, namely (15,45)-1-
benzyl-4-(hydroxymethyl)-5-methyl-2,3-dithia-5,7-diazabicyclo[2.2.2]Joctane-6,8-dione (1)
as shown in Scheme 1, is catalyzed by a cytochrome P450 isozyme called P450 GIiF [10-13].
This enzymatic step uses one molecule of dioxygen, two electrons from redox partners and
two protons from the solvent to embed a five-ring into the substrate scaffold between the
phenyl substituent and one of the nitrogen atoms of the piperazine group, as highlighted
in red in Scheme 1. Experimental work showed that, in the same enzymatic cycle, the
Cz-position of the phenyl ring is hydroxylated [10-13]. Currently, it is unknown what the
order of these reaction steps is and whether initially ring-closure takes place or oxygen atom
transfer. Early biochemical studies suggested that first an epoxide intermediate is formed
across the C,—C3 bond of the phenyl ring [10,12], which, thereafter, would react with the
assistance of a water molecule to form gliotoxin products. This mechanism would implicate
a reaction starting with oxygen atom transfer to the C3-position. However, substrate 1 has
a weak N-H bond that should be susceptible to hydrogen atom abstraction by the P450
oxidant similarly to a phenolic O-H bond in the vancomycin biosynthesis [14-16]. Because
the oxidative cyclization by P450 enzymes to form gliotoxin by P450 GIiF is controversial,
we decided to pursue a computational study and establish the details of its reaction cycle.

gliotoxin

A

N P450 GIiF
—_

Cys 9]
Compound I, Cpdl

Scheme 1. Oxidative ring-closure reaction in 1 catalyzed by P450 GIiF as part of the gliotoxin
biosynthesis through proton transfer from solvent or proton transfer from substrate channels.

The P450s are widespread mono-oxygenases found in most forms of life that utilize a
single dioxygen molecule and two electrons from a redox partner and two protons from the
solvent [17-29]. In the catalytic cycle, the iron(IlI)-heme is converted into an active species
called Compound I (Cpdl), which is an iron(IV)-oxo heme cation radical species that
reacts with the substrate (Scheme 1). Generally, P450s act as mono-oxygenases, whereby
a single oxygen atom is transferred to the substrate, resulting in aliphatic or aromatic
hydroxylation or double-bond epoxidation [20,24,27]. However, there are also reports of
substrate desaturation and cyclization reactions by P450s [30-37]. The overall reaction
performed by P450 GIiF is interesting from a chemical synthesis point of view, particularly
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if it can be applied in biotechnology that will enable the biosynthesis of drug molecules
or their precursors. Unfortunately, little is known about the mechanism and the general
features of the protein that drive the reaction process in P450 GliF.

P450s are heme enzymes that bind the heme to the protein through a cysteinate ligand
in the axial position (shown in Scheme 1) and accept dioxygen on the distal site [38,39].
In a number of P450 isozymes, an oxidative ring-closure reaction of the substrate has
been reported [30-37,40-43]. This, for instance, can happen during lignin biodegradation
through the formation of an acetal group from a phenol with an ortho-methoxy substituent
by two consecutive hydrogen atom abstraction steps [40]. In addition, glycopeptide biosyn-
thesis involves the linkage of two phenol groups by covalent bonds, whereby an initial
phenolic hydrogen atom abstraction results in the coupling of two aromatic rings, which
has been shown to take place during vancomycin biosynthesis [42,44]. In these examples,
the substrate contains a weak phenolic O-H bond and its abstraction by CpdlI triggers the
reaction. However, the gliotoxin precursor does not contain a phenol group; hence, the
gliotoxin biosynthesis must proceed via a different mechanism. In this work, we focus on
understanding the oxidative ring-closure reaction of 1 by P450 GliF and tested a variety of
possible pathways for substrate activation. This work shows that Cpdl is the active oxidant
but the rate-determining step is the ring-closure reaction.

2. Results
2.1. Model Set-Up and MD Simulations

In the absence of crystal structure coordinates of P450 GIiF, we created full enzyme
structures based on a homology model (enzyme model I) and a recently proposed struc-
ture from AlphaFold version 2.3.2 (enzyme model II). These structures were fitted with
heme and a substrate and solvated in water during the set-up and, thereafter, a molecular
dynamics simulation was performed for both protein structures as described in the Method-
ology section. The enzyme model I set-up started from the 4UYL protein databank (pdb)
file [45,46], which is a set of crystal structure coordinates from a P450 sterol-14a-demethylase
(CYP51B) from Aspergillus fumigatus that is used for the biosynthesis of antifungal drugs.
The CYP51B enzyme was reported to be a close homologue of P450 GliF based on biosyn-
thetic gene clusters [10]. Moreover, its substrate is of similar size and molecular weight
and the catalytic cycle operates under similar biochemical conditions. Hence, we reasoned
that it may be a good model for studies on the gliotoxin biosynthesis reaction mechanism
by P450 GIiF, which may have a similar active site structure and shape. Subsequently, we
inserted a substrate (1 in Scheme 1) into the binding pocket. A 200 ns MD simulation was
run at room temperature conditions without constraints on the atoms, and the last structure
of the MD simulation (snapshot 2000, Snyggo) is shown in Figure 1a. The MD simulation on
enzyme model I gives a very rigid structure, with the root-mean-square-deviation (RMSD)
of the substrate, heme and protein that stabilizes within 50 ns; Figure 1b. The substrate
is bound alongside the I-helix in Snygg in the vicinity of the side chains of the residues
Alagpy and Sers;q, although no clear hydrogen bonding interactions are seen. The phenyl
group of the substrate is positioned in between the apolar side chains of Prosy;, Iles73 and
Leusgs. However, the lack of polar and charged residues in the substrate-binding pocket
of this enzyme may not position the substrate in the ideal orientation for catalysis, and
hence we also analyzed an alternative structure based on P450 GIiF; see below. We then
used the k-clustering technique (Supporting Information Figure S2) and distributed all MD
snapshots for enzyme model I into three groups. However, two of the orientations have
the substrate relatively far from the heme and therefore cannot count as catalytically active
structures, and hence were discarded. The average structure of the third group of MD
conformations was selected to create a QM cluster model for mechanistic studies.
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Figure 1. MD simulation results on enzyme model I (a,b) and enzyme model II (c,d) for binding of 1
into the structures. Key snapshots (Sn) shown of the MD simulations performed on enzyme model I
and II (a,c) and RMSD profiles of the protein (in blue), heme ligand (in amber) and substrate (in red)
are given as a function of time (b,d).

We also generated a P450 GIiF structure (enzyme model II) based on the recently
proposed structure from AlphaFold [47]. This protein structure has a similar fold as
compared to the 4UYL pdb structure but has a number of charged and polar residues
in the substrate-binding pocket, namely Lyssg, Lysgg, Lysys and Aspg, that may incur
electrostatic effects on the reaction mechanism. We therefore decided to compare the two
structures for gliotoxin biosynthesis and find out whether the structural differences lead
to substrate-binding and mechanistic differences during the catalysis. The full enzyme
structure (enzyme model II) was set up in the same way as enzyme model I, where the
substrate was inserted into the substrate-binding pocket and hydrogen atoms and solvent
were added. Enzyme model II was subjected to a 100 ns MD simulation. Snapshot Sngz; g
is shown in Figure 1c. It has the substrate near the heme-binding pocket, whereby its
alcohol group forms hydrogen bonding interactions with one of the propionate groups of
the heme. Above the substrate in the binding pocket are two Lys side chains and one His
residue (Lyssg, Hisgp and Lysyg) that appear to provide electrostatic and hydrogen bonding
interactions to the substrate. The MD simulation, similar to the one reported above on
enzyme model I, converged rapidly, with a constant RMSD value for the substrate, protein
and heme (Figure 1d).

Although, structurally, the P450 enzyme models I and II show similarities in three-
dimensional fold and heme binding, not surprisingly, they do show differences in substrate
positioning. Both have a heme active site that is located next to the I-helix, which is the
commonly seen substrate-binding position in P450 enzymes [48,49]. The I-helix contains
several polar residues (typically Thr and Asp residues) that deliver protons into the active
site during the catalytic cycle [50]. Both isozymes have a similarly sized substrate-binding
pocket that will be able to accommodate the piperazine (1) substrate, although the two
protein structures bind the substrate in a different orientation due to differences in polarity
and charge distributions within the substrate-binding pocket. Therefore, we decided to
create QM cluster models of both enzymatic structures that contain the heme, oxidant and
their second-coordination sphere of residues only and study the oxidative ring-closure
reaction to form gliotoxin.

2.2. Cpdl Structure and Electronic Configuration

Next, we created QM cluster models for the reactant complexes Re based on the MD sim-
ulations on the full enzyme structures I and II as described in the previous section (Section 2.1).
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The cluster models are designated as QM cluster models A, B and G, see Figure 2, and contain
the key parts of the protein and substrate that are essential for catalysis. These QM cluster
models are typically 200-400 atoms in size and describe the oxidant and substrate and their
second-coordination sphere that influences the reaction center through direct electrostatic,
steric and hydrogen bonding interactions [51,52]. Previous modeling using QM cluster
models showed that these systems can reproduce experimentally determined regioselec-
tivities and give free energies of activation on par with experimental values and hence
should be appropriate models for studying inorganic reaction mechanisms and bifurcation
pathways [53-55]. The QM cluster type, i.e., A, B or G, is given in subscript after the label
of each structure, whereas, in superscript, we give the spin state, which is 2 for doublet
and 4 for quartet spin. Thus, *Reg is the quartet spin state reactant cluster for model B.
In particular, we selected the snapshot Snyyy of the MD simulation for enzyme model
I to create the QM cluster models A and B. Thus, cluster model A is a minimal cluster
model containing the heme without side chains and substrate only, while, in model B,
the second coordination sphere was also included as shown in Figure 2. The QM cluster
model B structure has 281 atoms and has a neutral charge. It includes part of the protein
environment, with the protein chains of Valy35-Tyr3ss, Alaggs-Leusps-Leusgs-Metspg-Alasgy-
GIY308-GIH309-HiS310-SeI‘311-581‘312, PI‘O372-H€373 and LEU503-Phe504. The LQU304, Lel,‘l305 and
Glnzg9 amino acids truncated to a Gly residue as these residues point away from the active
site and do not appear to be involved in the catalytic mechanism.
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Figure 2. QM cluster models B (a) and G (b) investigated in this work. Cluster model B labeling
based on the 4UYL pdb, while the labeling for model G is for P450 GliF. Model A contains the atoms
highlighted in blue and red only.

The average snapshot (Sngz; g) from the MD simulation on enzyme model II was
selected as a representative structure from the third group of structures obtained from the
k-clustering approach on P450 GIiF (Supporting Information Figure S2) and was used to
create cluster model G. The QM cluster model G included iron—protoporphyrin IX with all
side chains (apart from one propionate group) truncated to hydrogen atoms (Figure 1b).
The model included the peptide chains Ilesg-Lysso-Lysgo-Hisg;-Hisgp, Mety3-Glyys-Thrys-
Lysy¢-Alazy-Aspyg-Gluyg-Phegy-Aspg and Prozpy-Argsss. In model G, the residues Lysg,
Thrys, Alayy, Aspyg and Gluyg were truncated to a Gly residue. Model G counted 330 atoms
and had a +1 charge.
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Full geometry optimization (without constraints) was performed for the reactant
clusters (Re) for models A, B and G in the doublet and quartet spin states and the obtained
local minima are shown in Figure 3. We considered both doublet and quartet spin states
for the iron(IV)-oxo heme cation radical species, i.e., Compound I (Cpdl), as these states
were previously shown to be close in energy [56—71]. Thus, the doublet and quartet spin
states both have an electronic configuration of 6X2,y22 Ty Tt*yzl 142 ay,. The molecular
valence orbitals represent metal 7 and 7* molecular orbitals and the heme orbitals a1,
and ap, based on Dy, symmetry assignments. The ay,, is pure heme-based and doubly
occupied in all structures reported here. The ay,, for an isolated porphyrin without axial and
distal ligands is degenerate with the a;,, orbital, but a thiolate axial ligand mixes strongly
with it and raises it in energy [39,56,67,72]. The 3d-metal orbitals mix with orbitals of
first-coordination sphere atoms, apart from the 85>y, which is a nonbonding orbital in
the plane of the heme and low in energy and doubly occupied. The 7*y, and 7*y, orbitals
represent the antibonding interactions of the atomic iron 3dy, /3dy, with a 2p orbital on
the oxo group. Higher lying and virtual are the 0*,; and 0%y molecular orbitals for the
antibonding interactions, with the metal 3d orbitals along the S-Fe-O axis (the z-axis) and
in the xy-plane with nitrogen atoms of the heme. Nevertheless, all CpdI structures converge
to the same electronic state, with unpaired electrons in ¥y, *y, and a4, molecular orbitals.
Interestingly, despite the major differences in the structural models, geometrically, all
reactant structures are very similar. Thus, the iron-oxo distance ranges from 1.637 A in
2Rey to 1.655 A in *Reg. In all models, the doublet and quartet Fe-O distances are within
0.06 A. These distances reflect a double bond for the Fe=O interaction as is expected from
the orbital occupations. The calculated distances match previous calculations on P450
cluster models and QM /MM-optimized geometries [56-72]. The Fe-S bond is long in all
structures due to the interaction of two second-row elements. The *Rep and *Reg Fe-S
distances are almost identical at 2.505/2.508 A and so are the 2Reg and 2Re¢ Fe-S distances:
2.528 and 2.527 A. Due to second-coordination sphere effects and particularly protein
interactions with the substrate, the positioning of the substrate is different in all structures.
In both model A and B, the N-H group of the substrate forms a hydrogen bond with Cpdl
at a distance of 1.855-1.889 A. The hydrogen bond is elongated to 2.056 A in *Reg and
1.944 A in 2Reg. Nevertheless, in all reactant structures, a hydrogen bond between the N-H
group of the substrate and Cpdl is seen and the system seems to be set up for hydrogen
atom abstraction from that position. By contrast, the position of the aromatic ring is very
different in all models, with the Cs-position at a distance of 4.463/4.450 A in 4Re A/2Rea.
The distance is similar in “Rep and *Reg but the aromatic ring is perpendicular to the heme,
while it is parallel to the heme in *Reg and 2Reg but at a further distance of >4.6 A. The
large distance between the phenyl ring and the oxo group of CpdI may imply that an attack
on the aromatic ring is difficult and high in energy; however, we calculated its reaction
mechanism nevertheless. The optimized geometries were compared to the MD snapshot
structures as well as to crystal structure coordinates of analogous P450 isozymes and, in
general, the structures match well and show little deviation in protein fold and amino acid
positions with respect to the starting structures.
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Figure 3. UB3LYP/BS1-optimized geometries of the reactant complexes (Re) for models A, B and G
in the quartet and doublet spin states. All distances are in A.

2.3. Oxidative Ring-Closure Mechanism of 1 by Cpdl

Next, we investigated the oxidative ring-closure reaction mechanism of 1 by CpdlI
to form gliotoxin as shown in Scheme 2. We started from the reactant complexes (Re) of
CpdlI complexed with substrate 1 and explored four pathways, designated as pathways 1,
2,3 and 4. These pathways initiate the reaction with either a hydrogen atom abstraction
from the N-H bond (pathways 1 and 2), a ring-closure with simultaneous electron transfer
(pathway 3) or an electrophilic addition to the phenyl group (pathway 4). In pathway 1
and 2, the reaction starts with a hydrogen atom abstraction transition state (TS1) to form
an iron(IV)-hydroxo heme with a nearby substrate radical (intermediate IM1). From the
radical intermediate, a bifurcation pathway was explored, namely either continuing with a
ring-closure transition state TS2 to form intermediate IM2 (pathway 1) or, alternatively,
with an initial OH rebound to the Cz-position of the phenyl ring via transition state TS4
to form structure IM4 (pathway 2). Finally, from IM2, the OH rebound via transition
state TS3 gives gliotoxin products (Pr), and these products are also formed from IM4 after
ring-closure via transition state TS5.

In pathway 3, we attempted to start the reaction with a ring-closure of the substrate
via transition state TS6. This step will trigger an electron transfer from the substrate to
CpdlI. However, a geometry scan from *Reg for the direct ring-closure mechanism for the
shortening of the C,—N distance mechanism did not lead to a stable product structure.
Instead, the energy continuously increased to values well over 40 kcal mol ! and a stable
local minimum was never formed. Therefore, a reaction starting with substrate ring-closure
is unfeasible and unlikely to happen and pathway 3 can be discounted. Similarly to
pathway 3, pathway 4 for the initial electrophilic reaction mechanism through an attack
of CpdlI on the Cs-position of the aromatic ring of 1 did not lead to a low-energy reaction
barrier (Figure 4a). This is surprising as P450 Cpdl is well known to activate aromatic
compounds through hydroxylation [73-75]. The geometry scan for C-O bond shortening
gave a high-energy pathway for model B. Therefore, the electrophilic attack of Cpdl on the
phenyl ring can be ruled out as a starting point of the reaction. This means that neither
aromatic hydroxylation nor aromatic ring epoxidation are viable mechanisms for P450 GliF
and pathway 4 is ruled out as a possible mechanism for gliotoxin biosynthesis.
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TS1’ transition state structures are shown in part b with bond lengths in A and the imaginary

frequency in cm~1.
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As pathway 3 and 4 for the gliotoxin biosynthesis by CpdI were ruled out as high-
energy pathways (Figure 4a), we proceeded with N-H group activation by CpdlI via a
transition state TS1 to form a radical intermediate IM1 as the starting point for pathways 1
and 2. Thus, we characterized two types of TS1 transition states for model B, namely one
set representing a proton transfer (TS1) and another set corresponding to a hydrogen atom
transfer (TS1’) based on the charge and spin distributions in the transition states. The
optimized geometries of TS1 and TS1’ are shown in Figure 4b. The lowest barriers for
activation of the N-H group by CpdI have a free energy of activation of AG¥ =9.1 kcal mol !
for TS1p and 10.0 kcal mol~! for 2TS1p, whereas the corresponding hydrogen atom
transfer barriers were both located at AGt = 13.3 kcal mol~!. Previous calculations on
aliphatic C-H hydrogen atom abstraction reactions by P450 Cpdl models calculated the
free energy of activations ranging from 10-20 kcal mol ! depending on the strength of the
C-H bond that was broken [49,50,65,69-71,76-87]. Nevertheless, for the P450 GliF model B,
the proton transfer has a lower free energy than hydrogen atom transfer from 1 to Cpdl and
proton transfer will be the dominant mechanism. The group spin densities of the transition
states (highlighted in red in Figure 4) show that the three unpaired electrons reside on
iron-oxo and heme-thiolate orbitals. These spin densities are not dramatically different
from the reactant complexes #?Rep and hence the electronic configuration has not changed
after the proton transfer took place. By contrast, in 42TS1’g, the spin on the substrate has
increased to 0.80 in the quartet spin state and —0.76 in the doublet spin state, while the
sum of the spin on the heme and thiolate groups has decreased to 0.14 and —0.33 in the
quartet and doublet spin states, respectively. Consequently, the #>TS1’g transition states
give an electron transfer from the substrate into the ay, orbital and the substrate radical is
accumulating at the same time. This is the traditional hydrogen atom abstraction electronic
configuration seen for P450 reactions [50].

The free energies of activation via TS1 and TS1’ are in line with computational studies
on alternative substrates for N-H hydrogen atom abstraction reactions by P450 CpdlI
models [88-95]. Moreover, the observation that the two spin states are close in energy
for the hydrogen atom transfer or proton transfer steps shows that the electron transfer
processes are the same for the two spin states as highlighted before [50]. For model G, a
proton transfer barrier of AGF =10.0 kcal mol~! is obtained; hence, the different models give
qualitatively similar results. On all surfaces, the system relaxes to a radical intermediate
(IM1), which is AG = —8.6 kcal mol~! below reactants on the doublet spin state and
AG = —9.1 kcal mol~! for the quartet spin state for model B.

Optimized geometries of the TS1 and TS1’ transition states are shown in Figure 4b.
The three TS1 transition states have a small imaginary frequency of i89-i141 cm !, while
the TS1’ transition states have an imaginary frequency of i1045/i1063 cm~!. Previous
calculations on aliphatic hydrogen atom abstraction reactions by P450 CpdI model reactions
gave transition states with an imaginary frequency of well over 11000 cm~ [50,51,76-87].
As such, our TS1’ transition state structures and frequencies match previous work in the
field and characterize them as hydrogen atom transfer barriers. The animations of the
imaginary frequencies of TS1 and TS1’ identify them as N-H-O stretch vibrations. Most
probably the reason for the small imaginary frequencies in TS1’ is because the structures
are late on the potential energy surface, with short O-H and long N-H distances that
position them close to the radical intermediates. Previously, hydride transfer was also
shown to give small imaginary frequencies in the rate-determining transition state [95].

Geometrically, the Fe-O, Fe-S and O-Cj5 distances are very similar in the five transition
state structures in Figure 4. However, the O-H and N-H distances are very different. The
O-H distances are short in the proton transfer transition states, ranging from 1.008 to
1.071 A, while they are much longer in the hydrogen transfer transition states, namely
1.250 A for *TS1’g and 1.238 A for 2TS1’p. Similar differences are seen for the N-H distance
that is long for the TS1 transition states, ranging from 1.546 A for *TS1g and 1.794/1.803 A
for *TS13/%TS1g. In the TS1'g structures, the N-H bond is much shorter, at 1.183 and
1.192 A for *TS1’g and 2TS1p, respectively. Interestingly, upon formation of the radical
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intermediates #2IM1 for models A and B, one of the C-S bonds breaks and radical character
is accumulated on the terminal sulfur atom rather than elsewhere on the substrate. The
C-Sbond, however, is reformed in the next step of the mechanism.

The potential energy landscapes for the reactions via pathways 1 and 2 starting from
the radical intermediates #?IM1g are shown in Figure 5. The ring-closure step via #2TS2p
incurs a significant barrier of AG = 25.6/26.0 kcal mol~! on the quartet/doublet spin
state surface. The ring-closed intermediate IM2 that is formed is above the reactants in
free energy and picks up the OH group from the iron(Ill)~-hydroxo(heme) via a barrier
of AG = 22.7/20.5 kcal mol~! on the quartet and doublet spin state to form gliotoxin
products with large exothermicity. Overall, the barriers of this mechanism appear relatively
high and consequently the reaction will be slow, with a rate-determining ring-closure
step. Nevertheless, the energetics via pathway 1 are close to those recently reported by
Wang et al. using QM /MM approaches on P450 NascB, where Cpdl reacts with a cyclo-(L-
tryptophan-L-proline) substrate to undergo a N-H hydrogen atom abstraction followed
by C-N bond formation and ring-closure of a piperidine ring that found an endothermic
step prior to the ring-closure in the substrate [96]. We also calculated the mechanism for
model G and found similar energetics and barrier heights. Therefore, the changes in the
substrate-binding pocket and the polarity of the substrate environment do not appear
to influence the energetics of the reaction much. Note as well that, in the ring-closure
transition state, the disulfide bridge is fully back in position.
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Figure 5. UB3LYP/BS2//UB3LYP/BS1-calculated potential energy profile for gliotoxin biosynthesis
via pathway 1 (from middle to the right) and pathway 2 (from middle to the left). Energies (in
kcal mol ') are AE + ZPE values, with free energies at 298 K in parenthesis. Doublet spin landscape
in red and quartet spin landscape in blue.
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The alternative mechanism from #?IM1g via pathway 2 is shown in Figure 5 from
the middle to the left. This pathway continues with OH rebound to the Cz-position of
the phenyl group, with a free energy of activation of AG = 12.8 (doublet) and 15.2 (quar-
tet) kcal mol~!. The subsequent ring-closure, however, is negligible, and we were unable
to characterize these transition states. In particular, during the geometry optimizations,
the structures collapsed to the product complexes. Moreover, a constraint geometry scan
showed these pathways to have small barriers of less than 1 kcal mol~!. Overall, therefore,
pathway 2 will be the dominant mechanism that proceeds with an initial proton transfer
from the N-H group of the substrate to Cpdl. After the transition state, a fast electron
transfer takes place to form the radical intermediates IM1, and then the transfer of the
OH group to the Cs-position of the substrate. Finally, the ring-closure step then forms the
gliotoxin products.

Optimized transition state structures for the pathway 1 and 2 mechanisms for CpdI
with 1 are shown in Figure 6. The ring-closure transition states TS2p/?TS2p have an
imaginary frequency of i158/i157 cm~! for the C-N stretch vibration in the substrate. Their
C-N distances are still long, namely 2.108 A for both transition states. As a matter of fact,
both transition states have a similar structure and energetics due to the same electronic
configuration on both surfaces. The TS3-optimized geometries are very similar in structure
for model A and B; therefore, the second coordination sphere appears to have little influence
on this barrier. These transition states are located at relatively long C-O distances of 2.205 A
in 4TS3p and 2.367 A in 2TS3p, while the Fe-O distance has elongated significantly to
values of 1.944 and 1.891 A. In previous calculations of aromatic hydroxylation by P450
Cpdl, the C-O distances were generally below 2.1 A [97-103], and hence the OH transfer
barriers happen earlier and the interaction between iron-hydroxo and the substrate is
large. The TS3 transition states give an imaginary mode for the C-O stretch vibration,
with a magnitude of i216-i543 cm~!. These values are of similar magnitude to aromatic
hydroxylation transition states reported for alternative systems before [97-103].

CN: 1.480 (1.481) CN: 3.997 (3.974)
VO
“&b( 5 3

2.205 (2.367) v
1.944 (1.891)

2.010 2.011) ¥ 1.891 (1.885)
2.408 (2.357)
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4TS35(2TS3p) 4TS45 (2TS4g)

Figure 6. UB3LYP/BS1-optimized transition state structures for geometries alongside pathways 1
1

and 2. Bond lengths are in A and the imaginary frequency is in cm~1.

The transition states for pathway 2 are also shown in Figure 6. The #?TS4g structures
represent an OH transfer transition state and give a C-OH stretch vibration with an
imaginary mode of i461/i459 cm~!. The C-O distance formed is 2.010 A in 4TS4p and
2.011 A in 2TS4g, which are typical distances for OH rebound transition states [104,105]. In
both structures, the C-S bond is broken and a radical is present on the terminal disulfide
group. We tested whether C-S reformation from IM4g would lead to products as well.
This scan had a maximum of about 10 kcal mol~! above *IM4g (Supporting Information,
Figure 518) and closed the C-N ring to form gliotoxin products as well.
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2.4. Oxidative Ring-Closure Mechanism 1~ by Cpdl

It has been suggested that, in some cases, the substrate can donate a proton in the
catalytic cycle and reacts with Cpdl in its deprotonated form [19]. We therefore tested
the reaction of CpdI with the deprotonated substrate 1~ for model B, designated model
B, which has the same residues included in the cluster model but misses the proton on
the substrate; the model therefore is singly negatively charged. In the quartet spin state,
the *Repy, structure has a Fe—O distance of 1.630 A and a Fe-S distance of 2.566 A. These
distances are in good agreement with those found for *Rep and *Reg discussed above and
show that the structure changes little after substrate deprotonation.

Subsequently, we investigated potential reaction pathways of the activation of the
deprotonated substrate by Cpdl. For cluster model By, the same pathways as discussed
in Scheme 1 above were explored. However, pathways 1 and 2 are not possible for model
Bm due to the missing proton, but, for pathways 3 and 4, constraint geometry scans were
performed. The direct ring-closure of the deprotonated substrate is highly endothermic and
does not lead to a stable intermediate. Therefore, a direct ring-closure of the deprotonated
substrate is not possible. We then explored the aromatic hydroxylation channel for model
B by initially running a C-O bond shortening scan. A transition state was located and
geometry-optimized and found to be high in energy, namely AG} = 33.8 kcal mol~! above
the free energy of *Repy,. The transition state gives an imaginary frequency of i558 cm !
for C-O bond formation at a C-O distance of 1.797 A. Consequently, the deprotonated
substrate will be inactive with P450 CpdI and no low-energy transition state between 1~
and CpdlI is found that would lead to gliotoxin products.

3. Discussion

In this work, a computational study is presented on the oxidative ring-closure and
hydroxylation of 1 by P450 enzymes to form gliotoxin products. We tested the reaction
of CpdI with 1 and deprotonated 1, i.e., 17, and found that the deprotonated substrate
cannot react with Cpdl either through direct ring-closure or through electrophilic addition
reactions. Therefore, if the substrate donates a proton in the catalytic cycle of P450 that
leads to the formation of Cpdl, it will need to be reprotonated again with a proton from the
solvent before substrate activation can take place. Nevertheless, the reaction between CpdI
and 1 gives a low-energy pathway and will proceed fast.

For the reaction of Cpdl with 1, many pathways were investigated as summarized
in Scheme 2 above, whereby an initial ring-closure and epoxidation and electrophilic
addition steps were ruled out and do not give a stable local minimum. However, the
lowest-energy pathway starts with proton transfer from 1 to Cpdl via a transition state TS1.
The calculated mechanism bears some similarity with the oxidative ring-closure observed
and computationally investigated for the dipeptide N-methylvalyl-tryptophanol activation
by P450 TleB and the chuangxinmycin biosynthesis by P450 CxnD that both start with
an initial hydrogen atom abstraction from an indole N-H group [106,107]. However, in
contrast to P450 GIiF in P450 TleB and P450 CmnD, no aromatic ring activation happens,
but a second hydrogen transfer is followed by a rate-determining ring-closure step.

To understand and explain the electron transfer mechanisms for gliotoxin biosynthesis
and gain insight into the electronic changes during the reaction mechanism, we devised a
valence bond (VB) scheme for each step in the reaction mechanism as shown in Figure 7.
These VB diagrams have been used previously to explain bifurcation patterns and unusual
reaction pathways of metal-containing enzymes [108,109]. Thus, the reaction starts from
CpdI and 1 with a transition state for proton transfer, whereby we highlight the relevant
electrons and molecular valence orbitals that play a role in this step in red in Figure 7.
Chemically, the proton transfer leads to cleavage of the N-H bond (ony orbital) in the
substrate, whereby the two electrons remain with the nitrogen atom and the proton forms a
bond with the oxo group, i.e., the opp orbital is formed. However, the ooy bond formation
is coupled with the weakening of the Fe-O as the oo orbital is built up from two electrons
that were originally part of the 7y, /7y, set of orbitals, which are the orbitals for the
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two-center three-electron bond along the Fe-O axis. The third electron from the 7y, /7%y,
orbital remains as an atomic 3dy, orbital on iron and is singly occupied. Consequently, the
proton transfer from 1 to CpdlI leads to the breaking of the ong orbital in the substrate, the
breaking of the 7y, /7y, orbitals along the Fe-O bond and the formation of the oo bond
in the iron(IV)-hydroxo complex. The group spin densities in the proton transfer transition
states (TS1) confirm this mechanism and show that very little radical characters on the
substrate are seen (less than 0.2 units), while the FeO group has a spin of around 2 and the
heme scaffold has a spin close to 1. The spin on the FeO group polarizes mostly on iron
and leads to elongation of the Fe-O interaction.
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Figure 7. DFT-predicted reaction mechanism for the gliotoxin biosynthesis from 1 by Cpdl in P450
enzymes. Valence orbitals are highlighted. A dot represents an electron and a line separating two
dots represents a bond occupied by two electrons. Electron transfer pathways are highlighted with
an arrow.

En route from the transition state to the next local minimum, i.e., IM1, an electron
transfer takes place from the substrate into the a, orbital. This leads to structural and
molecular orbital changes in the substrate, whereby the nitrogen atom donates its lone pair
into a bond with the neighboring carbon atom and forms a N=C double bond through
forming the 7ty molecular orbital. At the same time, the adjacent C-S bond breaks and a
perthiyl group is formed that bears a radical. These changes in the electronic configurations
of the substrate-oxidant complex are shown in green in Figure 7. As such, from TS1 to the
radical intermediate IM1 leads to a reduction of the iron(IV)-hydroxo heme cation radical
to a Compound II type configuration, namely an iron(IV)-hydroxo with a closed-shell heme.
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Within the substrate, the C-S bond is cleaved homolytically and one of its electrons pairs up
with an electron on nitrogen to form the myc orbital. As the calculations in Figure 4b show,
the two steps in the VB diagram in red (in TS1) and green (after TS1) can also happen in
a single transition state via TS1’ as a concerted hydrogen atom transfer transition state.
However, the concerted transition state TS1’ has a slightly higher free energy of activation
of 4.2 kcal mol~! over the proton transfer barrier TS1 on the quartet spin state and hence
the proton transfer will be dominant. This is unusual as typically the P450s react through
hydrogen atom transfer with substrate. However, as the N-H bond is weak, the proton
and electron transfer are non-synchronous and are identified as separate mechanistic steps.
Nevertheless, both transition states relax to form the same radical intermediate IM1 with
an unpaired electron on the perthiyl group. The electronic configuration of #2IM1 matches
the group spin densities of these species, with one unpaired electron on the sulfur atom
of the substrate and two unpaired electrons on the FeO group, while the heme has little
unpaired spin density left.

In the next stage of the reaction, an OH rebound from the iron(IV)-hydroxo interme-
diate to the aromatic ring of the substrate takes place as highlighted in blue in Figure 7.
Thus, the aromatic mt-system of the phenyl ring breaks open and the 7mtcy_c3 orbital returns
to atomic orbitals. Thereafter, one electron of the C,—C3 bond forms a bond with an electron
on the oxygen atom to give the coc orbital for the C-O bond. This bond formation leaves a
radical on the C; position of the substrate. The OH transfer also leads to the breaking of
the 7y, / T*yz two-center three-electron bond that reverts it back into atomic orbitals. Two
of its electrons together with the 3dy, electron give the metal the iron(IlI) oxidation state
and either 3d,,! ?)dyz1 o*,51 in the quartet spin state or 3d,,2 3dyzl in the doublet spin
state. The final stage of the reaction corresponds to the ring-closure step to form gliotoxin
products. At this stage, the metal orbitals do not change anymore. The perthiyl radical
attacks the C=N bond and reforms the ocg orbital and C-S bond. This creates a biradical
with a down-spin electron on N adjacent to an up-spin radical on the C, carbon, which
then form the ocy orbital.

The calculated reaction mechanism for the final steps in the gliotoxin biosynthesis by
P450 CpdlI starts with proton transfer from substrate 1 to CpdlI followed by fast electron
transfer to give a radical intermediate with a perthiyl group with a free energy of activation
of AG¥ = 9.1 (10.0) kcal mol~! in the quartet (doublet) spin state. From the radical inter-
mediate IM1, however, a significant barrier of AGF =243 (quartet) and 21.4 (doublet) kcal
mol~! leads to the aromatic addition of the OH group to the Cz carbon. The final stage for
ring-closure has a small barrier, which is not surprising as the substrate is in a biradical
state in #?IM4g with an up-spin electron on C; and a down-spin electron on the perthiyl
sulfur atom. The pairing up of two electrons on C; and nitrogen simultaneous to the C-S
bond reformation will cost little energy and lead to a highly stable product complex with
large exothermicity. Overall, the rate-determining step in the reaction mechanism is the OH
rebound step via #?TS4g. This is not surprising as the OH rebound requires the breaking
of the phenyl 7-system but also reduces the 7y, /7y, set of orbitals to atomic orbitals. This
OH rebound barrier is similar to the one calculated for the aromatic defluorination barrier
by a non-heme iron(IV)-oxo system that happens with phenol hydrogen atom abstraction
followed by OH rebound to the phenoxyl radical on the ortho- or para-position [110,111].

Thermochemical analysis on bond breaking and bond forming steps was carried out.
To understand the bond formation and bond cleavage steps in the mechanism better, we
calculated diabatic C-H/N-H bond dissociation free energies (BDFEs) of key bonds in the
substrate as the difference in free energy between the optimized geometry of the substrate,
an isolated hydrogen atom and the substrate with one hydrogen atom removed. In our
model substrate, both nitrogen atoms of the substrate were taken in the N-H form while,
in the enzyme, the second nitrogen atom is methylated. The data are shown in Figure 8,
with four hydrogen atoms of the substrate highlighted. Surprisingly, the four N-H/C-H
bonds investigated have similar BDFEs that range from AG = 94.7 kcal mol~! for the N-H
bond on the other side of the substrate to AG = 99.9 kcal mol~! for the CH, group of the
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terminal CH,OH group. The N-H group that is being activated in the reaction mechanism
has a N-H BDFE of AG = 95.1 kcal mol~!. Consequently, the two N-H bonds have similar
bond strengths and both could be activated by CpdlI. Indeed, the enzyme utilizes the N-
methylated form of 1 instead and thereby prevents activation of the other nitrogen atom of
the substrate. This N-methylation is an important step prior to the P450 activation as it will
guide the reaction to the correct hydrogen atom abstraction site and avoid side-products.

BDFE = 97.9
HH) O BDFE=947 O
. H
N* NH
H N H
3
BDFE = 95.1 o HE BDFE = 54.1 OH\O
BDFE =99.9 BDFE = 31.6

Figure 8. UB3LYP/BS2-calculated bond dissociation free energies at 298 K. Values in kcal mol~! for
diabatic hydrogen transfer contain zero-point, thermal and entropic corrections.

The data in Figure 8 represent diabatic BDFE values whereby the radical structure was
not reoptimized. If, instead, we calculate adiabatic BDFEs after hydrogen abstraction from
the N-H bond, this leads to immediate C-S cleavage with a radical located on the perthiyl
group with an adiabatic BDFE of 69.5 kcal mol~1. Our observation, therefore, that the C-S
bond is cleaved upon hydrogen atom abstraction corresponds to the creation of a stable
perthiyl radical that is energetically favorable over a nitrogen radical. As a consequence,
the hydrogen transfer from the N-H group leads to a relatively stable substrate radical with
a perthiyl group. Indeed, the structures #?IMT1 are more stable than the reactant complexes
by more than AG = 8 kcal mol~!. Finally, we calculated the C-OH BDFE and the strength
of the C-N bond in the product complex. The weakest of the two bonds is the C-N bond, at
AG =31.6 kcal mol~1, compared to the C-OH BDFE of AG = 54.1 kcal mol~!. The low value
of the C-OH bond is the result of the breaking of the 7-system in the phenyl group, which
will cost a considerable amount of energy. The ring-closure will contain steric strain and
hence is the weakest bond to form and consequently will be the last step in the mechanism.

4. Materials and Methods
4.1. Structure Preparation

As there are no crystal structure coordinates available of P450 GLF, we used two
starting structures, namely a P450 isozyme that catalyzes an analogous reaction pathway
and a homology model generated with AlphaFold. Thus, the 4UYL protein databank
file [45,46] represents an analogous protein to P450 GliF and was used as the enzyme model
I structure. This is a heme and inhibitor ((R)-N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-
yl)-ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide) bound P450 isozyme. We removed
the inhibitor and water molecules and used the structure as a P450 GliF model, i.e., enzyme
model I. The other enzyme structure, i.e., enzyme model II, was taken from the recently
predicted AlphaFold structure for P450 GIiF [47]. We manually inserted the heme in enzyme
model IT and linked it to the sulfur atom of Cysys3 of the protein and made sure that the
propionate groups were in a salt bridge orientation with nearby Arg amino acid residues
as seen in similar crystal structure coordinates. The gliotoxin structure was obtained from
the T3DB database [112] and manually converted into 1 and geometry optimized at the
UB3LYP/6-311 + G* level of theory in Gaussian-09 [113-116]. The optimized structure was
then converted to PDB format and prepared for use in ligand docking into enzyme models
I and II. Thereafter, hydrogen atoms were added to both protein structures under pH 7



Int. J. Mol. Sci. 2024, 25, 8567

16 of 23

conditions in Chimera [117], whereby all carboxylates were chosen as deprotonated and all
Lys/Arg amino acid side chains were in their protonated state.

4.2. Substrate Docking

Molecular docking was performed using the AutoDock Vina software package version
1.2.5 for enzyme model I and II [118]. The ligand was docked into the substrate-binding
pocket on the distal site of the heme in P450 GIiF defined by the coordinates 1.18227,
0.118161 and 5.72849. A box size of 26.8839 x 37.3572 x 24.344 A3 was set. The best
binding pose was subsequently selected and a full molecular dynamics (MD) simulation
was performed for both enzyme structures.

4.3. Molecular Dynamics Simulations

Forcefield parameters for Cpdl were determined using the MCPB.py routine as imple-
mented in the Amber software package version 20 [119]. For gliotoxin, the atomic charges
were determined using the Antechamber module integrated within AmberTools version 24,
employing the AM1 method for molecular geometry optimization [120]. Subsequently, the
RESP charges were fitted utilizing the BCC method. A QM geometry optimization in Gaussian
at the UB3LYP level of theory and a basis set containing LANL2DZ with effective core po-
tential on iron and 6-31G* on the C, H, O, N and S atoms were performed [113-116,121]. The
ff19SB forcefield was applied for protein residues and the general Amber forcefield (GAFF)
for the non-protein systems [122-124]. Subsequently, the system was solvated using an OPC
water box with a buffer distance of 20.0 A from the protein edge. Sodium (Na*) and chloride
(C17) ions were added to the surface of the structure to obtain a salt concentration of 1 mM
and to neutralize the system. The complete enzyme model was minimized by applying a
steepest descent algorithm for 20,000 steps followed by 10,000 steps of the conjugate gradient
algorithm. Next, the system was gradually heated from 0 to 310 K over 500,000 steps with a
time step of 0.002 ps. The Berendsen thermostat was used to control the system temperature
during the heating stage. Finally, a production run was performed on the system at a constant
temperature of 310 K for 5,000,000 steps. The Langevin thermostat, with a collision frequency
of 2 picoseconds, was used to control the temperature. The trajectory data from the production
run, containing the coordinates of all atoms as a function of time, were saved at regular
intervals for further analysis. This production phase was repeated 200 times, resulting in a
total simulation time of 2000 ns. The particle mesh Ewald (PME) method was employed for
long-range electrostatics with a direct space sum cut-off of 10 A. After performing molecular
dynamics simulations, the results were analyzed and visualized.

4.4. QM Cluster Model Set-Up

Based on the k-clustering approach, the MD snapshots were ranked into three sepa-
rate groups and the most representative snapshot of these clusters were analyzed. This
approach was used previously to find an appropriate MD snapshot conformation for the
quantum chemical calculations [125,126]. For enzyme model I, however, two of these
structures had the substrate far away from the heme; hence, a structure from the third set of
protein structures was selected for further QM studies. QM cluster models were created as
explained in detail previously [50-52,127-130]. We created two QM cluster models based
on snapshot 2000 (Snyggp) from the MD simulation on enzyme model I, namely QM cluster
models A and B (Figure 2a). QM cluster model A is a minimal cluster model of 71 atoms
of the oxidant and substrate 1 only, while model B includes also the second coordination
sphere around the substrate. We will focus in the main text on the model B results only,
while the model A data are relegated to the Supporting Information. In general, the two
QM cluster models predict the same trends and structural features. Model B is a large QM
cluster model of 281 atoms that is charge-neutral and contains the heme, substrate, part
of the protein and one water molecule, whereby the protoporphyrin IX core had all sub-
stituents truncated to hydrogen atoms. The axial Cys443 residue was truncated to thiolate
and the protein environment included the following active site protein chains: Valjss-
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Tyr136, Alazoz-Leuspa-Leusos-Metsos-Alasoz-Glysos-Glnago-Hiszio0-Sers1-Sersia, Proszz-lleszs
and Leusg3-Phesgs, with Leusgs, Leusgs and Glnggg truncated to a Gly residue by capping
the side chain to C-H.

Model G was based on the last snapshot from the MD simulation on P450 GIiF (enzyme
model II) and included iron—protoporphyrin IX with all its side chains (apart from one
propionate group) truncated to a hydrogen atom (Figure 2b). The model had thiolate as the
axial Cys residue and included eight water molecules. In addition, the model contains the
peptide chains Ilesg-Lysso-Lysgo-Hise1-Hisgy, Mety3-Gly74-Thrys-Lysze-Alayy-Aspyg-Gluye-
Phegp-Aspg; and Prozp7-Argsps. In model G, the residues Lysgg, Thrys, Alayy, Aspyg and
Gluyg were truncated to a Gly residue. Model G counted 330 atoms and had a +1 charge.

4.5. DFT Calculations

The Gaussian-09 software package was employed for the DFT calculations presented
in this work [116]. To validate the computational approach, for model A, the reactants and
first transition state were calculated with several DFT methods, namely B3LYP [107,108],
B3LYP-D3 [113,114,131], PBEOQ [132] and MO6L [133]. These different approaches gave little
changes to the structure, spin-state energetics and unpaired spin populations, and hence
the work was continued with UB3LYP only; see Supporting Information for details. Basis
set BS1 was employed for geometry optimizations, constraint geometry scans, frequency
calculations and intrinsic reaction coordinate scans and represents LANL2DZ with core
potential on iron and 6-31G* on the rest of the atoms [115,121]. All structures were subjected
to full geometry optimization without constraints and were characterized as minima with
real frequencies only, while transition states had one imaginary frequency for the correct
transition. Single-point calculations were performed with a larger basis set to correct
the energies, namely BS2, which contained LACV3P+ (plus core potential) on iron and
6-311 + G* on the rest of the atoms. To verify that transition states connect to the two local
minima as specified in the schemes, we ran intrinsic reaction coordinate (IRC) scans for
a selection of structures. These IRCs confirmed the reaction pathways described in this
work. All calculations were performed for the doublet and quartet spin states. In previous
studies of our group, we validated the approaches described here and found an excellent
agreement with respect to experimental rate constants and product distributions [134-136].

5. Conclusions

Cytochrome P450 GIliF is a unique P450 isozyme that catalyzes the oxidative ring-
closure and ring-hydroxylation steps in the final stages of the gliotoxin biosynthesis reaction.
The chemical scaffold of gliotoxin is a common feature in drug molecules, and hence finding
a biocatalytic reaction pathway for the biosynthesis of drug molecules is an important
development. To understand the details of the reaction mechanism of gliotoxin biosynthesis,
we performed a series of computational studies using molecular dynamics and quantum
mechanics studies on various P450 GIiF structures. Two enzyme structures were created,
namely one with AlphaFold and one based on an analogous enzyme system. Both bind a
substrate in the active site, although there appear to be differences in substrate orientation
and its interactions with the protein. Nevertheless, the two MD simulations implicate that
gliotoxin may be synthesized by both enzymes as their active sites are large enough to hold
the substrate 1. To test this, several cluster models of the enzyme active sites that contain
the heme, its ligands, substrate and their direct environment were created. The QM cluster
models all give the same electronic configuration of a CpdI-type species with three unpaired
electrons in 7¥y; 7*y; and 4, in either a doublet or quartet overall spin state. Thereafter,
pathways for gliotoxin biosynthesis were explored. Firstly, the reaction of deprotonated
substrate 1~ with Cpdl gives high-energy pathways and was ruled out. For the reaction
of 1 with Cpdl, four pathways were tested, starting with proton transfer, hydrogen atom
transfer, electrophilic addition to the aromatic ring and direct ring-closure. The most
viable reaction channel was found starting with a proton transfer that, en route to the local
minimum, gives a fast electron transfer to give a radical intermediate. Subsequently, the
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OH group is transferred to the aromatic ring to give a biradical in the substrate that rapidly
leads to ring-closure to form gliotoxin products. The mechanistic features are explained by
thermodynamic and valence bond approaches and rationalize the rate-determining step in
the reaction mechanism.
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