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Abstract: Triticum aestivum is an important crop whose reference genome (International Wheat
Genome Sequencing Consortium (IWGSC) RefSeq v2.1) offers a valuable resource for understanding
wheat genetic structure, improving agronomic traits, and developing new cultivars. A key aspect of
gene model annotation is protein-level evidence of gene expression obtained from proteomics studies,
followed up by proteogenomics to physically map proteins to the genome. In this research, we have
retrieved the largest recent wheat proteomics datasets publicly available and applied the Basic Local
Alignment Search Tool (tBLASTn) algorithm to map the 861,759 identified unique peptides against
IWGSC RefSeq v2.1. Of the 92,719 hits, 83,015 unique peptides aligned along 33,612 High Confidence
(HC) genes, thus validating 31.4% of all wheat HC gene models. Furthermore, 6685 unique peptides
were mapped against 3702 Low Confidence (LC) gene models, and we argue that these gene models
should be considered for HC status. The remaining 2934 orphan peptides can be used for novel gene
discovery, as exemplified here on chromosome 4D. We demonstrated that tBLASTn could not map
peptides exhibiting mid-sequence frame shift. We supply all our proteogenomics results, Galaxy
workflow and Python code, as well as Browser Extensible Data (BED) files as a resource for the wheat
community via the Apollo Jbrowse, and GitHub repositories. Our workflow could be applied to other
proteomics datasets to expand this resource with proteins and peptides from biotically and abiotically
stressed samples. This would help tease out wheat gene expression under various environmental
conditions, both spatially and temporally.

Keywords: Triticum aestivum; bottom-up proteogenomics; proteomics; multiple sequence alignment;
genome annotation; gene models

1. Introduction

Bread wheat (Triticum aestivum) is an allohexaploid species (2n = 6x = 42, AABBDD
genomes) resulting from the combination of three interrelated diploid progenitors: T. urartu
(AA), a relative of Aegilops speltoides (BB) and T. tauschii (DD) and a major cereal crop widely
cultivated across the world [1,2]. It is the staple food of billions of people worldwide
and an important source of dietary fiber, proteins, and minerals. In addition, it is widely
used in the food and beverage industry, particularly in the production of bread, cereals,
pasta, and beer. It is a model for plant domestication and breeding [3]. Wheat is not only
economically important but also an essential crop for maintaining global food security. A
multilayered global food crisis mitigating near-term food security risks, stabilizing wheat
supplies, and transitioning toward long-term agri-food system resilience is proposed to
address increasing climate change [4].

The International Wheat Genome Sequencing Consortium (IWGSC) was established
in 2005 with the aim of generating a reference genome sequence for T. aestivum. After
more than a decade of collaborative efforts, IWGSC released the high-quality reference
genome sequence of bread wheat in 2018 (IWGSC RefSeq v1.0) [5], which is considered
one of the most complex genomes of any crop plant [6]. A chromosome-scale assembly
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soon followed, locating 2001 previously annotated or unplaced genes and identifying
5799 additional gene copies [7]. Optical mapping and long sequence reads further helped
refine the wheat reference genome, leading to the release of IWGSC RefSeq v2.1 in 2020 [8].
This new assembly contains 266,753 genes, including 105,534 High Confidence (HC) genes
and 159,840 Low Confidence (LC) genes. The bread wheat reference genome offers a
valuable resource for understanding its genetic structure and improving its agronomic
traits, particularly resistance to biotic and abiotic stress [6]. Moreover, T. aestivum genome
sequence provides valuable information for developing new wheat varieties with improved
yield, quality, and sustainability [9]. It has also been used in numerous studies, including
the elucidation of wheat domestication, evolution, and chromosomal organization [6]. The
availability of the IWGSC wheat genome sequence will accelerate breeding efforts aimed
at improving wheat productivity and sustainability, and ultimately, help meet growing
demand for this important food crop.

Proteogenomics, the interface of proteomics and genomics, has become an active
area of research owing to the emergence of new DNA, RNA, and protein sequencing
technologies [10]. In this approach, mass spectrometry (MS)-based proteomic data are
used to provide protein-level evidence of gene expression and to facilitate the annotation
of gene models. There are several approaches to physically map peptides to a genome,
and the choice of approach will depend on the available resources, the quality of data,
and the research question. One such strategy is bottom-up (BU) proteogenomics which
is a data-driven method that involves protein digestion with proteases such as trypsin,
peptide separation using high-performance liquid chromatography (HPLC), and peptide
sequencing by tandem MS (MS/MS) to identify peptides that map to a genome [11]. BU
proteogenomics has several advantages, including high sensitivity, high throughput, and
the ability to identify post-translational modifications (PTMs) [12]. However, this approach
has some limitations, such as reduced coverage of low-abundance proteins and limited
ability to identify large proteins or proteins with extensive sequence variation.

In plants, proteogenomics has improved the sensitivity of protein identification for
model and nonmodel species, as well as enabling the analysis of complex genome annota-
tion of polyploid organisms such as sweet potatoes [13]. In hexaploid wheat, a comprehen-
sive BU proteogenomics endeavor on various organs and tissues sampled at key develop-
mental stages was achieved by Duncan et al. in 2017 [14]. As many as 1,457,281 matched
spectra, representing 89,754 unique peptides at a 2% false discovery rate (FDR), provided
the basis for identifying 15,779 proteins and mapping them along IWGSC RefSeq 1.0. More
recently, Vincent et al. extensively analyzed the proteome of more than 4000 harvested and
stored wheat grains [15,16] based on 195,426 HPLC-MS/MS spectra and yielding 123,638
mascot hits at 5% FDR corresponding to 14,768 unique peptides assigned to 8738 proteins.
As these studies not only represented the most comprehensive wheat proteomics datasets
to date but also made their raw data accessible, we retrieved their datasets to apply a
BU proteogenomics approach and map peptides against IWGSC RefSeq 2.1 genome. Our
objective was to process the raw data to map the peptides to the wheat genome, to analyze
the results with suitable analytical and visualization tools, and to make all of our work
publicly available.

2. Results and Discussion

This work exploited extensive HPLC-MS/MS proteomics datasets generated by [14–16]
to physically map identified peptides along T. aestivum genome using tBLASTn algorithm
and various visualization tools. The experimental design is schematized in Figure 1.
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and stored in optimal conditions [14–16]. 
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The algorithm tBLASTn is one of the Basic Local Alignment Search Tool (BLAST) 

operation modes developed in 1991 [17] that aligns protein (or peptide) sequences to a 
nucleotide database translated to hypothetical amino acid (AA) sequences in all six 
reading frames. In 2006, its implementation was modernized with composition-based 
statistics to greatly improve statistical accuracy and reliability while preserving retrieval 
accuracy [18]. A tBLASTn search is the only way to pinpoint nucleotide potential coding 
regions at the protein level. The BLAST+ program was implemented in 2009 to 
dramatically reduce run times [19]. In 2015, the command line NCBI BLAST+ tool suite 
was wrapped for use within the Galaxy web-based biomedical data analysis platform [20]. 
The Galaxy platform offers user-friendly free-to-use tools on generous server space and 
central processing unit (CPU) times [21]. We took advantage of this resource for our work 
and ran the sizeable tBLASTn job from Galaxy Australia server (https://usegalaxy.org.au/).  

  

Figure 1. Experimental design of wheat bottom-up (BU) proteogenomics analysis (figure partially
created in BioRender). This research was based on organs obtained from plants grown, sampled, and
stored in optimal conditions [14–16].

2.1. tBLASTn to Align Peptides to Wheat DNA

The algorithm tBLASTn is one of the Basic Local Alignment Search Tool (BLAST)
operation modes developed in 1991 [17] that aligns protein (or peptide) sequences to a
nucleotide database translated to hypothetical amino acid (AA) sequences in all six reading
frames. In 2006, its implementation was modernized with composition-based statistics to
greatly improve statistical accuracy and reliability while preserving retrieval accuracy [18].
A tBLASTn search is the only way to pinpoint nucleotide potential coding regions at the
protein level. The BLAST+ program was implemented in 2009 to dramatically reduce run
times [19]. In 2015, the command line NCBI BLAST+ tool suite was wrapped for use within
the Galaxy web-based biomedical data analysis platform [20]. The Galaxy platform offers
user-friendly free-to-use tools on generous server space and central processing unit (CPU)
times [21]. We took advantage of this resource for our work and ran the sizeable tBLASTn
job from Galaxy Australia server (https://usegalaxy.org.au/).

2.1.1. Optimising the tBLASTn Search

A critical element in assessing the quality of a pairwise sequence alignment is the
scoring matrix that provides a score for aligning any possible pair of residues [4]. Point
accepted mutation (PAM) matrices are suitable for short sequence queries [22], while the
Blocks substitution matrix (BLOSUM) caters to longer queries [23]. BLOSUM matrices

https://usegalaxy.org.au/
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are based on observed alignments, unlike PAM matrices, which are extrapolated from
comparisons of closely related proteins. To compare closely related sequences, PAM
matrices with lower numbers (e.g., PAM30) or BLOSUM matrices with higher numbers
(e.g., BLOSUM90) are typically employed.

Another essential consideration for multiple sequence alignment is modeling inser-
tions and deletions, otherwise known as gaps. The most prevalent model invokes gap open
(existence) and gap extension penalties. Varying the gap open and gap extension costs not
only results in very different alignments but also yields different distributions of phylogeny
scores [24].

By combining the use of BLOSUM or PAM matrices with various gap costs, we
performed 12 tests on HC gene TraesCS4D03G0026600.1 displaying sufficient length (2.2 kb),
complexity (5 exons and 4 introns) and peptide coverage (36% with 62 unique peptides).
Our test results are summarized in Table 1.

Table 1. Summary of tBLASTn tests on TraesCS4D03G0026600.1 gene.

Test
No.

Scoring
Matrix Type Existence Extension

CPU 1

Time
(min)

Total
Pep-
tides

Wrong
Pep-
tides

Not
Found

Correct
Pep-
tides

Correct
Align-
ment
(%)

Total
Gaps

Not
Found

Correct
Gaps

Correct
Gaps
(%)

Rank

8 PAM 30 10 1 2 62 1 40 21 33.9 7 4 3 42.9 1

5 BLOSUM 90 11 1 3 62 0 43 19 30.6 7 4 3 42.9 2

7 PAM 30 8 1 2 62 0 44 18 29.0 7 4 3 42.9 3

4 BLOSUM 90 9 1 4 62 0 45 17 27.4 7 5 2 28.6 4

6 PAM 30 5 2 3 62 1 44 17 27.4 7 5 2 28.6 4

1 BLOSUM 90 6 2 4 62 1 45 16 25.8 7 6 1 14.3 6

9 PAM 30 14 2 2 62 3 39 20 32.3 7 7 0 0.0 7

10 PAM 30 15 3 4 62 3 39 20 32.3 7 7 0 0.0 7

3 BLOSUM 90 9 2 2 62 1 43 18 29.0 7 7 0 0.0 9

2 BLOSUM 90 8 2 4 62 1 44 17 27.4 7 7 0 0.0 10

12 BLOSUM 45 19 1 2 62 2 46 14 22.6 7 6 1 14.3 11

11 PAM 250 21 1 5 62 0 59 3 4.8 7 7 0 0.0 12

1 CPU, central processing unit.

We ranked the methods not only according to the number of correctly aligned peptides
but also by whether known gaps were detected or not. Another relevant parameter was
CPU time, which varied from 2 to 5 min. Correct alignments ranged from 4% (test 11) to
34% (test 8), and correct gap detection ranged from 0% (tests 2–3, 9–11) to 43% (5, 7–8).
The largest number of peptides appropriately aligned (21/62) was achieved with test 8
which applied a PAM-30 matrix with gap costs of existence 10 and extension 1. Moreover,
these parameters successfully aligned three peptides with gaps that spanned the first intron
(Supplementary Table S1). Additionally, this method took the least amount of time to run
(2 min), thus minimizing CPU time when aligning hundreds of thousands of sequences.
Consequently, the test 8 method ranked the best and was adopted to align all the peptide
sequences from our datasets.

2.1.2. Peptides Mapped by tBLASTn

Overall, 2,705,657 peptides were recovered from [14–16] across 29 tissue types, which
listed 45,620 to 153,644 peptides with an average of 93,299 (±32,163) (Table 2).

As tBLASTn operates on sequence information, we only kept unique AA sequences
and eliminated all redundancy related on one hand to charge states and acquired during
the electron spray ionization (ESI)-MS analysis, and on the other hand to PTMs, which
were abundant [15,16]. A total of 861,759 unique AA peptide sequences were thus searched
against the wheat genome (4.2 Gb) using NCBI tBLASTn on the Galaxy Australia server.
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Table 2. Number of peptides processed per tissue type and summary statistics.

Tissue Type Tissue
Number

Total
Peptides

Unique AA 1

Sequences tBLASTn 2 Hits tBLASTn 2 Hits
(%)

STORED GRAIN 1 123,638 14,768 5302 35.9

GRAIN DEVELOPMENT Z87 2 79,826 25,855 1915 7.4

GRAIN DEVELOPMENT Z83 3 84,356 26,818 1925 7.2

GRAIN DEVELOPMENT Z75 4 84,112 28,860 2298 8.0

GRAIN DEVELOPMENT Z71 5 122,739 38,790 3399 8.8

GRAIN DEVELOPMENT Z70 6 90,963 27,402 2579 9.4

ENDOSPERM 7 71,182 22,051 2389 10.8

EMBRYO 8 56,489 25,575 2154 8.4

PERICARP 9 102,924 30,070 3206 10.7

POLLEN 10 51,251 14,180 974 6.9

ANTHER 11 138,308 36,539 9743 26.7

LEMMA 12 119,032 30,885 2443 7.9

GLUME 13 131,255 30,545 3566 11.7

PALEA 14 92,451 25,637 3037 11.8

IMMATURE SPIKE 15 132,013 39,797 5547 13.9

RACHILLA 16 130,559 35,184 2346 6.7

SENESCING LEAF 17 61,147 21,388 1290 6.0

MATURE FLAG LEAF 18 78,745 31,959 1974 6.2

BOOTS 19 61,154 29,800 5167 17.3

NODE EXC 20 83,310 35,434 1384 3.9

NODE 21 73,460 27,589 2050 7.4

YOUNG FLAG LEAF 22 59,966 25,438 948 3.7

STEM 23 49,383 21,945 1687 7.7

COLEOPTILE 24 153,644 45,500 5839 12.8

MATURE ROOTS EXC 25 45,620 34,308 9357 27.3

MATURE ROOTS 26 89,494 32,528 2759 8.5

ROOT TIP 27 136,241 39,486 3140 8.0

ROOT VASCULATURE 28 66,587 21,877 1285 5.9

SEEDLING ROOT 29 135,808 41,551 3016 7.3

SUM 2,705,657 861,759 92,719 10.76

MIN 45,620 14,180 948 3.73

MAX 153,644 45,500 9743 35.90

AVERAGE 93,299 29,716 3197 10.83

SD 32,163 7594 2197 7.34
1 AA, amino acid; 2 BLAST, Basic Local Alignment Search Tool.

Applying our optimized parameters, the analysis required 11 days to complete the
tBLASTn job on Galaxy Australia which allocated us 5 cores and 19.6 GB of memory. The
861,759 AA sequences yielded 92,719 (10.8%) peptide hits. With an average of 10.8% (±7.3),
hit success rates ranged from 3.7% (young flag leaf) to 35.9% (stored grain). A total of
46,576 peptides mapped to negative the DNA strand, and 46,143 peptides to the positive
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DNA strand. The distribution across the 6 reading frames was comparable and averaged
15,453 (±198). All the results are available in Supplementary Table S2.

2.1.3. Peptides Missed by tBLASTn

An average of 89% of peptides returned no hit. This could be explained by the fact that
BLAST program does not search for splice sites or try to distinguish introns from exons,
and tBLASTn in particular does not consider the possibility that an alignment could be
extended in another reading frame [18].

To test this hypothesis, we randomly chose the HC gene TraesCS4D03G0026600.1
(2.2 kb) which contains five exons and four introns and exhibits a frame shift. All exons are
transcribed into the third reading frame of the positive strand, except exon three, which is
transcribed into the second reading frame of the positive strand.

From our recovered datasets, 62 unique peptides belonged to the protein encoded by
TraesCS4D03G0026600.1 gene. We manually performed the physical mapping of all these
62 peptides by mathematically converting their AA coordinates into genomic positions.
The tBLASTn search yielded 25 (40%) hits out of 62 peptides (Supplementary Table S3).
Both manual and tBLASTn alignments were visualized and compared using the bread
wheat Apollo Jbrowse server (Figure 2).
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Figure 2. Comparison of tBLASTn and manual alignments along TraesCS4D03G0026600.1 HC gene
viewed in Apollo Jbrowse: (A) Alignment along full gene. Boxed areas are zoomed-in in panels
(B,C). tBLASTn hits are purple and manual alignment is pink. (B) Zoom-in of genomic region
spanning intron between second and third exon. AA sequence is highlighted where frame shift
occurs. (C) Zoom-in of genomic region spanning intron between 3rd and 4th exon. AA sequence is
highlighted where frame shift occurs.
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Figure 2A shows areas not covered by tBLASTn hits, namely 2/3 of the 1st exon, 1/2 of
the third exon, and 1/3 of the fifth exon. We looked at the physicochemical features of
TraesCS4D03G0026600.1 peptides to try and explain why they did not produce a tBLASTn
hit. It seemed that missed peptides exhibited short length and therefore low molecular
weight (MW), extreme values of Grand Average of Hydrophobicity (GRAVY) beyond a
range of 0.6 to −2.2, and an aromaticity greater than 0.14 (Supplementary Table S3).

TBLASTn adequately aligned peptides beginning in one exon and finishing in the
subsequent exon, thus spanning an intron. This was illustrated with peptide AFVVPGFT
DADGVGYVAQ---GEGVLTVIENGEK spanning the second intron and peptide VAVANITP-
--GSMTAPYLNTQSFK spanning the 4th intron.

TBLASTn algorithm could successfully assign peptides that fully aligned with distinct
reading frames, as exemplified with peptides QYFSAKPLLASLSK and FSAKPLLASLSK
both found within the third exon on the second frame, while all the other peptides aligned
along the third frame. However, the program failed to map peptides whose AA sequence
resulted from a frame shift, meaning part of their sequence aligned with a given frame
and the rest aligned with another reading frame. This was the case for peptides FQ---
YFSAKPLLASLSK and Q---YFSAKPLLASLSK, which started in exon 2 on frame +3 and
finished in exon 3 on frame +2 (Figure 2B). Another example is provided with peptide
K---TSDEQLGRLL, which started in exon 3 on frame +2 and finished in exon 4 on frame +3
(Figure 2C).

Perhaps, this study could help developers to further refine the BLAST+ program so
that short peptides and peptides covering frame shifts can reliably return hits.

2.2. Proteogenomics to Refine Wheat Gene Annotation

Summarized information for mapped peptides can be shown in different tracks on
a Circos viewer or a genome browser [12]. Here, we present two genome browsers, a
locally installed version of Integrated Genome Browser (IGB) software 10.0.1 [25] and the
online public Apollo Jbrowse server (https://bread-wheat-um.genome.edu.au/apollo/49
826/jbrowse/) [26], as well as a circular plot using the Circos tool [27] wrapped in Galaxy
platform [28].

2.2.1. Physical Mapping of tBLASTn Peptides

Circos plots were originally devised to display genome structure [27]. They offer full
flexibility to present complex large datasets in a concise and enticing manner. We layered
all the mapped peptides according to the wheat tissue they were extracted from [14–16] in
a circular plot (Figure 3).

This condensed visualization shows that the 92,719 peptides homogenously cover
all the chromosomes regardless of tissue type (Figure 3A). Noticeably, centromeric re-
gions present a lesser peptide density coincidently with a reported lack of genes [5]. This
can better be appreciated at a single chromosome scale, as exemplified on chromosome
2D in Figure 3B. The wheat proteogenome paucity in the centromere region was previ-
ously reported [14,16] and attributed to uneven distribution of coding capacity across the
chromosomes [14].

The number of mapped peptides per chromosome varied from 2304 to 8287 with an
average of 4411 (Table 3).

Duncan et al. noted a low peptide coverage on chromosomes 1A, 2A, and 4B [14],
which was not substantiated by our analysis. In our study, chromosomes 1A, 2A, and
4B featured 3197, 5125, and 4449 peptides, respectively. Chromosomes with the lowest
peptide density were 7B (2304), 3D (2859), and 6D (3074), while the most densely covered
chromosomes were 5D (5804), 2D (6208), and 3B (8287). There was a strong positive
correlation (R2 = 0.93) between the number of genes per chromosome and the number of
peptides mapped, which is in agreement with chromosome size (Supplementary Figure S1).
This confirmed that the variation in peptide density per chromosome matched that of genes.

https://bread-wheat-um.genome.edu.au/apollo/49826/jbrowse/
https://bread-wheat-um.genome.edu.au/apollo/49826/jbrowse/
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Table 3. Number of peptides and genes aligned along wheat chromosomes.

Chromosome HC 1

Peptides
LC 2

Peptides
Novel

Peptides
SUM 3

Peptides

HC 1 Pep-
Mapped
Genes

LC 2 Pep-
Mapped
Genes

SUM 3

Pep-Mapped
Genes

All HC 1

Genes
All LC 2

Genes
SUM All

Genes HC 1 % LC 2 % SUM 3 % Chro_Size 4

Chr1A 2883 235 79 3197 1286 128 1414 4359 6509 10,868 29.5 2.0 13.0 594,442,527

Chr1B 3957 296 154 4407 1515 173 1688 4736 8112 12,848 32.0 2.1 13.1 700,547,350

Chr1D 3332 224 67 3623 1329 114 1443 4487 6006 10,493 29.6 1.9 13.8 498,638,509

Chr2A 4599 322 204 5125 1950 197 2147 5840 7884 13,724 33.4 2.5 15.6 787,782,082

Chr2B 4523 448 207 5178 1994 255 2249 6152 9631 15,783 32.4 2.6 14.2 812,755,788

Chr2D 5739 332 137 6208 2137 181 2318 5885 7550 13,435 36.3 2.4 17.3 656,544,405

Chr3A 3095 231 87 3413 1391 141 1532 5237 7572 12,809 26.6 1.9 12.0 754,128,162

Chr3B 6971 849 467 8287 2739 467 3206 5941 9351 15,292 46.1 5.0 21.0 851,934,019

Chr3D 2589 207 63 2859 1194 103 1297 5306 6726 12,032 22.5 1.5 10.8 619,618,552

Chr4A 4113 327 130 4570 1641 176 1817 4870 7680 12,550 33.7 2.3 14.5 754,227,511

Chr4B 4048 318 83 4449 1490 171 1661 3878 6324 10,202 38.4 2.7 16.3 673,810,255

Chr4D 3848 277 274 4399 1447 122 1569 3582 4870 8452 40.4 2.5 18.6 518,332,611

Chr5A 3464 225 64 3753 1353 145 1498 5450 7604 13,054 24.8 1.9 11.5 713,360,525

Chr5B 4752 443 117 5312 1942 212 2154 5574 8288 13,862 34.8 2.6 15.5 714,805,278

Chr5D 5327 372 105 5804 1983 179 2162 5574 6803 12,377 35.6 2.6 17.5 569,951,140

Chr6A 3631 287 152 4070 1450 164 1614 4141 6377 10,518 35.0 2.6 15.3 622,669,697

Chr6B 3423 283 106 3812 1326 164 1490 4627 8433 13,060 28.7 1.9 11.4 731,188,232

Chr6D 2802 196 76 3074 1272 134 1406 4012 5318 9330 31.7 2.5 15.1 495,380,293

Chr7A 3052 236 124 3412 1339 142 1481 5573 8324 13,897 24.0 1.7 10.7 744,491,536

Chr7B 1991 212 101 2304 956 138 1094 4892 8602 13,494 19.5 1.6 8.1 764,081,788

Chr7D 4876 365 137 5378 1866 190 2056 5419 7666 13,085 34.4 2.5 15.7 642,921,167

ChrUn * 64 21 0 85 12 6 18 1379 4216 5595 0.9 0.1 0.3 351,582,993

SUM 83,079 6706 2934 92,719 33,612 3702 37,314 106,914 159,846 266,760 31.4 2.3 14.0 340,075

MIN 1991 196 63 2304 956 103 1094 3582 4870 8452 20 2 8 495,380,293

MAX 6971 849 467 8287 2739 467 3206 6152 9631 15,783 46 5 21 851,934,019

AVERAGE 3953 318 140 4411 1600 176 1776 5025 7411 12,436 32 2 14 677,219,592

1 HC, High Confidence; 2 LC, Low Confidence; 3 SUM, summation; 4 Chro_size, size, or wheat chromosome; * Only peptides from stored grains [16] could be mapped to ChrUn, which
is considered here as an outlier and therefore not used in the data analysis.
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Figure 3. Circos plot of peptides aligned along wheat chromosomes for each tissue (figure partially
created in Galaxy Australia): (A) Full mapping along all 21 T. aestivum chromosomes. (B) Zoomed-in
view of chromosome 2D to emphasize low peptide alignment around centromeric region.

Genome browsers such as Integrated Genome Browser (IGB) afford a scalable view of
the proteogenomic mapping by allowing general viewing at a whole chromosome level
(Supplementary Figure S2A) or very fine detailing by zooming in all the way to the peptide
sequence level and ultimately individual nucleotides (Supplementary Figure S2B–D). We
can see in Supplementary Figure S2C how processing multiple wheat organs helped
increase genome coverage. Indeed, proteogenomic coverage achieved up to 21% of genes
located on chromosome 3B and averaged 14% per chromosome (Table 3).

2.2.2. Gene Validation, Promotion and Discovery

Peptide genomic coordinates were used to retrieve the names of HC and LC genes
encompassing them. Orphan peptides that could not be assigned a gene were deemed
“novel”. Overall, 83,015 unique peptides aligned along 33,612 HC genes thus validating
31.4% of all HC gene models (Table 3). On average, 32% and up to 46% (Chromosome 3B)
of HC gene annotations were confirmed by our results. We illustrated annotation validation
by proteomics using HC gene TraesCS5A03G451700 displaying ample peptide sequence
coverage along all coding areas (Figure 4A). A few peptides spanned the second intronic
region, while the rest aligned with exons translated in reading frames +1, +2, or +3.
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Figure 4. Examples of peptide alignments to refine wheat genome annotation using Apollo Jbrowse
Australia: (A) Validation of HC gene TraesCS5A03G451700. Inset shows track legend across all
panels. (B) Promotion of LC gene TraesCS7D03G1260000LC to HC status. (C) Promotion of LC gene
TraesCS3B03G1041100LC to HC status and amendment of underlying HC gene TraesCS3B03G1041200.
Boxed area is zoomed-in on Panel (D). Panel (C) zoomed-in on intron. (E) Novel gene discovery
exemplified at genomic position Chr4D:505997969..506000955.
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A total of 6685 unique peptides were mapped against 3702 LC gene models, which
should be promoted to HC status. Overall, 2.3% of all LC annotations were sanctioned by
our results (Table 3), reaching 5% on chromosome 3B. We chose the LC gene TraesCS7D03G
1260000LC to illustrate a proteogenome alignment (Figure 4B). This gene does not feature
intronic areas and is well covered by the tBLASTn hits, particularly the second half of
its sequence. In another instance, we raise a situation where peptide mapping not only
supports the existence of an LC gene but also could be used to refine the annotation of
an underlying HC gene. Figure 4C focuses on LC gene TraesCS3B03G1041100LC bearing
a long exon followed by a much shorter exon. Peptide coverage was extensive along
the 1st exon. At these genomic coordinates, HC gene TraesCS3B03G1041200 displaying
a very short intron was also found, which is not endorsed by our mapping results, as
peptides GGKPFVDILKAGNVLPGIK and GGKPFVDILKAGNVLPGIKVDK fully span
this area and present no gap (Figure 4D). Furthermore, the intron was also marked by an
abundant transcript expression. Therefore, HC gene TraesCS3B03G1041200 deserved to
be reannotated. Similar examples can be found in this mapping result, and we hope the
wheat community will explore our data and take the required steps to update genome
annotations accordingly.

Finally, 2934 peptides could not be assigned any gene; we refer to these orphans as
novel peptides. These novel peptides can be used to discover novel T. aestivum genes. We
highlight this type of scenario on chromosome 4D genomic area 505997969 to 506000955,
which featured eight unique peptides and sufficient levels of transcripts to presume the
existence of a gene (Figure 4E).

In all, 37,314 HC and LC gene models were mapped and thus validated in our
study. Duncan et al. employed a trypsin-based BU proteomics workflow and identified
15,779 wheat proteins across tissue_nb 3-29 [14]. Vincent et al. identified 8738 proteins from
a few stored mature grains following a multiprotease digestion BU proteomics strategy [15]
and, later on, screened 4061 stored grain samples using trypsin digestion, which yielded
8044 protein identities [16]. The present study successfully converted protein identities
into genomic physical mapping. Our proteogenomic results should be used to update T.
aestivum genome annotations.

2.3. Data Analysis of Mapped Peptides

The outputs from tBLASTn were quantitative thus lending themselves to statistics for
identifying trends in alignment processes, which we handled using Python 3 Matplotlib
and Seaborn packages extensive statistical and plotting capabilities.

2.3.1. Global Data Analysis

Global summary statistics showed that mapped peptides contained 8 to 108 AA
residues (Supplementary Table S4). The tBLASTn score ranged from 61 to 353, and the
percentage of identical matches (pident) varied from 30–100%, containing up to 20 mis-
matches, a maximum of three gap openings (gapopens), with the longest gap spanning
69 AAs (207 bp). A valuable statistics to assess the alignment confidence is the expectation
value (e-value), which indicates the expected number of times the score would occur by
chance [29]. Although e-value depends on database size, alignments with expectation
values inferior to 0.001 can reliably be used to infer homology. In our study, e-values
ranged from 0.01 to 6.03 × 10−42 with a Q1 of 2.8 × 10−11, Q2 of 6.6 × 10−5, and Q3 of
1.8 × 10−4. Such e-values placed our hits as true homologs (e-value < 10 × 10−6) or closely
related sequences (10 × 10−10 < e-value < 10 × 10−50).

We produced a correlation matrix on a subset of numerical variables to observe which
ones were associated (Figure 5A).
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Unsurprisingly, strands and reading frames (sframe) were very strongly positively
correlated (R2 = 0.926); so were gap openings (gapopens) and sizes (gaps) (R2 = 0.885).
Yet, they were not correlated with any other variable. Interestingly, peptide length was
positively associated with score (R2 = 0.709), gap size (R2 = 0.486), and openings (R2 = 0.431),
as well as negatively linked to identity percentage (R2 = −0.431) and e-value (R2 = −0.281).
Moreover, the percentage of identical matches (pident) was strongly negatively correlated
with gap size (R2 = −0.898) and number (R2 = −0.847), and to a lesser extent with the
number of mismatches (R2 = −0.415).

A box plot further emphasized that the percentage of identical matches progressively
diminished from 100 to 70% as the number of mismatches augmented, dropping down
to 50% when mismatches exceeded 13 (Figure 5B). Most mapped peptides were gapless
(91,259, 98%); 1254 (1.4%), 197 (0.2%), and 9 peptides hosted 1, 2, or 3 gaps, respectively
(Figure 5C). Gap sizes oscillated between 1 and 69, with the greatest frequency from 24–37,
thus only spanning short introns.

A pairgrid function enabled us to plot multiple aspects of our tBLASTn dataset in
a single chart for a quick appraisal of the main variables (Supplementary Figure S3A).
Some clear patterns appeared when peptide types were highlighted (HC, LC, or novel) and
were further drilled into. A scatterplot of peptide length versus the percentage of identical
matches (pident) highlighted a negative relationship between both variables; most novel
peptides achieved high identity despite short sizes (Figure 5D). The introduction of gaps
(gapopen) logically increased peptide lengths at the cost of sequence homology. An lmplot
of length against score confirmed their strong positive correlation; short novel peptides
were clustered and exhibited a wide range of scores (Figure 5E), despite high levels of
identical matches (pident) as indicated above. The effect of gap introduction on sequence
homology can be seen on a violin plot featuring gapopens versus pident, with a drastic
drop in the percentage of identical matches as soon as a gap exists (Figure 5F).

Another violin plot showing the distribution of peptide starting position (sstart) per
chromosome revealed a fairly homogenous pattern across all chromosomes regardless of
peptide types (HC, LC, or novel) (Figure 5G), with the exception of chromosome 4D, which
presented unusually high density of novel peptides towards its end tail.

2.3.2. Focus on Chromosome 4D

Looking in more detail at chromosome 4D via a distplot of peptide starting position
(sstart) against scores further illustrated the conglomeration of novel peptides within the
terminal region of the chromosome (Figure 5H). HC and LC peptides were homogenously
distributed along the whole chromosome.

Visualizing the last 5.6 Mb of chromosome 4D in Apollo Jbrowse showed 143 novel
peptides in this gene-depleted zone (Supplementary Figure S4A). By zooming into re-
gions where transcripts are abundant, such as the 3.6 Kb area covering 515,319,968 to
515,323,561 and mapping 20 peptides, we can presume the existence of 1 or 2 candi-
date genes (Supplementary Figure S4B). Other likely candidate genes are outlined in re-
gions 515873999–515890302 (16.3 Kb Supplementary Figure S4C) and 517010333–517013855
(3.52 Kb Supplementary Figure S4D).

We investigated whether a link existed between novel peptides and wheat tissues. All
peptides mapped homogenously along the genome, as shown on the Circos plot (Figure 3)
and more explicitly using box plots (Supplementary Figure S3B). When filtering the data
to novel peptides only for all chromosomes, tissue differences appeared, as evidenced by
the variation in quartiles (Supplementary Figure S3C). Peptide numbers ranged from 35
(young flag leaf) to 352 (mature root exc.). When focusing on novel peptides aligned along
chromosome 4D only, the majority of tissues condensed novel peptides in the end-tail region
of the chromosome, with the exception of grain developmental stage Z87 more widely
distributed (Supplementary Figure S3D). Grain developmental stages Z83 (tissue_nb 3),
Z70 (tissue_nb 6), pollen (tissue_nb 10), mature flag leaf (tissue_nb 18), young flag leaf
(tissue_nb 22), root tip (tissue_nb 27), and root vasculature (tissue_nb 28) yielded very few
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novel peptides on chromosome 4D. Therefore, our results suggest that analyzing different
organ types helped detect novel peptides.

3. Materials and Methods

The experimental design is schematized in Figure 1.

3.1. Raw Data Retrieval and Processing
3.1.1. Data Source, Conversion, and Redundancy Removal

T. aestivum genomic sequence (IWGSC RefSeq v2.1 [8]) was retrieved from https:
//urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v2.1/ (accessed
on 25 August 2023) as a fasta file. Genome annotations were downloaded from https:
//urgi.versailles.inrae.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v2.1/ (accessed
on 25 August 2023) for HC and LC genes as gff3 files.

MS-proteomics outputs of [14–16] were accessed from the following public repositories:
ProteomeXchange (https://www.proteomexchange.org/, accessed on 11 May 2024) dataset
PXD004720 and MassIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp, ac-
cessed on 11 May 2024) datasets MSV000088253 and MSV000090572. An example of LC-
MS/MS spectrum is provided (Supplementary Figure S5). These recent studies represented
the most extensive proteome coverage of 29 wheat tissues to date (Table 2).

Pep.xml files were downloaded directly into Galaxy Australia platform [21] version
24.1.2 using the “Upload data” and “Paste/Fetch data” tools and pasting the relevant FTP
URLs. The pep.xml files were converted into tab-delimited text files using the “PepXML to
Table” tool.

Tabular outputs were exported to MS Office 365 Excel. Decoy peptides were discarded
and an index column with unique identifiers was added for tracking purposes. Redun-
dant target peptide AA sequences were eliminated using the “Remove Duplicates” tool.
Nonredundant peptides from each tissue were combined into a single table using the “Get
Data From Folder” tool and were formatted into a fasta file using the index and the peptide
AA sequence.

3.1.2. Database Creation and tBLASTn Search

Both peptide and wheat DNA fasta files were imported into Galaxy Australia plat-
form [21] version 24.1.2 using the “Upload data” and “Choose local file” tools.

The genomic fasta file was converted into a BLAST database using the “NCBI BLAST+
makeblastdb” tool.

Several tBLASTn substitution matrices and gap costs were tested on test gene TraesCS4
D03G0026600.1: BLOSUM45, BLOSUM90, PAM30, PAM250, with 5–21 existences and 1–
3 extensions. Results are summarized in Table 1 and Supplementary Table S1. The tBLASTn
search was performed on all unique peptide sequences against wheat genome using the
“NCBI BLAST+ tblastn” tool [19,20] with the following optimized parameters: peptide fasta
sequence as the query sequences, DNA blastdbn file as the nucleotide BLAST database,
traditional tblastn as BLAST type, 0.01 expectation value cutoff, extended 25 columns
tabular output, standard genetic code, PAM30 scoring matrix with gap costs existence
10 and extension 1, 3 maximum hits, 1 maximum HSP, 25% minimum coverage, and
default-composition-based statistics.

The tBLASTn output was exported to be further processed in Excel and Python 3 and
is available in Supplementary Table S2.

3.2. Peptide Mapping and Data Analysis
3.2.1. Gene Assignment

Wheat genome gff3 annotations were parsed in miniconda JupyterLab Python 3
(version 3.6.3) to extract gene names, chromosome names, LC or HC status, and gene
start and end positions and saved as a CSV file. A Python 3 script was written to loop
through each tBLASTn hit and, where possible, assign it to a gene if the chromosome names

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v2.1/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v2.1/
https://urgi.versailles.inrae.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v2.1/
https://urgi.versailles.inrae.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v2.1/
https://www.proteomexchange.org/
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
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matched, the peptide start position was greater than the gene start position, and the peptide
end position was smaller than the gene end position. Peptides that were not assigned to a
gene were deemed “novel”.

3.2.2. Peptide Physical Mapping Using Genome Browsers

Relevant columns from the tBLASTn output (saccver, sstart, send, qseq, score, strand)
were extracted to create BED files for each individual tissue, as well as combined into one
single file. BED files were permanently uploaded into the bread wheat Apollo Jbrowse
server (uploaded on 21 June 2024 at https://bread-wheat-um.genome.edu.au/apollo/49
826/jbrowse/) [26] under the label “Proteome hit (tBlastn)”.

The genomic sequence, GFF3, and BED files were also uploaded into a locally installed
Integrated Genome Browser (IGB) [25] (https://www.bioviz.org/, accessed on 15 May
2024) for further visualization.

3.2.3. Peptide Physical Mapping Using Circos

Relevant columns from the tBLASTn output (saccver, sstart, send) were extracted to
create TXT files for each individual tissue. The wheat karyotype TXT file was created by
retrieving the genomic start and end positions of each chromosome. Centromere positions
were obtained from [7].

The files were imported into Galaxy Australia platform [21] using the “Upload data”
and “Choose local file” tools. The circular plot was produced using the “Circos” tool [27,28]
and each tissue as a 2D Data Plot and plot types set to “Highlight”.

3.2.4. Mathematical Mapping of Peptides against TraesCS4D03G0026600.1 Gene

The 62 mascot-identified peptides obtained from [15,16] and assigned to HC gene
TraesCS4D03G0026600.1 were retrieved along with their start and end position in the protein
AA sequence. The gene structure was extracted from GFF3 file and the positions of the
5 exons and 4 introns were computed in miniconda JupyterLab Python 3. A Python script
was written to loop through each peptide and mathematically convert the AA coordinates
into nucleotide coordinates by considering the genomic position and size of exons and
introns. The output was exported as CSV and BED files.

The tBLASTn peptide hits assigned to TraesCS4D03G0026600.1 gene were extracted
and saved as CSV and BED files.

Both BED files were uploaded into the bread wheat Apollo Jbrowse server for compar-
ison purposes. Both CSV files were combined into Supplementary Table S3.

Various physicochemical parameters for TraesCS4D03G0026600.1 peptides were com-
puted based on AA squences using BioPython SeqUtils ProtParam module: length, MW,
GRAVY, aromaticity, and isoelectric point (pI).

3.2.5. Data Analysis, Statistics, and Visualization

The tBLASTn output was imported into miniconda JupyterLab Python 3 (version 3.6.3)
and converted into a pandas dataframe. Descriptive statistics were produced using the
pandas method “.describe()” and consigned to Supplementary Table S4.

Correlation matrix and all charts (boxplot, violin plot, lmplot, scatterplot, hitsplot
distplot, pairgrid, and joinplot) were generated using matplotlib and seaborn libraries.

Our Jupyter Notebook Python code is publicly available via GitHub (uploaded on
4 August 2024 at https://github.com/dlf2024/Python_Wheat_Proteogenomics).

4. Conclusions

To our knowledge, this is the largest proteogenomics study tackled in a single experi-
ment. In this work, we optimized tBLASTn parameters to align 861,759 unique peptides
along IWGSC RefSeq 2.1 genome. Of the 92,719 hits, 89,785 (97%) confirmed the existence of
37,314 HC and LC gene models. Of these, 83,015 unique peptides aligned along 33,612 HC
genes, thus validating 31.4% of all HC gene models. Additionally, 6685 unique peptides

https://bread-wheat-um.genome.edu.au/apollo/49826/jbrowse/
https://bread-wheat-um.genome.edu.au/apollo/49826/jbrowse/
https://www.bioviz.org/
https://github.com/dlf2024/Python_Wheat_Proteogenomics
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mapped against 3702 LC gene models (2.3% of all LC annotations), thus deserving HC
promotion. The remaining 2934 novel peptides should be used for gene discovery. We
supply all our results as a resource for the wheat community, and we hope that IWGSC
will use our data to refine T. aestivum genome annotation.

A large proportion of peptides (89%) did not produce a hit, among those were peptides
exhibiting a reading frame shift mid-sequence. We urge developers to further improve
BLAST+ program so that short peptides and peptides covering frame shifts can reliably
return hits. We provide a relatively simple workflow that can be applied to any other BU
proteomics datasets and hopefully expand this resource with proteins and peptides from
biotically and abiotically stressed samples.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25168614/s1.
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