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Abstract: Breast cancer (BC) remains a significant global health concern, with neoadjuvant chemother-
apy (NACT) offering preoperative benefits like tumor downstaging and treatment response as-
sessment. However, identifying factors influencing post-NACT treatment response and survival
outcomes is challenging. Metabolomic approaches offer promising insights into understanding
these outcomes. This study analyzed the serum of 80 BC patients before and after NACT, followed
for up to five years, correlating with disease-free survival (DFS) and overall survival (OS). Using
untargeted nuclear magnetic resonance (NMR) spectroscopy and a novel statistical model that avoids
collinearity issues, we identified metabolic changes associated with survival outcomes. Four metabo-
lites (histidine, lactate, serine, and taurine) were significantly associated with DFS. We developed a
metabolite-related survival score (MRSS) from these metabolites, stratifying patients into low- and
high-risk relapse groups, independent of classical prognostic factors. High-risk patients had a hazard
ratio (HR) for DFS of 3.42 (95% CI 1.51–7.74; p = 0.003) after adjustment for disease stage and age.
A similar trend was observed for OS (HR of 3.34, 95% CI 1.64–6.80; p < 0.001). Multivariate Cox
proportional hazards analysis confirmed the independent prognostic value of the MRSS. Our findings
suggest the potential of metabolomic data, alongside traditional markers, in guiding personalized
treatment decisions and risk stratification in BC patients undergoing NACT. This study provides a
methodological framework for leveraging metabolomics in survival analyses.

Keywords: mammary cancer; neoadjuvant chemotherapy; NMR spectroscopy; metabolome;
survival analysis

1. Introduction

Breast cancer (BC) is the most common cancer and the main cause of cancer-related
deaths among women worldwide [1]. As a preoperative treatment option, neoadjuvant
chemotherapy (NACT) is gaining momentum, offering benefits that include tumor down-
staging, enabling less extensive surgical interventions, and reducing the distant dissemina-
tion of BC. Additionally, NACT provides oncologists with an upfront assessment of tumor
chemosensitivity, aiding in treatment planning [2].

The response to NACT is believed to be influenced by various tumor and patient
characteristics, with the degree of response strongly associated with survival outcomes.
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Notably, achieving pathological complete response (pCR) after NACT has shown a sig-
nificant correlation with improved survival, particularly in patients with HER-2-positive
and triple-negative BC, as well as those with luminal-type BC [3]. However, even among
women who achieve pCR after NACT, distant metastatic relapse can still occur within the
initial months or years of follow-up.

The ability to effectively cure BC may rely on the susceptibility of tumor cells to anticancer
drugs and the development of antitumor immunity, preventing metastasis [4]. However, the
factors governing antitumor immunity and the eradication of residual tumor cells following
cancer treatment remain largely unidentified, leading to unexplained heterogeneity in survival
outcomes after NACT. Many studies have been dedicated to identifying biomarkers associated
with pCR following NACT [5–10]. In addition to NACT-associated outcomes such as pCR, a
significant portion of the variability in disease-free and overall survival among NACT patients
can be attributed to patient, tumor, and treatment characteristics.

In addition to this challenge, metabolomic approaches have emerged as promising
avenues of exploration. Metabolomics is the scientific study of the characterization of
metabolites within a given biological system, ranging from individual cells to whole
organisms [11]. Valuable information about cancer biology can be uncovered, along with
potential biomarkers to be therapeutically targeted [12].

In our prior research, we analyzed the metabolite profiles of pretreatment sera from
women to identify potential biomarkers of the NACT response, together with immuno-
histochemical parameters. Our investigation focused on the serum metabolite profiles of
patients with various molecular subtypes of BC who underwent NACT by employing nu-
clear magnetic resonance (NMR) spectroscopy. Additionally, we utilized machine learning
techniques to develop classifiers that correlated the identified metabolites with BC marker
expression, aiming to predict the response to NACT. Notably, these models demonstrated
high predictive accuracy in anticipating the NACT response using pretreatment serum
samples [13]. However, how metabolomic profiling is associated with patient survival
remains underexplored. In this study, we examined the changes in serum metabolomic
profiles using untargeted NMR before and after NACT in a cohort of BC patients with
available follow-up data. By analyzing these profiles and the associated changes, we were
able to evaluate how the serum metabolic profiles before and after NACT, as well as the
changes in these profiles, are related to disease-free survival (DFS) and overall survival
(OS) after BC treatment using NACT.

2. Results
2.1. Differences in the Metabolic Profiles of Patients before and after NACT

In this cohort study, 80 breast cancer patients who underwent NACT (for which the
treatment details are described elsewhere [13]) were profiled for 35 metabolites before
and after NACT using NMR spectroscopy. Paired fold changes for the abundances of
the metabolites after NACT compared to those before NACT were calculated (Figure S1
shows the mean fold changes for each metabolite after/before NACT). Patients were
followed for up to 5 years, and disease-related events (relapses, death) were recorded
throughout. Using follow-up survival data, we analyzed how DFS and OS were related
to metabolite fold changes. To circumvent the collinearity factor, we used the variance
inflation factor (VIF)-based recursive described in the statistical section of this paper. In
Table 1, we list the metabolites investigated in this study before VIF. The recursive VIF
reduces the dimensionality of metabolites to those with a VIF < 3. Metabolites for which the
VIF exceeded the posted threshold (VIF = 3) were recursively removed from the survival
model iterations. Accordingly, Table 1 includes the final variance inflation factor (VIF)
values after 13 recursion cycles (please refer to the methods section for more details). The
disease-free survival coefficients were derived from the resulting and final multivariate
Cox proportional hazards (CPH) model listed in Table 1 calculated using the scope of 22
remaining metabolites after VIF-based recursion.
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Table 1. Variance inflation factor (VIF)-guided multivariate Cox proportional hazards coefficients of
disease-free survival as related to the fold change * of metabolite abundances.

Disease-Free Survival †

Metabolite VIF HR (CI 95%) p-Value

Alanine 2.88 2.88 (0.44–18.83) 0.27
Arginine 2.92 1.28 (0.31–5.23) 0.73

Ascorbate 2.09 0.85 (0.46–1.59) 0.62
Asparagine 2.21 0.97 (0.41–2.33) 0.95
Aspartate 2.24 1.51 (0.69–3.30) 0.30

Betaine >3 - - -
Carnitine >3 - - -
Choline 2.77 0.47 (0.14–1.56) 0.22
Citrate 2.32 1.66 (0.40–6.90) 0.49

Creatine 1.89 0.59 (0.26–1.32) 0.20
Creatinine 2.07 3.81 (0.65–22.12) 0.14
Formate >3 - - -
Glucose >3 - - -

Glutamate 2.77 1.65 (0.41–6.59) 0.48
Glutamine 2.20 2.37 (0.30–18.75) 0.41
Glycerol 2.08 0.58 (0.25–1.32) 0.19
Glycine >3 - - -

Histidine 2.75 0.32 (0.11–0.95) 0.04
Isoleucine >3 - - -

Lactate 2.48 0.32 (0.09–1.11) 0.07
Leucine >3 - - -
Lysine >3 - - -

Methionine >3 - - -
myo-Inositol 2.34 1.27 (0.36–4.40) 0.71

N,N-Dimethylglycine 2.05 0.53 (0.18–1.51) 0.23
Pantothenate 2.83 0.84 (0.26–2.74) 0.77
Phenylalanine 2.24 0.97 (0.49–1.92) 0.94

Proline 2.26 0.58 (0.17–2.01) 0.39
Serine 2.81 5.06 (1.45–17.70) 0.01

sn-Glycero-3-
phosphocholine 2.76 2.89 (0.47–17.81) 0.25

Taurine 1.63 2.51 (1.07–5.91) 0.03
Threonine >3 - - -
Tyrosine >3 - - -

Urea >3 - - -
Valine >3 - - -
HER-2 2.17 0.80 (0.28–2.31) 0.68

Hormonal Receptor 1.59 1.45 (0.53–3.96) 0.47
VIF: Variance inflation factor. HR: hazard ratio. CI: Confidence interval. * Fold change: ratio of metabolite
abundances after/before neoadjuvant chemotherapy (NACT). † HR and p-values not calculated for metabolites
with VIF > 3.

Considering a statistical threshold of p = 0.10, increases in histidine (HR = 0.32; 95% CI
0.11 to 0.95; p = 0.04) and lactate (HR = 0.32; 95% CI 0.09 to 1.11; p = 0.07) levels from before
to after NACT were associated with improved disease-free survival, whereas increases in
serine (HR = 5.06; 95% CI 1.45 to 17.70; p = 0.01) and taurine (HR = 2.51; 95% CI 1.07 to 5.91;
p = 0.03) abundances were associated with worse disease-free survival.

2.2. The MRSS Helps to Determine the Contributions of Metabolites and Clinical Covariates in
NACT Patients

As shown in the previous analyses, four metabolites (histidine, lactate, serine, and
taurine) were individually associated with disease-free survival, even after adjustment
for hormones, other noncollinear metabolites, and known risk factors for breast cancer
relapse (steroid receptor and HER-2 status). We thus decided to deepen the analysis and
devise a metabolite-related score that could provide survival information. For that purpose,
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we used the survival coefficients derived for the four metabolites significantly associated
with survival to derive a unique score MRSS (metabolite-related survival score), which
was further used to classify patients into two groups according to their risk of relapse.
Table 2 provides an overview of the key features of the 80 included patients categorized into
MRSS-derived cohort subgroups of low- and high-risk patients. Most of the characteristics,
namely, age, disease stage, race, age at menarche, menopausal status, hormone replacement
therapy, body mass index, diabetes status, and family history of breast or ovarian cancer,
were not significantly associated with the final patient status at the end of the follow-up
period. However, pregnancy (previous vs. no pregnancy, p = 0.03) and patient final status
by the end of the follow-up period (alive without disease, alive with disease, and deceased,
p = 0.003) were significantly associated with risk subgroups. Notably, 56.5% of the patients
in the high-risk group died by the end of the follow-up period, compared to only 21.1%
in the low-risk group. Table 3 presents the main tumor characteristics within the cohort
risk groups. None of the examined disease features, such as histological grade, Ki67 count,
HER-2 status, tumor size, regional lymph node compromise, metastasis, or hormonal
receptor status, were associated with MRSS risk status.

Table 2. Key patient characteristics related to metabolomics-derived risk strata (MRSS).

Characteristic n (%) Low Risk
n = 57 (71%)

High Risk
n = 23 (29%) p-Value

Age (years) ≥50 46 (57.0) 34 (59.6) 12 (52.2)
0.72<50 34 (43.0) 23 (40.4) 11 (47.8)

Disease Stage

I 4 (5.0) 3 (5.3) 1 (4.3)

0.46
II 48 (60.0) 37 (64.9) 11 (47.8)
III 22 (27.5) 13 (22.8) 9 (39.1)
IV 6 (7.5) 4 (7.0) 2 (8.7)

Race
Caucasian 69 (86.3) 48 (84.2) 21 (91.3)

0.63Noncaucasian 11 (13.8) 9 (15.8) 2 (8.7)

Age of menarche (years) >12 42 (52.5) 30 (52.6) 12 (52.2)
1.00≤12 38 (47.5) 27 (47.4) 11 (47.8)

Menopause No 36 (45.0) 24 (42.1) 12 (52.2)
0.57Yes 44 (55.0) 33 (57.9) 11 (47.8)

Hormone replacement therapy No 68 (85.0) 48 (84.2) 20 (87.0)
1.00Yes 12 (15.0) 9 (15.8) 3 (13.0)

Previous pregnancy Yes 73 (91.3) 55 (96.5) 18 (78.3)
0.03No 7 (8.7) 2 (3.5) 5 (21.7)

Lactation *
Yes 63 (78.8) 46 (80.7) 17 (73.9)

0.71No 17 (21.2) 11 (19.3) 6 (26.1)

Smoking Yes 17 (21.2) 13 (22.8) 4 (17.4)
0.81No 63 (78.8) 44 (77.2) 19 (82.6)

BMI categories
Normal weight 24 (30.0) 14 (24.6) 10 (43.5)

0.21Overweight 21 (26.3) 17 (29.8) 4 (17.4)
Obese 35 (43.7) 26 (45.6) 9 (39.1)

Diabetes
No 71 (88.7) 50 (87.7) 21 (91.3)

0.94Yes 9 (11.3) 7 (12.3) 2 (8.7)

Family history of breast or ovarian
cancer

No 59 (73.8) 41 (71.9) 18 (78.3)
0.76Yes 21 (26.2) 16 (28.1) 5 (21.7)

Relapse/progression No 47 (58.7) 40 (70.2) 7 (30.4)
0.002Yes 33 (42.3) 17 (29.3) 16 (69.6)

Death
No 55 (68.7) 45 (78.9) 10 (43.5)

0.004Yes 25 (32.3) 12 (21.1) 13 (56.3)

Final status by the end of follow-up
Alive without disease 47 (58.8) 40 (70.2) 7 (30.4)

0.003Alive with disease 8 (10.0) 5 (8.8) 3 (13.0)
Deceased 25 (31.2) 12 (21.1) 13 (56.5)

* Statistical significance based only on available data. MRSS: metabolite-related survival score.
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Table 3. Main tumor features related to patient outcomes at the end of the follow-up.

Characteristic n (%) Low Risk
n = 57 (71%)

High Risk
n = 23 (29%) p-Value

Histological grade 1/2 39 (48.75) 29 (50.9) 10 (43.5)
0.723 41 (51.25) 28 (49.1) 13 (56.5)

Ki67 (mean/SD)
Below 40% 35 (43.7) 27 (47.4) 8 (34.8)

0.4440% or higher 45 (57.5) 30 (52.6) 15 (65.2)

HER-2
Negative 46 (57.5) 30 (52.6) 16 (69.6)

0.25Positive * 34 (42.5) 27 (47.4) 7 (30.4)

Tumor size
T1/T2 53 (66.25) 40 (70.2) 13 (56.5)

0.36T3/T4 27 (33.75) 17 (29.8) 10 (43.5)

Regional lymph node N0 33 (41.25) 25 (43.9) 8 (34.8)
0.62N1 or higher 47 (58.75) 32 (56.1) 15 (65.2)

Metastasis
M0 74 (92.5) 53 (93.0) 21 (91.3)

1.00M1 6 (7.5) 4 (7.0) 2 (8.7)

Hormonal Receptor Negative 21 (26.25) 13 (22.8) 8 (34.8)
0.41Positive 59 (73.75) 44 (77.2) 15 (65.2)

SD: standard deviation. * Positive HER-2 status determined using immunohistochemistry and fluorescent in situ
hybridization.

2.3. The MRSS Can Distinguish between Patients with Low- and High-Risk of Relapse and Even
Overall Survival

To assess whether the MRSS could provide survival information regarding not only
disease-free survival but also overall survival, we applied MRSS stratification to a Kaplan-
Meier survival representation. Figure 1 shows the Kaplan-Meier representation of disease-free
(A) and overall (B) survival of the 80 breast cancer patients in relation to the metabolomics-
derived risk MRSS strata (low- and high-risk).
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We also wanted to ascertain whether MRSS survival stratification was still valid in
the subgroups of patients according to disease stage since staging is the most important
standalone risk factor for disease relapse and death in breast cancer patients. Accordingly,
Figure 2 combines low- and high-risk strata with disease stage (stages I–II vs. III–IV). Both
Kaplan-Meier curves demonstrated significant differences in survival (p < 0.0001). Figure 3
is a subset of Figure 2, in which we compare the disease-free survival of patients with either
stage I–II (A) or stage III–IV (B) disease according to the MRSS-risk strata. For patients with
stage I–II disease (Figure 3A), disease-free survival was significantly (p = 0.0087) poorer for
patients in the high-risk group, and the same phenomenon was shown for patients with
advanced (stages III–IV) disease (p = 0.035, Figure 3B). Figure 4 shows the same analysis
results as in Figure 3 but for overall survival. Overall survival was poorer in the high-risk
strata for patients with disease stages I–II (p = 0.0063; Figure 4A) but not for patients with
disease stages III–IV (p = 0.099; Figure 4B). These analyses demonstrate that MRSS survival
information is valid regardless of disease stage and whether we are looking at disease-free
or overall survival.
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and high risk are depicted in green. For patients with disease stages III–IV, the low-risk stratum is
depicted in orange, whereas the high-risk stratum is depicted in red.
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2.4. Metabolomics Data Can Provide Additional Survival Information Even after Adjustment for
Disease Stage and Patient Age

Although our previous Kaplan-Meier analyses clearly demonstrated that the MRSS
could stratify the disease-free survival and overall survival of patients with either early
(stages I–II) or advanced (stages III–IV) breast cancer, these were bivariate analyses. To
obtain a more robust assessment of MRSS potential as a prognostic tool, we opted to evalu-
ate whether MRSS risk stratification contributed to OS prognosis even after multivariate
adjustments for patient age and disease stage at diagnosis. As shown in Table 4, in the
disease-free model, patients with a high-risk MRSS had a hazard ratio (HR) of 3.42 (95% CI
1.51–7.74; p = 0.003), indicating that the metabolomics data provided additional disease-free
information. A similar trend was observed for overall survival, with patients at high risk
according to metabolomics exhibiting an adjusted HR of 3.34 (95% CI 1.64–6.80; p < 0.001). It
is worth mentioning that the molecular features of the tumor were considered to determine
the MRSS (please refer to the methods section).
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Figure 4. Kaplan-Meier representation of overall survival according to MRSS risk strata (low-risk,
cyan; high-risk, red) in patients with disease stages I–II (A) and disease stages III–IV (B).

Table 4. Multivariate analysis of disease-free survival and overall survival as related to age, disease
stage, and MRSS (Metabolite-Related Survival Score).

Disease-Free Survival Overall Survival

Factor n (%) HR (95%CI) Adjusted
p-Value * HR (95%CI) Adjusted

p-Value *

Age (years)
≥50 46 (57%) Ref. Ref.
<50 34 (43%) 0.51 (0.21–1.25) 0.15 0.67 (0.31–1.41) 0.29

Disease stage
I–II 52 (65%) Ref. Ref.

III–IV 28 (35%) 5.88 (2.32–14.88) <0.001 4.49 (2.08–9.69) <0.001

MRSS
Low 57 (71%) Ref. Ref.
High 23 (29%) 3.42 (1.51–7.74) 0.003 3.34 (1.64–6.80) <0.001

Ref.: referential. HR: hazard ratio. CI: Confidence interval. * Cox Proportional Hazards Model using as covariates
age, disease stage, and MRSS.



Int. J. Mol. Sci. 2024, 25, 8639 9 of 16

3. Discussion

Our study findings offer valuable insights into the associations between variations in
serum metabolite abundances before and after neoadjuvant chemotherapy (NACT) and the
clinical outcomes of women with breast cancer (BC) associated with patient survival. Using
metabolomics data and steroid receptor and HER-2 data, we developed a metabolite-related
survival score (MRSS). Importantly, the prognostic value of the MRSS remained significant
even after adjusting the survival analyses for well-known prognostic factors such as age
and disease stage. This effectively stratified patients into low- and high-risk disease relapse
or progression groups, underscoring the potential of metabolomics as a tool for identifying
patients at greater risk of disease relapse. Our analyses revealed that increases in histidine
and lactate before and after NACT were associated with improved disease-free survival,
whereas increases in serine and taurine abundances were associated with worse disease-
free survival. Importantly, our study proposes a mathematical approach to resolve the
collinearity problem often cited as an impediment to the utilization of metabolomics data
in survival analyses [14].

Metabolomics holds promise for identifying disease markers and novel therapeutic
targets, positioning it as a crucial component of precision medicine [15]. Studies on can-
cer metabolism have revealed how cancer cells undergo metabolic changes to support
tumor growth. These changes are influenced by oncogenes, tumor suppressor genes, and
the tumor microenvironment [16]. In the field of breast cancer research, studies have
focused not only on identifying metabolic alterations that may contribute to cancer de-
velopment [17–21] but also on assessing the response of patients to treatment and their
prognosis [5,8,11,13,22–24].

To our knowledge, the most comparable study is Debik, et al. (2019), who utilized
NMR to evaluate the systemic metabolic effects of NACT in patients with large primary
breast cancers. However, that study did not find an association between serum changes and
five-year survival [5]. In contrast, our study demonstrated a significant association between
NACT-induced metabolic changes and patient survival. We believe that our mathematical
approach may have contributed to revealing the relationship between metabolites and
survival by mitigating collinearity within the CPH-derived coefficients via the VIF and
deriving a score utilizing maximally selected rank statistics based on time-to-event out-
comes. Interestingly, Debik and colleagues (2022) published a review article stressing the
challenges posed by collinearity for the use of metabolomics data in survival analyses [14].
In the present study, we propose a methodology to address the mathematical and analytical
problems listed in their review.

It is important to examine some literature data regarding the metabolites found to be
associated with breast cancer survival in our analysis. Recently, a review on NMR and its
relationship with breast cancer extensively surveyed the literature, exploring the connection
between metabolites found in tissue, blood, and urine at distinct stages of breast cancer
development [25]. Although the primary focus of that review was not patients undergoing
NACT, some of the summarized data provide significant insights to contextualize our
findings. For instance, a multicenter study analyzed serum samples from 590 patients
with early breast cancer and 109 patients with metastatic breast cancer over a 5-year
period. Among the early breast cancer patients, elevated levels of lactate and histidine
were associated with a greater risk of relapse. However, as those authors pointed out,
lactate is the most sensitive marker for sample degradation, and the fact that samples had
been collected from different clinical sites using different operating and storing procedures
might have influenced the results, leading the authors to remove lactate from the data
matrix. Additionally, in comparison to early breast cancer patients, those with metastatic
breast cancer exhibited elevated levels of lactate [26].

Histidine, an essential amino acid, is required for the synthesis of proteins and serves
a critical role as a precursor for carnosine, a compound with antioxidant capabilities
potentially inhibiting tumor growth and maintaining protein equilibrium during the aging
process [27–29]. Recent findings indicate that the sensitivity of cancer cells to methotrexate—



Int. J. Mol. Sci. 2024, 25, 8639 10 of 16

an anticancer treatment—can be influenced by both histidine catabolism and intake [30].
However, it is important to consider that none of the patients included in the present
analysis received methotrexate as a component of their NACT. Notably, high lactate levels
were not only linked to an unfavorable prognosis in BC tissue [31] but also noted in patients
receiving NACT [5,32,33].

It is important to emphasize that our study focused on the changes in metabolite
abundance from before to after NACT and on how much such abundance variation is
associated with disease-free survival. Thus, metabolites for which increases in abundance
from before to after NACT are associated with improved survival (lactate, histidine) may
either play a role in metabolic anticancer mechanisms or be associated with improved
effects of NACT drugs. Conversely, the reverse may be true for the metabolites for which
increases in serum concentrations from before to after NACT were associated with poorer
survival (serine and taurine). These considerations are necessary when interpreting our
findings vis-à-vis the conclusions of other studies that evaluated such metabolites in the
context of carcinogenic processes or even their associations with disease prognosis and
response to treatments.

A key distinction between our study and previous research is that we focused on the
changes in metabolite abundance from before to after neoadjuvant chemotherapy (NACT)
and how these changes correlate with disease-free survival. For instance, metabolites like
lactate and histidine, which increased in abundance following NACT, were associated
with improved survival. This suggests that they may play a role in metabolic anticancer
mechanisms or indicate a positive response to NACT. Conversely, increases in metabolites
such as serine and taurine were linked to poorer survival outcomes. Our study is the
first to integrate standard survival analysis (using Cox proportional hazards models) with
metabolomics data, overcoming the issue of collinearity through a novel VIF approach.
This approach allowed us to derive meaningful survival coefficients, unlike previous
studies that assessed metabolite concentrations with survival using binary outcomes like
“relapse/no-relapse” or “deceased/alive” at a specific point in time. By calculating survival
probabilities over a follow-up period, we provide a more nuanced analysis.

To ensure that our findings can be adequately compared with those from other studies, it
is crucial that similar statistical methodologies are employed. As our study pioneers the com-
bination of standard survival analyses with metabolomics while addressing collinearity, we
anticipate that future research will build on our methods to further explore these associations.

Serine is a nonessential amino acid that plays a vital role in sustaining several metabolic
processes essential for the growth and survival of rapidly proliferating cells [34]. Previous
research has suggested a connection between serine concentrations and the progression
of cancer [35–37]. The serine synthesis pathway has been identified as essential in breast
cancer [38]. Furthermore, BC patients exclusively treated with endocrine therapy exhibited
decreased concentrations of serine [39]. It is important to mention that serine and glycine
have a close metabolic relationship, with glycine being an amino acid produced from
serine. Glycine is involved in collagen synthesis, is highly dysregulated in cancer, and
plays both protumorigenic and antitumorigenic roles [40]. The increased concentration
of such metabolites in the tumor microenvironment may explain their concentration fluc-
tuations in the serum from before to after NACT. It is important to highlight that serine
is an immunosuppressive metabolite that inhibits macrophage and neutrophil function.
Moreover, the de novo serine synthesis pathway activity in macrophages is necessary
for interleukin production, which induces a phenotypic switch to immunosuppressive
PD-L1-expressing macrophages [35]. Thus, the overproduction of serine by cancer cells
may promote the survival of nontransformed neighboring cells that create a protective
niche for tumor maintenance [35].

Finally, our study showed that an increase in the serum taurine concentration from be-
fore to after NACT was associated with worse disease-free survival. Taurine is a nonessen-
tial amino acid that is abundant in many mammalian tissues. It has antioxidant func-
tions, protects cells from oxidative stress, and plays an important role in the nervous
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system [41–43]. It has been demonstrated that taurine induces the apoptosis of breast
cancer cells by regulating apoptosis-related proteins of the mitochondria [43]. Another
study suggested that taurine exerts anti-breast cancer effects by regulating metabolism [44].
Furthermore, reduced levels of taurine were detected in urine samples from breast cancer
patients in comparison to those from healthy controls [45–47]. Thus, an increase in the
serum abundance of taurine may be a marker of a metabolic response against progressing
cancer in the event of a failed response to NACT.

One intriguing aspect of our study is that none of the examined patient characteristics,
except for a fortuitous association with prior pregnancy or tumor features, were found to
be associated with MRSS status. This suggests that the MRSS, or simply metabolomics data,
may provide independent predictive value beyond classical prognostic factors, making
it a promising adjunctive tool for risk stratification in breast cancer patients. The robust
statistical significance highlights the clinical utility of metabolomics data in predicting
patient outcomes and guiding treatment decisions.

While our study has provided important findings, we must acknowledge its limita-
tions. Overall, the small sample size and single-institution setting may have influenced
the statistical power and generalizability of our results. Therefore, validation in larger,
multicenter studies is warranted to confirm the robustness and applicability of our find-
ings. Nonetheless, our preliminary observations offer valuable insights into the potential
significance of specific changes in serum metabolite concentrations before and after NACT
and the associations of these changes with breast cancer outcomes. Importantly, our study
provides a roadmap for the use of metabolomic data in survival models.

4. Materials and Methods
4.1. Patient Selection, Accrual, and Sample Processing

The patient selection and accrual process, the clinical, histopathological, and immuno-
histochemical diagnosis of breast cancer, and untargeted nuclear magnetic resonance (NMR)
metabolomic analysis of serum samples have been described elsewhere [13]. Briefly, the
serum samples were thawed at room temperature before the analysis. Then, 400 µL of
serum was slowly mixed with 200 µL of D2O (99.9% deuterium oxide with 0.03% of TSP)
and transferred to 5 mm NMR tubes. The NMR experiments were performed at 298 K on
Varian Inova® NMR spectrometer (Agilent Technologies® Inc., Santa Clara, CA, USA) in
the Brazilian Biosciences National Laboratory (Brazilian Center for Research in Energy and
Materials, CNPEM, Campinas, SP, Brazil), operating in Larmor frequency of 599.887 MHz
equipped with triple resonance cryoprobe.

Data related to preprocessing, spectral phase, and baseline corrections as well as the
identification and quantification of relative concentrations (in mM) of metabolites present
in the samples were performed using the Chenomx NMR® Suite 8.1 software (Chenomx®

Inc., Edmonton, AB, Canada) (Figure S2).

4.2. Clinical Follow-Up

In this study, we obtained complete follow-up data from 80 women who were diag-
nosed with invasive breast carcinoma between January 2017 and January 2019 and who
underwent neoadjuvant chemotherapy (NACT) followed by surgery at the Women’s Hos-
pital (Hospital da Mulher Prof. Dr. José Aristodemo Pinotti, Centro de Atenção Integral
à Saúde da Mulher—CAISM) of the University of Campinas (UNICAMP). Patients were
followed up through to December 2023. As previously described [13], serum samples were
collected at two time points—before the first infusion of NACT and up to two months after
the completion of NACT—with new aliquots of peripheral blood obtained (Figure 5). All
samples were stored in CAISM’s biobank (CONEP 56, Brazil) according to the biobank’s
protocol until processing for NMR analysis. Breast cancer diagnosis and NACT protocols
were performed in accordance with institutional protocols [13].
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All patients included in this study were regularly followed up at the hospital’s breast
cancer clinics. The mean follow-up time was 63.15 ± 19.2 months, with an interquartile
range of 12.4 months. Disease-free intervals were calculated by measuring the time between
the first NACT session and the date of relapse diagnosis. Overall survival was calculated as
the time elapsed between the start of NACT and the date of death. Follow-up consultations
were conducted at specific intervals, including 21-day intervals during NACT, 15-day
intervals during the first month after surgery, and 3-month intervals six months after
completing therapy, followed by 6-month intervals thereafter.

4.3. Metabolite Normalization

We normalized the metabolite quantification of relative concentrations (mmol L−1)
by sum (metabolite concentration divided by the sum of all metabolite concentrations for
that patient) and applied logarithmic (base e) conversion to the normalized metabolite
concentrations. The same normalization and logarithmic conversion procedures were
applied to the relative concentrations of metabolites in samples collected either before or
after NACT.

4.4. Metabolite Differential Fold-Changes

We calculated the fold change for each metabolite by considering the variation in
the relative normalized concentration before and after NACT. The fold-change values
were calculated using paired analysis, where the ratio between paired samples (metabolite
concentration after NACT divided by the metabolite concentration before NACT) was
computed to determine the fold-change for each pair (Figure S3). The mean of the fold
changes was then calculated, indicating whether there was an increase or decrease in the
relative concentration of a metabolite after NACT (Figure S1).

4.5. Metabolite Contribution Using Multivariate Cox Proportional Hazards Selected by the
Variation Inflation Factor (VIF)

For the disease-free survival analyses, we employed multivariate Cox proportional
hazards (CPH) models. The models were constructed using the full set of 35 studied
metabolites, steroid (estrogen, progesterone) receptor status, and HER-2 status as covariates.
To account for potential multicollinearity effects in the quantified metabolite concentration
data, we calculated the variation inflation factor (VIF) for the metabolites included in the
CPH models [48]. The variable with the highest VIF was recursively removed, and the
CPH model was rerun iteratively until all remaining variables had a VIF < 3 (Table 1).
Table S1 illustrates the relative abundance of each metabolite before and after NACT,
the fold change from before to after NACT, and the unadjusted and adjusted p-values
for the survival analyses using the fold changes for each metabolite as survival factors.
p-values refer to the individual survival contribution attributable to the fold-change for
each metabolite. These individual analyses suffer from the collinearity issue found in
metabolomics data; this problem was addressed using our VIF approach.
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4.6. Metabolite-Related Survival Score (MRSS)

To evaluate whether the variation in metabolite concentration from before to after
NACT (fold change) could discern patient survival probabilities, we calculated a metabolite-
related survival score (MRSS). We set the significance threshold at p < 0.10 to select the
metabolites used in constructing the MRSS: histidine (p = 0.04), lactate (p = 0.07), serine
(p = 0.01), and taurine (p = 0.03). The MRSS was determined by summing the multiplication
of the CPH-derived correlation coefficients for the four-metabolite fold changes significantly
associated with disease-free survival with their respective normalized and logarithmically
converted concentration ratios (fold change in metabolite abundance after/before NACT).
Using maximally selected rank statistics based on time-to-event outcomes [49], we divided
the patient cohorts into two groups with the most significant differences between them,
creating low- and high-risk relapse cohorts based on the MRSS.

Furthermore, we analyzed the associations between key patient characteristics (Table 2)
and their respective tumor features (Table 3) in the MRSS-derived cohort groups (low-
and high-risk patients) using chi-square statistics and Fisher’s t tests, where appropriate.
Kaplan–Meier survival curves and log-rank tests were used to assess disease-free survival
based on the MRSS (Figure 1). Next, we examined disease-free survival (DFS) and overall
survival (OS) as related to the MRSS in patients with disease stages I–II and stages III–IV
(Figures 2–4).

Finally, to assess whether the MRSS could provide prognostic information beyond
the main classical prognostic factors (patient age and disease stage) in a multivariate
environment, we performed multivariate Cox proportional hazards analysis for disease-
free survival and OS, including these classical prognostic factors and MRSS as covariates
(Table 4). It is worth mentioning that steroid receptor and HER-2 status had already been
used to adjust the survival models from which MRSS-contributing metabolite coefficients
were derived. All statistical calculations were performed using R, a language and environ-
ment for statistical computing [50].
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