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Abstract: OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and
SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics
for both genes, only one functional protein isoform has been described for each of them. Both
proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression
is regulated by well-known transcription factors, although some aspects have been neglected. A
plethora of missense variants with uncertain clinical significance are reported both in the dbSNP
and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to
their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic
primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the
impact of variants on human health from the perspective of precision medicine. Although the lack
of a 3D structure for these two transport proteins hampers any speculation on the consequences of
the polymorphisms, the already available 3D structures for other members of the SLC22 family may
provide powerful tools to perform structure/function studies on WT and mutant proteins.
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1. Introduction

The solute carrier superfamily (SLC) includes more than 450 proteins clustered in
66 families and comprises about 9% of the human membrane proteome [1,2]. These
proteins play a crucial role in human cell metabolism, allowing, on the one hand, the
tightly regulated absorption and distribution of several substrates, such as amino acids,
sugars, peptides, nucleosides, vitamins, ions, neurotransmitters, and drugs; on the other
hand, they allow the elimination of catabolites and waste products. With its twenty-
eight members, the SLC22 family represents one of the largest clusters of membrane
transporters with broad specificity, including anions (OATs), cations (OCTs), both cation
and zwitterion transporters (OCTNs) [3], and four still orphan members [1]. Very recently,
an advance in knowledge of the substrate specificity and transport mechanism of some
members of the SLC22 transporter family has been achieved through the solution of the
3D structure of SLC22A1, SLC22A2, and SLC22A3 [4–7] and the organic anion transporter
SLC22A6 [8]. Three-dimensional structures of the members of the OCTN subfamily are not
yet available. These two human transporters are of great interest for their involvement in
physiopathology [9]. In rodents, the OCTN subfamily includes a third member, OCTN3,
encoded by the SLC22A21 gene, which is highly expressed in the testis, where it is involved
in sperm maturation [10]. In humans, only two members, OCTN1 and OCTN2, encoded by
the SLC22A4 and SLC22A5 genes, respectively, have been described [11,12]. The interest
of the scientific community in this transporter’s subfamily resides both in its role in the
drug ADME [10,13] and its involvement in human pathologies [14,15]. Indeed, both
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OCTN1 and OCTN2 genes are directly or indirectly linked with inflammatory diseases
and cancer [14,16–19], and OCTN2 may be considered a “gene-disease” since several
single nucleotide polymorphisms (SNPs) and mutations of this gene are causative of
systemic primary carnitine deficiency (CDSP). It is a rare autosomal recessive disease that
is characterized by a very low intracellular level of carnitine due to a strong decrease or
eradication of carnitine uptake, which causes impaired fatty acid oxidation in skeletal
and heart muscles, leading untreated patients to experience issues like encephalopathy,
cardiomyopathy, liver problems, coma, heart failure, and sudden unexpected death [20–24].

The purpose of the manuscript is to provide the readers with current knowledge on
OCTN gene/protein expression, structure, polymorphisms, mutations, and regulation.
Moreover, the critical gaps in knowledge concerning the various configurations of these
proteins that may affect function will be discussed.

2. SLC22A4/OCTN1 Gene and Protein

The OCTN1 gene is located at chromosome 5 (5q31.1) in the inflammatory bowel
disease 5 (IBD5) locus, known for its implication of susceptibility to Crohn’s disease (CD),
ulcerative colitis (UC), and rheumatoid arthritis (RA) [14,25–28]. The SLC22A4 gene counts
49,797 nucleotides and 10 exons (Figure 1). The exons 1 and 10 include 5′-UTR and 3′-UTR,
respectively.
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2.1. OCTN1 Gene Variants (SNPs)

When searching for gene variants on the dbSNP database (https://www.ncbi.nlm.
nih.gov/snp/?term=slc22a4, accessed on 20 May 2024), 17,834 sequence variants were
found, most of which were not defined as pathogenic. Among these, rs1050152 is the
most commonly cited SNP associated with Crohn’s disease [14,27,29]. The consequences
of the resulting L503F substitution have been verified by the in vitro experimental system
of proteoliposomes [29] (see Section 2.2). The rs768484124 polymorphism causing a G>A,
T substitution in the 5′-UTR region is the only one considered likely to be pathogenic,
while the intronic variant rs3792876 (NC_000005.10:132301615:C:T) has been classified
as a risk factor for Crohn’s disease [30] and strongly associated with rs1050152 in type
I diabetes among Spanish patients [31]. The link between OCTN1 polymorphisms and
inflammation-related pathologies has been extensively reviewed [14,32,33]. Recently, an
untargeted metabolic phenotyping study was performed on 1191 serum samples from
older individuals (between 56 and 84 years old) using liquid and gas chromatography-mass
spectrometry metabolomics stratified across a frailty index (FI) [34]. The analysis identified
12 significant metabolites, 6 of which were carnitines that differentiate frail from non-frail
phenotypes, highlighting the association of the intronic OCTN1 polymorphism rs419291
with high carnitine levels and healthy ageing [34]. More than 93% of the OCTN1 SNPs
reported in the dbSNP database are intronic, and 510 polymorphisms are classified as
missense. Among these, 444 involve exons of the canonical transcript isoform. In particular,
88 codons have 2 different amino acid variants, 9 codons have 3 amino acid variants, and
the Asp 138 codon has been found mutated in Glu, Asn, Gly, and Val. The functional
consequences of these missense variants are defined as uncertain. One possible way to
predict the outcomes is to analyze their proximity to the putative substrate binding sites.

https://www.ncbi.nlm.nih.gov/snp/?term=slc22a4
https://www.ncbi.nlm.nih.gov/snp/?term=slc22a4
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2.2. OCTN1 Transport Mechanisms

Experimental data would suggest the existence of two different pathways and/or
binding sites on the OCTN1 transporter, each involved in the recognition of specific sub-
strates (organic cations or zwitterions) [9]. The E381 residue, corresponding to E386, E387,
and E390 of OCT1, OCT2, and OCT3, respectively, already identified as crucial for the
substrate translocation pathways [4–7], has been identified by our group as the putative
Na+ binding site by molecular dynamic simulation [9]. Interestingly, docking experiments
with prototypical OCTN1 substrates, such as carnitine and TEA, performed in the presence
or absence of sodium, showed a different behavior; in the presence of sodium, E381 was
not accessible to TEA, unlike carnitine, which interacted with R469 [9]. The proteoliposome
system has been exploited to test the effect of L503F substitution on the transport activity.
It has been found to reduce the Vmax without affecting the Km. This would suggest that
the substrate binding site is not modified, whereas the conformational changes necessary
for acetylcholine efflux are impaired [29]. The homology model built using human OCT3
as a template has been employed to analyze the position of the OCTN1 missense variants
with respect to the two putative binding sites (Figure 2). In the neighborhood within 4 Å
of the zwitterion binding site represented by R469, 7 variants that might affect OCTN1
activity have been highlighted (Figure 2b). Among these, the Y211C substitution could
have the strongest effect due to the side chain modification. The same analysis performed
around the organic cation binding site represented by E381 highlighted six variants, among
which A240V might potentially hamper the substrate binding due to the increased steric
hindrance of the valine side chain with respect to the alanine one (Figure 2b).
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Figure 2. Distribution of polymorphisms on the SLC22A4 homology model obtained as described
in [9]. (a) The positions not affected by polymorphisms are indicated as white ribbons. The amino
acids, which have been found mutated in one, two, three, or four other different amino acids, are
indicated in yellow, orange, blue, and cyan, respectively. The two target amino acids of the organic
cation and zwitterion binding sites are indicated in red and green, respectively. (b) Zoom in on the
putative substrate binding sites with the amino acids within 4 Å colored as in (a).

2.3. OCTN1 Somatic Mutations

The increase in whole-genome sequencing projects has revealed an increment of the
described mutations for several genes. Indeed, two intergenic and two intronic mutations
have been described for the OCTN1 gene in radiation-induced sarcoma [35]. The role of
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OCTN1 in cancer has been reported not only as an anticancer drug transporter but also
in the induction of epithelial-mesenchymal transition (EMT), migration, and the invasion
of human lung cancer cells [33]. Looking at the catalogue of somatic mutations in cancer
(COSMIC, https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=SLC22A4#distribution,
accessed on 26 June 2024), 423 mutations of the OCTN1 gene have been reported. Among
these, 12% are silent, and the number of frameshift mutations with the possible worst
effects is under 2% (Figure 3).
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Figure 3. Somatic mutations of the OCTN1 gene in cancer.

Structure/function studies are needed to unveil the consequences deriving from the
missense mutations that count for 30% of the total. A possible strategy to predict the
functional consequences of these mutations is to check their proximity to the putative
substrate binding sites, as described in Figure 2. The 128 missense mutations have been
highlighted in the OCTN1 homology model (Figure 4a).
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From this “in silico” analysis, less than 10% of the missense mutations in cancer are
in the proximity of the substrate binding sites: five mutations might affect the zwitterion
binding site, while six mutations might disturb the organic cations translocation pathway
(Figure 4b). This would suggest a correlation between OCTN1 and cancer related to a
potential modulation of the transport activity.

2.4. OCTN1 Promoter/Enhancer

The promoter region of the SLC22A4 gene has been extensively studied due to its
involvement in inflammatory bowel diseases (IBDs) and drug transport. In 2007, for
the first time, Maeda et al. investigated OCTN1 regulation by the rheumatoid arthritis-
associated transcriptional factor RUNX1 and inflammatory cytokines [36]. In 2009, Tahara
et al., starting from HepG2 genomic DNA, amplified and cloned about 400 bp of the
OCTN1 promoter region for a luciferase assay [37]. Even though six new variants have
been identified, none of them have caused modulation of luciferase activity. Some years
later, the occurrence of four OCTN1 promoter variants, rs3761661, rs3761660, rs162887, and
rs460271, in patients with CD and in controls were examined, and it was concluded that
some OCTN1 functional promoter haplotypes could affect the clinical phenotype of CD in
Koreans, represented by a predisposing factor for the development of penetrating behavior
characterized by intestinal perforation, inflammatory mass, and/or abscess [38]. A well-
known OCTN1 polymorphism, rs1050152-CT, clearly associated with inflammatory bowel
diseases [29], has been associated with a major molecular response (MMR) to imatinib,
which is the first-line drug used for the treatment of patients affected by chronic myeloid
leukemia (CML) [39]. Thanks to high-throughput NGS studies in patients with CML, two
novel polymorphisms, rs460089 and rs2631365, have been described as OCTN1 and OCTN2
promoters, respectively. In particular, rs460089 and rs2631365 were in highly significant
linkage disequilibrium with several regulatory loci in the introns of SLC22A4 and SLC22A5.
Interestingly, the heterozygous (G/C) genotype, rs460089-GC, was positively associated
with the maintenance of treatment-free remission (TFR) in patients from the European Stop
Kinase Inhibitor (EURO-SKI) trial [40].

The OCTN1 promoter/enhancer region deposited in the GeneHancer database counts
5218 bp [41]. Following a bioinformatics analysis with the JASPAR CORE 2024 database [42],
several transcription-factor binding sites with a score higher than 600 have been predicted,
most of which belong to the zinc finger protein family (Table 1), highlighting several
putative regulation pathways for the OCTN1 gene (Figure 5).

Table 1. Transcription factors of the OCTN1 promoter/enhancer region predicted by JASPAR.

Transcription Factor JASPAR Score Genomic Position Binding Site Size

ZNF354A 637 chr5:132292671-132292690 20
ZSCAN16 670

602
chr5:132292976-132292993
chr5:132296737-132296754 18

ZNF75D 607 chr5:132293083-132293094 12
ZKSCAN3 608 chr5:132293266-132293279 14

PRDM9 657 chr5:132293697-132293716 20
ZNF454 636 chr5:132294069-132294085 17

ZNF460
668
621
745

chr5:132294326-132294341
chr5:132297073-132297088
chr5:132297208-132297223

16

ZNF816 605 chr5:132294499-132294513 15
ZNF281 602 chr5:132295107-132295116 10
ZNF148 602 chr5:132295107-132295116 10

EWSR1-FLI1
628
616
728

chr5:132296985-132297002
chr5:132297372-132297389
chr5:132297376-132297393

18

Nr1h3::Rxra 603 chr5:132297093-132297108 16
FOXD3 602 chr5:132297318-132297331 14
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2.5. OCTN1 Gene and Protein Expression and Regulation

The OCTN1 gene is ubiquitously expressed and was identified and cloned for the first
time in 1997 [13,43]. The mature mRNA (ENST00000200652.4) counts 2234 nt and codes for
a protein of 551 amino acids. No additional protein isoforms are reported in any database,
although additional transcripts have been predicted by bioinformatics and reported in the
Ensembl and the NCBI/gene databases (Table 2).

Table 2. OCTN1 transcripts.

Gene Symbol Database Transcript Length (nt)

SLC22A4 NCBI/Gene NM_003059.3 2234
SLC22A4 NCBI/Gene XM_006714675.5 2130
SLC22A4 NCBI/Gene XM_011543589.3 1958
SLC22A4 NCBI/Gene XM_047417594.1 1788
SLC22A4 NCBI/Gene XM_017009776.2 1821
SLC22A4 Ensembl ENST00000491257.1 564
SLC22A4 Ensembl ENST00000425923.1 463

The expression of the OCTN1 gene could be regulated by the lncRNA MIR3936HG.
This lncRNA, transcribed in the opposite direction with respect to the OCTN genes, is
characterized by 8 exons and 1802 nt, and it overlaps with part of the OCTN1 and the
5′-UTR of the OCTN2 gene. It would be interesting to know if this lncRNA is ubiquitously
expressed as the OCTN1 gene or if its expression is cell type-specific or changes depending
on the physiological state of the cell, as demonstrated for another antisense RNA (SLC16A1-
AS1) in many types of cancer [44]. It would also be interesting to know if the expression of
this antisense RNA negatively regulates the expression of the OCTN1 gene, as is already
seen for another member of the SLC superfamily [45].

An RNA seq analysis from the Human Protein Atlas (HPA) and Genotype-Tissue Ex-
pression (GTEx) projects has highlighted the ubiquitous expression of this gene even when
it has some differences in tissue expression. The amount of RNA, measured as transcript
per million and retrieved from the different data sources, was normalized separately using
the trimmed mean of M-values (TMM). The resulting normalized transcript expression
values (nTPM) were calculated for the gene in every sample (Figure 6).
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OCTN1 is highly expressed in marrow. Considering its expression in both immature
and mature erythrocytes, it has been speculated that it catalyzes the transport of compounds
involved in erythroid differentiation, maturation, and growth [46].

3. SLC22A5/OCTN2 Gene and Protein

Although the genomic location in the IBD5 locus at chromosome 5 (5q31.1) certifies
its involvement in inflammatory bowel disease [27,28], OCTN2 may be considered as a
“disease-gene”. Indeed, a plethora of OCTN2 mutations are responsible for primary systemic
carnitine deficiency (CDSP), classified in the Online Mendelian inheritance in Man (OMIM)
database (https://www.omim.org/entry/212140) (accessed on 21 June 2024) [47,48]. OCTN2
was cloned in 1998 [49]. The gene counts 25,903 nt coding for 2 isoforms. Isoform 2 is the
canonical one, characterized by 10 exons (Figure 7), and it encodes a 557 amino acid protein
with plasma membrane localization. An alternative splicing event may lead to the inclusion
of an additional 72 bp from intron 1 (Figure 7). The resulting mRNA with 11 exons encodes
a 581 poorly N-glycosylated inactive protein named OCTN2-VT, which is retained in the
endoplasmic reticulum with a role that is unidentified at present [50].
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3.1. OCTN2 Gene Variants (SNPs)

There are 10,171 variants for the SLC22A5 gene reported in the dbSNP database
(https://www.ncbi.nlm.nih.gov/snp/?term=slc22a5, accessed on 30 May 2024). Among
these, 116 are classified as pathogenic, 71 are likely pathogenic, and 128 are benign. About
86% of these variants are intronic, and 652 are classified as missense. By exploiting the
variant viewer tool of the UniProt database (https://www.uniprot.org/uniprotkb/O7
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6082/variant-viewer, accessed on 31 May 2024), 162 pathogenic variants can be found
associated with renal carnitine transport defects. Among these, rs377767449 is linked with
a congenital myasthenic syndrome, while 76 are classified as causing primary systemic
carnitine deficiency (CDSP) and, in most cases, the complete loss of carnitine transport.

3.2. OCTN2 Transport Mechanism

OCTN2 has been identified as a Na+-dependent high-affinity carnitine transporter [49].
Apart from carnitine, it can also transport organic cations in a sodium-independent way [49].
The existence of two pockets in the binding site specific to the carboxyl group and the
ammonium ion has been hypothesized [51]. Recently, a machine learning-based prediction
method for an OCTN2 variant has been developed to predict functional consequences and
helping in the diagnosis and treatment of CDSP [48]. In particular, 150 missense variants
have been selected, spanning the entire secondary structure of OCTN2. All these variants
have been expressed in HEK293T cells, and 14C-carnitine uptake has been measured.
Seventy-one percent (one hundred and seven variants) showed a significant decrease in
carnitine transport. For 37 variants, 2 of which were novel (V216L, G411V), the transport
activity was less than 20% with respect to the WT [48].

Interestingly, the majority of loss-of-function variants (26/37) are located in transmem-
brane domains. The sub-cellular localization of the variants has also been investigated by
exploiting a GFP-tagging strategy. Fifty-seven variants showed membrane localization,
thirty-six variants displayed intracellular retention, and fifty-seven variants had mixed
localization. Even though the function of the variants was strictly related to their membrane
localization, some of them (p.V216L, p.V235G, p.Y243S, p.S470F, and p.R471C) were inac-
tive despite the proper membrane localization. The loss of function was probably related to
their position in the carnitine translocation pore, where the modification of amino acid side
chains may hamper the substrate translocation pathway (Figure 8) [48].
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3.3. OCTN2 Somatic Mutations

In the COSMIC database (https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=
SLC22A5_ENST00000245407#distribution, accessed on 29 June 2024), 339 somatic mutations
in cancer have been described for OCTN2, among which about 1% are represented by
frameshift and 2% are nonsense mutations (Figure 9).
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The application of the prediction model developed by Koleske et al. [48] would help
in hypothesizing the functional consequences of the unknown or the missense mutations
that represent 41% and 38% of the total, respectively.

3.4. OCTN2 Promoter/Enhancer

The −207G>C transversion in the OCTN2 promoter (rs2631367) has been found in
strong linkage disequilibrium with the 1672C→T polymorphism in the OCTN1 gene, creat-
ing a two-allele risk haplotype (TC) enriched in patients affected by CD [27]. Moreover,
this substitution results in the disruption of a heat shock transcription factor (HSF)-binding
element (HSE) within the OCTN2 promoter with a strong reduction of its transcriptional
activity in heat-shocked cells [27]. The same transversion has been found associated with
increased transcription levels in lymphoblastoid cell lines [37]. Although no direct evidence
has been provided, a putative role in the disposition of several drugs, such as β-lactams [52]
or carnitine derivatives [53], has been suggested. In a Japanese study, 94 patients with
CD, 94 with UC, and 257 healthy controls were genotyped to test individual drug respon-
siveness to steroid drugs. Interestingly, the haplotype analysis between rs4646298 and
rs2631368 in the SLC22A5 promoter showed that the CG allele seemed to be a risk factor for
steroid resistance [54]. The presence of an enhancer located 6 kb upstream of the OCTN2
promoter has been predicted by a computational approach and tested by luciferase assay,
demonstrating that this short sequence is necessary for the full activation of the OCTN2 pro-
moter. Indeed, the deletion of this enhancer region caused a 2.5-fold reduction in reported
activity [55]. To investigate whether the different OCTN2 expression in different cancer cell
lines is related to the methylation state of its promoter, the OCTN2 genomic sequence was
divided into three regions containing different CpG islands that were amplified and cloned
into a luciferase reporter plasmid [56]. Among the three regions, only the one spanning
−354 to +85 bp caused a strong increase (about a hundredfold) of the luciferase activity,
showing an essential role in promoter activity. Moreover, the hypermethylation of this
region caused an inhibition of the promoter activity in LS174T and HepG2 cells, and the
DNA methylation degree was inversely correlated with the expression of OCTN2 in these
cancer cells [56]. Given the role of the OCTN2 transporter in the uptake of the anticancer
drug oxaliplatin, pretreatment with the demethylating agent decitabine may trigger an
increase in OCTN2 expression, which improves the drug uptake. Taken together, these

https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=SLC22A5_ENST00000245407#distribution
https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=SLC22A5_ENST00000245407#distribution
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observations suggest that the use of demethylating reagents is a possible strategy for the
optimization of pharmacotherapy that treats cancer.

The OCTN2 promoter/enhancer region deposited in the GeneHancer database counts
4587 bp [41]. In the search for transcription factors with a score higher than 600 using the
JASPAR CORE 2024 tool [42], in addition to the well-known OCTN2 regulator, peroxisome
proliferator-activated receptor (PPAR)-α, other transcription factors have been predicted,
with a prevalence of zinc finger proteins that could be involved in OCTN2 regulation
(Table 3 and Figure 10).

Table 3. Transcription factors of the OCTN2 promoter/enhancer region predicted by JASPAR.

Transcription Factor JASPAR Score Genomic Position Binding Site Size

ZNF460 776 chr5:132368308-132368323 16

ZBED4 602 chr5:132369676-132369685 10

ZNF93 633 chr5:132370212-132370225 14

PATZ1 614 chr5:132370470-132370480 11

ZNF281 602 chr5:132370471-132370480 10

ZNF148 602 chr5:132370471-132370480 10

Nr2F6 600 chr5:132371186-132371200 15

PPARA::RXRA 717 chr5:132372636-132372652 17
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3.5. OCTN2 Gene and Protein Expression and Regulation

OCTN2 encodes two mature mRNAs. Isoform 2 is considered canonical, and it codes
for a protein of 557 amino acids. Other additional protein isoforms have been predicted by
bioinformatics and reported both in the Ensembl and the NCBI/gene databases (Table 4).

The stability of the OCTN2 mRNA may be strongly influenced by the interaction
between the MIR3936HG and the 5′-UTR of the OCTN2 gene (see above). Indeed, it has been
observed that lncRNAs may recruit RNA binding proteins to the 5′-UTR of a gene to protect
it against possible nuclease targeting [57]. Moreover, in vitro, antisense oligonucleotides
(ASOs) have been seen to block 5′-UTR elements affecting protein expression through
increased ribosome occupancy [58].

OCTN2 is ubiquitously expressed, with particular abundance in skeletal muscle,
kidney, intestine, heart, and brain (Figure 11) [32,59].
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Table 4. OCTN2 transcripts.

Gene Symbol Database Transcript Trasncript Length
(nt)

Protein Length
(aa)

SLC22A5 NCBI/Gene NM_001308122.2 3349 581
SLC22A5 NCBI/Gene NM_003060.4 3277 557
SLC22A5 NCBI/Gene XM_017009778.3 1570 381
SLC22A5 NCBI/Gene XM_047417595.1 1788 374
SLC22A5 NCBI/Gene XM_047417596.1 8198 353
SLC22A5 NCBI/Gene XM_011543590.3 2495 351
SLC22A5 NCBI/Gene XM_047417597.1 1295 308
SLC22A5 NCBI/Gene XM_047417598.1 1289 306
SLC22A5 Ensembl ENST00000693308.1 3146 573
SLC22A5 Ensembl ENST00000692413.1 3080 551
SLC22A5 Ensembl ENST00000689271.1 2945 506
SLC22A5 Ensembl ENST00000415928.6 1873 431
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A down-regulation of the OCTN2 mRNA has been observed in liver biopsies of
patients treated with the antiepileptic drug carbamazepine (CBZ) [60]. Clofibrate, a lipid-
lowering agent, has been seen as responsible for an increase in carnitine concentration
in rat liver, thanks to the activation of PPARα [61,62], a transcription factor belonging
to the nuclear hormone receptor superfamily [63]. The same increase in OCTN2 mRNA
concentration has also been confirmed in rat small intestine [64]. Moreover, the use of a
PPARα agonist had the same effect in mice liver [65]. Even though humans and pigs have
a 10-fold lower expression of PPARα, it has been demonstrated that the use of clofibrate
triggers the up-regulation of OCTN2 in pig liver, muscle, and enterocytes via PPARα [66].
All these findings suggest that OCTN2 expression regulation may depend on the tissue-
specific PPARα expression [66]. Since, in the human colon, PPARγ is more abundant
compared to PPARα, it is reasonable that OCTN2 expression may be primarily regulated
by PPARγ. Indeed, the use of the PPARγ inducers thiazolidinediones (troglitazone and
rosiglitazone TZDs) causes a strong increase in OCTN2 mRNA expression quantified by
RT-PCR in human colonocytes [67]. OCTN2 is expressed in the syncytiotrophoblasts of
the human placenta [68], and it is up-regulated following forskolin-induced syncytializa-
tion [69]. However, under hypoxic conditions, its mRNA and protein levels, as well as
PPARα, were reduced in human placental explants and BeWo cells by HIF1α [70]. The
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reduction of OCTN2 levels caused by hypoxia provides a possible explanation for the
decrease in placental carnitine transfer seen in preeclampsia, leading to higher carnitine
levels on the maternal side [70]. During fasting or energy restriction, PPARα activation
by non-esterified fatty acids released from adipose tissues triggers an up-regulation of a
set of genes involved in mitochondrial β/oxidation, among which is OCTN2. Thus, the
increased OCTN2-mediated uptake of carnitine pushes mitochondrial fatty acid catabolism,
minimizing the use of carbohydrates and proteins as fuels for mammals’ survival under
energy deprivation conditions [71].

In patient-derived primary glioblastoma samples, an up-regulation of OCTN2 has
been detected [72], which is a negative prognostic marker for survival. Moreover, a drug-
mediated OCTN2 inhibition may slow down glioblastoma growth in a mouse model [72]
and with high-grade serous epithelial ovarian cancer [73]. Conversely, it was shown
to be down-regulated in virus- and nonvirus-mediated epithelial cancers, probably via
promoter methylation [74]. OCTN2 is expressed in several breast cancer cell lines, and it is
significantly up-regulated in estrogen receptor (ER)-positive cells [75]. Due to this positive
correlation, the presence of estrogen-responsive elements (EREs) in the promoter region has
been investigated. Interestingly, in the intron 2 region, a new ERE (GGTCA-CTG-TGACT)
(Figure 6) has been found, demonstrating that OCTN2 expression is regulated by estrogen
and that OCTN2 is required for carnitine intake, lipid metabolism, and proliferation of
breast cancer cells [75]. Recently, the activity and cell surface expression of OCTN2 in breast
cancer cells has been investigated [76]. Carnitine transport has been positively correlated
with the level of OCTN2 phosphorylated by AKT on threonine residues [76]. Thus, the
use of AKT inhibitors may reduce carnitine transport, triggering a reduction in fatty acid
oxidation and leading to reduced viability and increased apoptosis of cancer cells [76]. The
muscle toxicity of levatinib, an oral tyrosine kinase inhibitor, may be a consequence of
OCTN2 inhibition and carnitine decrease [77]. On one hand, OCTN2 may represent an
alternative source of energy for cancer cells, and on the other hand, it can be used as an
anti-cancer drug transporter, as with drug-carnitine conjugates [78].

4. Conclusions

Since the cloning of OCTN1 and OCTN2 in the late 1990s, many studies have in-
vestigated their function, expression, and regulation due to their involvement in human
pathologies, such as primary carnitine deficiency, inflammatory-based diseases, and cancer.
Even in the absence of a 3D structure, several aspects of the physiopathological role of
the two proteins have been clarified, leaving underexplored the transcriptional regulation
of the two genes. The promoter/enhancer region of the two genes has been investigated,
and the putative transcription factors involved in the regulation have been predicted by
bioinformatics. An antisense lncRNA, MIR3936HG, with an unknown function, probably
involved in OCTN regulation, has been described for the first time. Searching for the
OCTN1 missense mutations in the protein homology model highlights the proximity of
some of them to the binding site(s). Site-directed mutagenesis studies on selected mu-
tants will unveil their role in the translocation pathway in physiological and pathological
contexts such as cancer.
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