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Abstract: The process of oxygenic photosynthesis is primarily driven by two multiprotein com-
plexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced
reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven
plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among
all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations,
especially for photosynthetic organisms that grow in special environments. In this review, we make a
concise overview of the recent investigations of PSI from photosynthetic microorganisms including
prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known
PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions
and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI
reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
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1. Introduction

Photosystem I (PSI) is a large pigment–protein complex that catalyzes the reactions
including the light-induced electron transfer and the reduction of ferredoxin (Fd) at the
early stage of oxygenic photosynthesis [1]. The basic functional unit of PSI consists of a core
complex and its peripheral light-harvesting antenna. The core complex harbors three pairs
of chlorophylls (Chls), two phylloquinones and three [4Fe-4S] clusters, which constitute
the central electron transfer chain (ETC) [2]. Once the solar energy is absorbed by antenna
pigments, it is transferred to the core complex and the excited energy is trapped at P700,
a special pair of Chls, where charge separation happens. The generated free electrons are
quickly transferred to one acceptor Chl (A0) and subsequently to the terminal electron
acceptor Fd through cofactors along the ETC. Simultaneously, the oxidized P700 (P700

+) is
replenished with an electron from a soluble electron donor of either a plastocyanin or a
cytochrome. The reduced Fd provides the reducing power for the generation of ATP and
NADPH, both of which are used in the subsequent CO2 fixation reactions [3].

Due to its crucial role, the structure and function of PSI have been extensively stud-
ied [4]. For a long time, single-crystal X-ray diffraction (SC-XRD) was the most important
technique for elucidating the structure of PSI, particularly in resolving the structures
of cyanobacterial PSI core trimers and higher plant PSI-LHCI supercomplex [5–9]. The
first atomic structure of cyanobacterial PSI was revealed by SC-XRD in 2001, which was
composed of 12 protein subunits and 127 cofactors [5]. However, the short-comings of
SC-XRD—the prerequisite of substantial amounts of highly purified protein samples and
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the necessity for their crystallization—limit its application in PSI study. This is particu-
larly evident in the case of algal PSI which contains a large number of light-harvesting
antenna subunits, and is difficult to form regular single crystals. In contrast, single-particle
cryogenic electron microscopy (cryo-EM) does not suffer from these limitations. In the
past decade, cryo-EM has developed rapidly, reaching the level of SC-XRD in structural
analysis [10]. Many previously unanswered issues related to PSI have been addressed
with a large number of PSI structures being determined by cryo-EM [11–15]. These struc-
tures provide a deeper understanding of the complexity and function of PSI, which is
important for the self-regulation mechanisms of oxygenic photosynthetic organisms to
cope with various environmental challenges such as light intensity fluctuations, far red
light, iron-deficiency stress and salt stress [16,17].

This review focuses on the structural variations of PSI in photosynthetic microorgan-
isms, including prokaryotic cyanobacteria and various eukaryotic algae, and discusses
the molecular mechanisms of high-efficiency energy and electron transfer within different
PSI complexes. Through an in-depth exploration of these variations, we aim to inspire
new thinking about the key role of PSI and the adaptive mechanisms by which different
photosynthetic organisms thrive in different ecological niches.

2. Structural Variations of PSI Complexes in Cyanobacteria
2.1. Oligomers of PSI Complexes in Cyanobacteria

In most cyanobacteria, the PSI monomers assemble into a stable trimeric structure with
a 3-fold rotational symmetry [5,18] (Figure 1). Each PSI monomer consists of a highly con-
served heterodimeric core (PsaA/B) and variable peripheral subunits (PsaC/D/E/F/I/J/
K/L/M/X), depending on the species [18,19]. The majority of the cofactors are coordinated
by the dimeric PsaA/B core, and the molecular mass of a PSI trimer exceeds 1 MDa [5].
Recently, owing to advancements in cryo-EM, structures of PSI monomers, tetramers and
some heterogeneous complexes from cyanobacteria have been determined at near-atomic
resolutions [20–23] (Figure 1).

The tetrameric PSI is widespread among heterocyst-forming cyanobacteria such as
the mesophilic filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120
and the thermophilic non-heterocyst-forming cyanobacterium Chroococcidiopsis sp. TS-821,
and their close relatives [23–25]. Physiological studies have shown that factors such as
nitrogen source, temperature stress or salinity have no effect on the formation of PSI trimer
or tetramers; however, under high light conditions, tetrameric PSI formation is favored and
is accompanied by an increased content of novel carotenoids (Cars), like myxoxanthophyll,
canthaxanthin, and echinenone [25]. Compared with the trimeric PSI, the four monomers
within the PSI tetramer are structurally organized as a dimer of dimers with a C2 symmetry,
forming two distinct interfaces (Figure 1). The two attached PSI dimers are stabilized to a
large extent by electrostatic interactions of amino acid residues at the interfaces, as well as
by the nearby Chls and specific lipids [26] (Figure 1).

The dimeric cyanobacterial PSI complexes can be identified by biochemical methods
in Thermosynechococcus elongatus (T. elongatus) and Anabaena sp. PCC 7120 [18,23]; however,
only the structure of the Anabaena PSI dimer has been reported, which is the same as one of
the dimers in a PSI tetramer [20] (Figure 1). Low-resolution structures of monomeric PSI
complexes have only recently been reported [16,27] (Figure 1). The PSI monomer shows no
significant difference in NADP+ reduction rates compared to the PSI trimer [27]; however,
the fluorescence spectrum of monomeric PSI exhibits a significant blue shift, which is
caused by the loss of several peripheral red Chls [16]. Another notable difference lies in
the disruption of the short C-terminal α-helix of PsaL after monomerization [18,27]. This
short α-helix is believed to function as a critical factor in the formation and stabilization of
trimeric and tetrameric PSI complexes [19,28–30].
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Figure 1. Structural diversity of cyanobacterial PSI. (a,b) The monomeric (PDB ID: 6LU1) and tri-
meric (PDB ID: 1JB0) PSI complexes from T. elongatus share similar subunit components; however, 
the PSI monomer lacks two peripheral subunits, PsaK and PsaX, which are colored in red. (c) The 
tetrameric PSI is mainly observed in heterocyst-forming cyanobacteria. A PSI tetramer (PDB ID: 
6JEO) in Anabaena sp. PCC 7120 is organized with two PSI dimers with a C2 symmetry, forming two 
different interfaces (marked in dashed red and blue lines) between the neighboring PSI monomers. 

2.2. PSI-IsiA Complexes in Iron-Deficient Environment 
Over the long period of evolution, cyanobacteria have developed special antenna sys-

tems that enable them to thrive under diverse environmental pressures, notably low iron, 
intense light, and oxidative stress [31–35]. These antenna systems primarily comprise two 
types: the membrane-bound iron-stress-induced A proteins (IsiAs) and the prochloro-
phyte Chl a/b-binding (Pcb) protein family, and the water-soluble phycobilisomes [36,37]. 
Both of the IsiA/Pcb families possess six transmembrane helices and exhibit similar struc-
tural features with the CP47 and CP43 subunits of PSII [38–40] (Figure 2). Under normal 
growth conditions, in order to achieve efficient absorption and utilization of light, cyano-
bacteria form giant complexes of PSI–phycobilisome and PSII–phycobilisome, whose 
structures have recently been resolved [41–43]. 

In the cyanobacterium Synechocystis sp. PCC 6803, IsiA proteins can congregate in 
clusters of up to 18 copies surrounding a trimeric PSI core, forming a PSI3–IsiA18 super-
complex [44,45] (Figure 2). The binding of IsiA complexes enhances the absorption cross-

Figure 1. Structural diversity of cyanobacterial PSI. (a,b) The monomeric (PDB ID: 6LU1) and trimeric
(PDB ID: 1JB0) PSI complexes from T. elongatus share similar subunit components; however, the PSI
monomer lacks two peripheral subunits, PsaK and PsaX, which are colored in red. (c) The tetrameric
PSI is mainly observed in heterocyst-forming cyanobacteria. A PSI tetramer (PDB ID: 6JEO) in
Anabaena sp. PCC 7120 is organized with two PSI dimers with a C2 symmetry, forming two different
interfaces (marked in dashed red and blue lines) between the neighboring PSI monomers.

2.2. PSI-IsiA Complexes in Iron-Deficient Environment

Over the long period of evolution, cyanobacteria have developed special antenna
systems that enable them to thrive under diverse environmental pressures, notably low iron,
intense light, and oxidative stress [31–35]. These antenna systems primarily comprise two
types: the membrane-bound iron-stress-induced A proteins (IsiAs) and the prochlorophyte
Chl a/b-binding (Pcb) protein family, and the water-soluble phycobilisomes [36,37]. Both
of the IsiA/Pcb families possess six transmembrane helices and exhibit similar structural
features with the CP47 and CP43 subunits of PSII [38–40] (Figure 2). Under normal growth
conditions, in order to achieve efficient absorption and utilization of light, cyanobacteria
form giant complexes of PSI–phycobilisome and PSII–phycobilisome, whose structures
have recently been resolved [41–43].

In the cyanobacterium Synechocystis sp. PCC 6803, IsiA proteins can congregate in
clusters of up to 18 copies surrounding a trimeric PSI core, forming a PSI3–IsiA18 supercom-
plex [44,45] (Figure 2). The binding of IsiA complexes enhances the absorption cross-section,
thereby compensating for the diminished PSI levels within the membrane [46–48]. The
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IsiA protein was primarily proposed to serve as an excess energy quencher and/or a
reservoir for Chls, facilitating its subsequent integration into the photosystems [49–51].
However, a high-resolution structure and time-resolved fluorescence spectra of the PSI–IsiA
complex from a thermophilic cyanobacterium Thermosynechococcus vulcanus showed clear
excitation-energy transfer from IsiA to PSI, strongly indicating that the IsiA protein mainly
functions as an energy donor but not an energy quencher within the complex [35]. When
cultured in iron-deprivation environments, the protein Flavodoxin (Fld) takes over the role
of Fd, accepting electrons from one of the [4Fe-4S] clusters coordinated by the PSI subunit
PsaC [52]. The structure of the PSI3-IsiA18-Fld3 complex from Synechococcus sp. PCC 7942
reveals that three Fld molecules bind symmetrically to the trimeric PSI core [31]. Within
each PSI monomer, Fld binds to the surface of PSI by electrostatic action [31].

The number of isiA genes varies among different species of cyanobacteria. Cyanobac-
terium Anabaena sp. PCC 7120 has four types of isiA genes: isiA1, isiA2, isiA3, and isiA5 [33].
However, the structures of the IsiA proteins identified in the PSI–IsiA complexes from
Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, and Thermosynechococcus
vulcanus NIES–2134 are similar to that of IsiA1 from Anabaena [31,32,35]. In Anabaena,
the PSI monomer–IsiA complex consists of six IsiA subunits, five of which contain six
transmembrane helices that bind Chls and Cars [34] (Figure 2). The remaining IsiA subunit
(IsiA2) adjacent to PsaD/I has nine transmembrane helices and exhibits a remarkable
structural correspondence with PsaL, particularly in the C-terminal domain, which may
substitute for the role of PsaL in the Anabaena PSI tetramer [34] (Figure 2).
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2.3. PSI Complexes from Chls d/f-Containing Cyanobacteria 
Chlorophylls are crucial for energy capture, transfer, and charge separation in pho-

tosynthesis [53,54]. Photosynthetic organisms have evolved a variety of Chls with varied 
molecular structures and absorption ranges to achieve efficient light utilization [55]. Most 
oxygenic photosynthesis organisms possess Chls a within their photosynthetic apparatus 
[56]; however, other types of Chls, such as Chls b, c, d, and f, are found in specific lineages, 
which enables organisms to occupy unique ecological niches [54,57,58]. Unlike Chls a, b 
and c, which mainly absorb higher-energy light [59], Chls d and f absorb lower-energy 

Figure 2. Two structures of cyanobacterial PSI–IsiA complexes under iron-deficiency condition.
(a) The mesophilic cyanobacterium Synechocystis sp. PCC 6803 forms PSI3–IsiA18 supercomplex (PDB
ID: 6K33) with three-fold rotational symmetry. (b) The monomer–PSI–IsiA6 complex of Anabaena sp.
PCC 7120 (PDB ID: 7Y3F) associates six IsiA subunits. The C-terminal PsaL-like domain of IsiA2-1
occupies the corresponding position of PsaL in the Anabaena PSI tetramer.

2.3. PSI Complexes from Chls d/f-Containing Cyanobacteria

Chlorophylls are crucial for energy capture, transfer, and charge separation in pho-
tosynthesis [53,54]. Photosynthetic organisms have evolved a variety of Chls with varied
molecular structures and absorption ranges to achieve efficient light utilization [55]. Most
oxygenic photosynthesis organisms possess Chls a within their photosynthetic appara-
tus [56]; however, other types of Chls, such as Chls b, c, d, and f, are found in specific
lineages, which enables organisms to occupy unique ecological niches [54,57,58]. Unlike
Chls a, b and c, which mainly absorb higher-energy light [59], Chls d and f absorb lower-
energy light [60–62]. A mixture of different types of Chls broaden the absorption spectrum
and promote the light utilization efficiency [56].
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Acaryochloris marina (A. marina) is a unique cyanobacterial species which uses d-type
Chls as its dominant photosynthetic pigments and is capable of using far-red light to drive
oxygenic photosynthesis [63–65]. The structure of A. marina PSI has been determined with
resolutions of 2.58 Å and 3.3 Å, respectively [66,67]. The overall structure of A. marina
PSI resembles the PSI trimers from other cyanobacteria; however, the peripheral subunits
of PsaI and PsaX are missing (Figure 3a). A novel subunit, Psa27, identified in A. marina
PSI, exhibits a similar structure and location with PsaI of T. elongatus PSI, indicating their
similar functions in stabilizing the PSI trimer [67] (Figure 3a). The total number of pigments
(Chls and carotenes) in A. marina PSI is less than that in T. elongatus PSI, and most of the
missing pigments are located in the peripheral small subunits PsaJ, PsaF, PsaM (Figure 3a).
Uniquely, the paired Chls (known as P740) along the ETC of A. marina PSI is a dimer of Chl
d and its epimer Chl d′, and the primary electron acceptor A0 is pheophytins a, rather than
Chl a, which is found in other PSI structures [66,67] (Figure 3b).
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Figure 3. Structure and the cofactor arrangement along the electron transfer chain (ETC) of A. marina
PSI monomer (PDB ID: 7DWQ). (a) The protein subunits are colored respectively, and the missing
subunit PsaK is marked with dashed circle. (b) The cofactors of P740, Acc, A0, and A1 of the ETC are
arranged in two separated branches (branch A and branch B). Phylloquinones and Fe4S4 clusters are
labeled as PhyQ, FX, FA, and FB, respectively. Uniquely, the Chls of A0 in A. marina PSI are identified
as two pheophytins a, instead of the typical Chls a in other cyanobacterial PSI complexes [53].

The Chl f -containing cyanobacteria demonstrate a remarkable capacity for photosyn-
thesis in the far-red and near-infrared regions [63,68,69]. However, Chl f is only induced
under far-red light conditions and accounts for approximately 10% of the total Chls, indi-
cating their specific roles within the photosystem [70,71]. The structures of PSI complexes
from Halomicronema hongdechloris (H. hongdechloris) and Fischerella thermalis PCC 7521 grown
under far-red light have been resolved [53,72]. The H. hongdechloris PSI binds 83 Chls a
and 7 Chls f, with all Chls f located at the periphery of PSI and excluded from the electron
transfer chain, which suggests that Chls f function to harvest far-red light and enhance the
uphill energy transfer [53]. Further studies demonstrate that far-red light induces extensive
remodeling of the photosynthetic apparatus in H. hongdechloris by altering the expression of
genes encoding PSI core subunits and by modifying the types of pigments associated with
PSI [73–75]. Indeed, differences in the sequences of several core subunits, including PsaA,
PsaB, PsaI, and PsaL, have been observed in the PSI complex under far-red light compared
to that under white light [66,67].

3. Structural Variations of Algal PSI–LHCI Complexes
3.1. PSI–LHCI Complexes of Chlamydomonas reinhardtii

The unicellular eukaryotic green alga Chlamydomonas reinhardtii (C. reinhardtii) is
a model organism for studying photosynthesis, and the structure and function of its
photosystem have been extensively studied [76]. The overall structure of the C. reinhardtii



Int. J. Mol. Sci. 2024, 25, 8767 6 of 19

PSI–LHCI complex is similar to that of plant PSI–LHCI, both of which are composed
of a core complex and a peripheral antenna system [8]; however, the C. reinhardtii PSI
combines more peripheral antenna subunits. As depicted in Figure 4, the 10 Lhca proteins of
C. reinhardtii PSI are distributed in three belts: one inner belt (Lhca1a/Lhca8/Lhca7/Lhca3),
one outer belt (Lhca1b/Lhca4/Lhca6/Lhca5) and a Lhca2–Lhca9 heterodimer [77]. The
Lhca2–Lhca9 heterodimer loosely attaches to the PSI core at the opposite side from the
other LHCI belts, which may provide a docking site for the cytochrome b6f complex and
enhance the photosynthetic cyclic electron flow [77] (Figure 4). Notably, all the C. reinhardtii
Lhca subunits have a conserved transmembrane structure with other LHC family members,
while showing differences at the N and C terminals [77]. The huge and complicated pigment
network enables C. reinhardtii cells to adapt to the changing light environment.
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Figure 4. Structural variations of C. reinhardtii PSI–LHCI complexes. (a) The structures of C. reinhardtii
PSI–LHCI complexes binding with eight and ten Lhca subunits. The antenna subunits are distributed
as three belts: two crescent-shaped belts including one inner belt and one outer belt which are
associated to one side of the PSI core (PDB ID: 6JO6), and an additional small belt made up of the Lhca2
and Lhca9 heterodimer on the opposite side (PDB ID: 6JO5). (b) During the state transitions (state 2),
phosphorylated LHCIIs dissociate from PSII and migrate to PSI, forming the PSI–LHCI–LHCII
supercomplex (PDB ID: 7D0J). (c) Under low light and anoxic conditions, PSI–LHCI dimer is formed
from two PSI–LHCI monomers that are arranged in a “head-to-head” manner. The PsaH and Lhca2
subunits are absent; instead, two Lhca9 subunits interact with the subunits of PsaI, PsaL, PsaG from
two PSI–LHCI monomers (PDB ID: 7ZQD).
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To optimize the photosynthetic efficiency in fluctuating light conditions, photosyn-
thetic organisms like plants and algae have developed a short-term light adaptation mecha-
nism called state transitions [78]. This process ensures a balanced distribution of excitation
energy between the two photosystems, PSI and PSII, through dynamic relocation of the
light-harvesting antenna complex II (LHCII) [79,80]. The state transitions are regulated
by the redox state of the plastoquinone (PQ) pool: in state 1, when the PQ pool is oxi-
dized, LHCII remains primarily associated with PSII, forming the PSII–LHCII complex;
conversely, in state 2, upon reduction of the PQ pool, protein kinases (such as STN7 in
higher plants or STT7 in green algae) are activated via the cytochrome b6f complex [81,82].
These kinases then phosphorylate LHCIIs, promoting their partial dissociation from PSII
and migration to PSI, which triggers the formation of the PSI–LHCI–LHCII supercomplex,
enhancing PSI’s light-harvesting capacity [83–86]. The high-resolution structure of the
PSI–LHCI–LHCII supercomplex from C. reinhardtii has been elucidated, and all four types
of LHCII are found to associate with PSI under state 2 conditions [85] (Figure 4). Two LHCII
trimers are associated with PSI–LHCI at the PsaO–PsaL–PsaH–Lhca2 side: one (LHCII–1)
attaches to the PSI core by PsaO, PsaH, and PsaL, the other one (LHCII–2) attaches to
the Lhca2 and LHCII–1 subunits [85] (Figure 4). As PSII is generally considered to be
more susceptible to oxidative damage than PSI under high light conditions, the transfer
of LHCII to PSI helps to reduce the excessive accumulation of excitation energy in PSII,
thereby reducing the oxidative damage of PSII [84,87–89]. However, if the energy absorbed
by LHCII is excessively funneled to the PSI core, the resulting overactivation of PSI can
trigger the production of reactive oxygen species (ROS), ultimately diminishing the overall
photosynthetic efficiency [87].

Recently, the PSI–LHCI dimer has been isolated from C. reinhardtii cells grown in low
light and anoxic conditions [90]. This unique oligomerization of PSI is formed by two
PSI–LHCI monomers arranged head-to-head, containing 40 protein subunits and more than
600 cofactors [90]. Unlike the dimeric formation observed in cyanobacterial PSI tetramers,
which is mainly due to the movement of the stromal helices of PsaL [22], C. reinhardtii
PSI–LHCI dimer is formed by the interactions of four subunits: Lhca9, PsaI, PsaL, PsaG,
and their associated pigments [90]. The PsaH and Lhca2 subunits observed in the PSI–LHCI
monomer are absent in the C. reinhardtii PSI–LHCI dimer; instead, a second Lhca9 subunit
occupies the corresponding space for PsaH and Lhca2, and binds to the subunits PsaG,
PsaL and PsaI of two PSI–LHCI monomers [90] (Figure 4). This unique oligomeric state of
PSI–LHCI in C. reinhardtii reflects the diversity of its adaptation mechanisms to different
environmental conditions [90].

3.2. PSI–LHCI Complexes of Red Algae

In addition to state transition, an alternative strategy that algae employ to regulate the
antenna size of PSI is to change the number of associated LHCI subunits [91]. For red algae
Cyanidioschyzon merolae (C. merolae), even when grown under optimal laboratory conditions,
two PSI–LHCI complexes with antenna systems of different sizes can be isolated [92]
(Figure 5). The smaller form (PSI–3Lhcr) binds three antenna subunits, which form an
LHCR band and interact with PsaF, PsaJ, PsaA, and PsaK. The larger form (PSI–5Lhcr)
binds two additional Lhcr proteins that are associated with the surface of PsaL, PsaI,
PsaM, and PsaB, forming an additional LHCR* belt [92]. The major structural difference
between PSI–5Lhcr and PSI–3Lhcr lies in the additional LHCR* belt; the counterpart core
subunits and three Lhcr subunits of the canonical LHCR belt are identical [92]. Biochemical
and spectroscopic data have revealed a close correlation between the ratio of these two
forms and the light intensities in red algae [93]. Similarly, in the unicellular green algae
C. reinhardtii and Bryopsis corticulans [91,94], the PSI core complex can associate with either
8 to 10 LHCI subunits, indicating that the binding state of LHCI and PSI in algae is
flexible with environmental conditions [91]. Uniquely, the red alga Porphyridium purpureum
PSI–LHCI contains seven LHCI subunits and one chlorophyll a/b-binding-like protein
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(RedCAP), and another red alga Cyanidium caldarium RK–1 belonging to the Cyanidiophyceae
possesses seven or five LHCI subunits (Figure 5).
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Figure 5. Comparison of the PSI–LHCI complexes from different red algae. (a,b) C. merolae contains
two different forms of PSI–LHCI complexes, with one binding three Lhcr subunits (PDB ID: 5ZGH)
and the other one binding five Lhcr subunits (PDB ID: 5ZGB). (c) Porphyridium purpureum PSI–LHCI
associates seven LHCI subunits and one chlorophyll a/b-binding-like protein (RedCAP) (PDB ID:
7Y5E). (d) Cyanidium caldarium PSI–LHCI complex contains five LHCI subunits which are distributed
as two separated clusters (PDB ID: 8WEY).

3.3. A Minimal PSI from Salt-Tolerant Green Alga Dunaliella salina

Dunaliella salina (D. salina) represents a unicellular green alga which can adapt to
hypersaline environments and light stress. There exist two forms of PSI–LHCI in D. salina:
a mini PSI–LHCI and a large PSI–LHCI [95]. The mini D. salina PSI–LHCI contains only
seven PSI core subunits (PsaA–F and PsaJ) and four LHCI proteins (Lhca1–4) which are
positioned at similar positions as the counterparts in plant PSI–LHCI [8,9] (Figure 6).
The large D. salina PSI–LHCI contains 13 core subunits and 6 LHCI proteins (Lhca1–6),
exhibiting a similar structure when compared to PSI–LHCI complexes derived from red
algae and green algae [91,94]. However, the large D. salina PSI–LHCI lacks the second
round of light-harvesting antenna (Figure 6). The different forms of D. salina PSI–LHCI
complexes reveal different regulatory mechanisms of reducing the association of antenna
proteins or forming distinct subunit interactions under certain physiological conditions.
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3.4. PSI–LHCI in Desert Algae Chlorella ohadii

In the highly light-tolerant green algae Chlorella ohadii (C. ohadii), it has been observed
that even when exposed to light intensities four times higher than those required for
saturating CO2 fixation, the algae do not suffer from photodamage [96,97]. A comparative
analysis of the PSI–LHCI structures from C. ohadii cells grown in low light (LL) and high
light (HL) environments reveals that, to minimize photodamage, part of LHCI and the
PSI core subunit, PsaO, are eliminated in PSIHL [98]. The absence of the PsaO subunit
indicates that the state transition is not triggered in C. ohadii under high light conditions
(Figure 6). Another remarkable difference between PSILL and PSIHL lies in the pigment
composition and their number in LHCIs: approximately 50% of the Chls b in LHCIHL are
replaced by Chls a [98]. Notably, the highest substitution rates occur in the first LHCIHL belt
and the LHCIHL dimer, both of which surround the PSI core complex [98]. This pigment
substitution may lead to higher electron transfer rates within C. ohadii PSIHL, as PSIHL
exhibits a higher efficiency of photocurrent induction [98].

3.5. Diatom PSI-FCPI Complex

Diatoms are a large group of eukaryotic algae which account for about 20% of the
global primary carbon fixation [99]. The PSI of diatoms is distinguished by a large number
of light-harvesting subunits called fucoxanthin–Chl proteins (FCPIs), which bind Chl a/c
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instead of Chl b and fucoxanthin instead of lutein [100]. The PSI-FCPI complex from the
diatom Chaetoceros gracilis shows an asymmetrical heart-shaped structure, consisting of
12 core subunits and 24 FCPIs, and associating with 326 Chls a, 34 Chls c, 102 fucoxanthins,
35 diadinoxanthins, 18 β-carotenes and other cofactors [101] (Figure 7). The structure of
the diatom PSI core is conserved with that of cyanobacterial PSI; however, the subunit
of PsaK is missing and two new subunits (PsaR and PsaS) are present [101]. The large
FCPI antenna around the PSI core could be divided into three layers: an innermost layer, a
semi-ring middle layer and an outermost layer [101]. Each FCPI subunit exhibits distinctive
structures with different pigment compositions, and these FCPI subunits interweave with
the PSI core to form a sophisticated pigment–protein network for the efficient light capture
and energy transfer [101].
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ID: 6LY5).

3.6. Tetrameric PSI from Glaucophyte Algae

Glaucophyte alga is a unique photosynthetic eukaryote that has plastid-like organelles
termed cyanelles [102]. The cryo-EM structure of PSI from the glaucophyte alga Cyanophora
paradoxa is determined as a tetramer; however, it is remarkably different from the pre-
viously observed tetrameric PSI from cyanobacteria in subunit composition and orga-
nization [103] (Figure 8). The Cyanophora PSI tetramers are composed of two types of
structurally similar PSI monomers, termed as monomer 1 and monomer 2, the latter of
which lacks the PsaK subunit [103] (Figure 8). A monomer 1 attaches to a monomer 2,
creating a monomer 1–monomer 2 heterodimer, and two such heterodimers further give
rise to a tetramer in an inverse parallel manner [103] (Figure 8). Due to the unique assem-
bly, the monomer–monomer interactions as well as the excitation-energy transfer among
Chls in Cyanophora PSI tetramers are entirely different from those in cyanobacteria PSI
tetramers [103] (Figure 1). The distinctive structural features of Cyanophora PSI highlight a
vital evolutionary transition in photosynthetic machineries, illustrating an intermediary
phase in the transformation from oligomeric forms to monomeric units within this early
eukaryotic alga [103].
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3.7. PSI-ACPI Complex in Cryptophytes

Cryptophytes (also called Cryptomonads or Cryptophyceae) are ancestral photosyn-
thetic organisms that evolved through secondary endosymbiosis possibly between a red
alga-like organism and a heterotrophic host [104–106]. Cryptophyte cells perform efficient
oxygenic photosynthesis through their membrane-imbedded alloxanthin–Chl a/c-binding
proteins (ACPs) and soluble phycobiliproteins as light-harvesting antennas [107]. The
PSI–ACPI supercomplex from the cryptophyte Chroomonas placoidea consists of a monomeric
PSI core and a huge peripheral antenna [108] (Figure 9). The PSI core contains 14 subunits,
including 12 red algae-originated subunits, one diatom PsaR homolog, and one loosely
associated extrinsic subunit (Unk1) [108]. The outer antenna surrounding the PSI core
is made up of 14 ACPI subunits which are distributed in two layers: the inner layer has
11 ACPIs, and the outer layer has 3 ACPIs [108] (Figure 9). The association and energy
transfer between the outer and inner ACPIs are mediated by a 20.6-kDa pigment-binding
subunit termed ACPI-S [108] (Figure 9). However, the structure and pigment-binding sites
of ACPI–S are different from the typical ACPI subunits [108]. Specifically, all ACPI apopro-
teins contain three major TM helices (αA, αB, αC) and an additional amphipathic helix (αD
or αE). By contrast, ACPI–S has only one transmembrane helix and an amphipathic helix,
but contains several long-terminal loops [108].
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3.8. PSI-ACPPCI Complex in Symbiotic Dinoflagellates

Dinoflagellates constitute a significant proportion of unicellular eukaryotes, inhabiting
diverse aquatic habitats [109–111]. Many dinoflagellate species could form symbionts
with invertebrates such as corals, or with algae-like diatoms [112–114]. The well-known
symbiosis between corals and photosynthetic dinoflagellates of the Symbiodiniaceae family
is instrumental in the development and sustenance of coral reefs [112]. The PSI–LHCI
supercomplex from Symbiodinium comprises a core complex and a unique peripheral an-
tenna system, showing similar structural features with red algal PSI–LHCR, cryptophyte
PSI–ACPI, and diatom PSI–FCPI, but exhibiting specific characteristics in the protein orga-
nization [115–117] (Figure 10). In particular, the PSI core consists of 13 subunits including
2 new-found extrinsic subunits, PsaT and PsaU [117] (Figure 10). The overall structure
of Symbiodinium PSI core is similar to that of the diatom PSI core, but the PsaK and PsaO
subunits are missing [117] (Figure 10). Remarkable differences emerge as modifications to
the extrinsic loop regions of the PsaA and PsaB subunits and alterations in the C-terminal
regions of several subunits including PsaD/E/I/J/L/M/R [116,117] (Figure 10). The
peripheral antenna system of Symbiodinium PSI is composed of 13~14 peridinin–Chl a/c-
binding light-harvesting antenna proteins (AcpPCIs), which are distributed in two layers
around the PSI core [116,117] (Figure 10). Most of the pigment-binding sites in Symbiodinium
PSI–AcpPCI are conserved with those in diatom PSI–FCPI, but there are some notable
differences. Although Symbiodinium PSI–AcpPCI contains a small number of pigments and
antenna subunits, the extended end domains of the PSI core and antenna subunits enable
efficient protein interactions and intermolecular energy transfer [116,117]. Interestingly,
in a red tidal dinoflagellate Amphidinium carterae, both the structures of PsaA/B subunits
exhibit substantial shortenings and have more short loops, leading to a reduction of over
20 pigment-binding sites compared with those of diatom PsaA/B subunits [116]. However,
the other core subunits, including PsaD/F/I/J/L/M/R, show significant elongations and
additional pigment-binding sites compared with those in diatom PSI [116]. Additionally,



Int. J. Mol. Sci. 2024, 25, 8767 13 of 19

the Amphidinium carterae PSI core is associated with 18 AcpPCIs that bind a large number
of xanthophyll cycle Cars, which may compensate for the smaller PsaA/B subunits [116].
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4. Perspective

The precise structural determination of photosynthetic protein complexes is crucial
for revealing the mechanisms of their efficient working modes. As more and more PSI
structures from different species are resolved, we are able to gain a more complete under-
standing of how this complex protein machine works. Here, we discussed the structural
and functional characteristics of various PSI complexes and their associated light-harvesting
proteins in cyanobacteria and algae, reflecting their remarkable plasticity of environmental
adaptation under different conditions.

However, it should be noted that photosynthetic organisms respond to environmental
stress at different levels and in different ways. These stresses, including extreme tem-
peratures, limited nutrient or water supply, and salinity, could trigger photoinhibition
which in turn cause a loss in energy conversion efficiency and photosynthetic capacity. For
example, under high light and low CO2 conditions, the paired chlorophylls (P700) in the PSI
core adopt an oxidized state. This state serves to modulate light utilization and dissipate
excess excited energy within PSI. Keeping P700 in an oxidized state is a crucial strategy for
protecting PSI against potential photodamage [118,119]. The mechanisms for preventing
photoinhibition in PSI have been extensively investigated from plants and photosynthetic
organisms. Notably, the PGR5-dependent cyclic electron transfer (CET) plays a preferential
role in the acceptor-side regulation of PSI, which is necessary for PSI photoprotection by
facilitating the oxidation of P700 under high light [119,120]. For an in-depth review of PSI
photoprotection, please refer to references [121–123].

Given its pivotal role in oxygenic photosynthesis, the structural diversity of PSI is
a consequence of billions of years of biological evolution. For eukaryotic photosynthetic
organisms (such as algae and plants), they tend to evolve more complex light-harvesting
systems and finer energy regulation mechanisms (such as the state transition mechanism),
while in prokaryotic photosynthetic organisms (such as cyanobacteria), there are different
aggregation forms of reaction centers. Across all oxygen-evolving photosynthetic organ-
isms, PSI is characterized by a structurally conserved heterodimeric core. This core serves as
a critical binding platform for the majority of PSI’s cofactors, establishing the foundational
architecture essential for the complex processes of charge separation and electron transport
within the photosynthetic machinery.

In recent years, the structures of photosystems from non-oxygen-producing photo-
synthetic bacteria, including heliobacteria, green sulfur bacteria and Acidobacteria, have
been resolved [124–126]. The photosynthetic reaction centers of these bacteria are in the
forms of homodimers, which are structurally highly conserved with the PSI core of oxygen-
producing photosynthetic organisms, but lack complex light-trapping protein subunits
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within the membrane. Instead, efficient absorption of light energy is mainly achieved
through specific extracellular light-trapping systems, such as the chlorosome.
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