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Abstract: There is evidence to support a link between abnormal lipid metabolism and Alzheimer’s
disease (AD) risk. Similarly, observational studies suggest a comorbid relationship between AD
and coronary artery disease (CAD). However, the intricate biological mechanisms of AD are poorly
understood, and its relationship with lipids and CAD traits remains unresolved. Conflicting evidence
further underscores the ongoing investigation into this research area. Here, we systematically assess
the cross-trait genetic overlap of AD with 13 representative lipids (from eight classes) and seven CAD
traits, leveraging robust analytical methods, well-powered large-scale genetic data, and rigorous
replication testing. Our main analysis demonstrates a significant positive global genetic correlation
of AD with triglycerides and all seven CAD traits assessed—angina pectoris, cardiac dysrhythmias,
coronary arteriosclerosis, ischemic heart disease, myocardial infarction, non-specific chest pain, and
coronary artery disease. Gene-level analyses largely reinforce these findings and highlight the genetic
overlap between AD and three additional lipids: high-density lipoproteins (HDLs), low-density
lipoproteins (LDLs), and total cholesterol. Moreover, we identify genome-wide significant genes
(Fisher’s combined p value [FCPgene] < 2.60 × 10−6) shared across AD, several lipids, and CAD
traits, including WDR12, BAG6, HLA-DRA, PHB, ZNF652, APOE, APOC4, PVRL2, and TOMM40.
Mendelian randomisation analysis found no evidence of a significant causal relationship between AD,
lipids, and CAD traits. However, local genetic correlation analysis identifies several local pleiotropic
hotspots contributing to the relationship of AD with lipids and CAD traits across chromosomes 6,
8, 17, and 19. Completing a three-way analysis, we confirm a strong genetic correlation between
lipids and CAD traits—HDL and sphingomyelin demonstrate negative correlations, while LDL,
triglycerides, and total cholesterol show positive correlations. These findings support genetic overlap
between AD, specific lipids, and CAD traits, implicating shared but non-causal genetic susceptibility.
The identified shared genes and pleiotropic hotspots are valuable targets for further investigation
into AD and, potentially, its comorbidity with CAD traits.

Keywords: Alzheimer’s disease; coronary artery disease; gene-based analysis; global genetic correlation;
lipids; linkage disequilibrium score regression; local analysis of [co]variant associations; local genetic
correlation; Mendelian randomisation

1. Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder characterised by
cognitive decline and memory impairment [1,2]. The disorder represents a considerable
public health challenge, with an anticipated global prevalence exceeding 139 million individ-
uals by 2050 [3]. In Australia, dementia, predominantly AD, is the primary cause of disease
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burden among individuals aged 65 and older [4]. AD’s neuropathological features encom-
pass hyperphosphorylated tau protein in neurofibrillary tangles and beta (β)-amyloid (Aβ)
protein aggregation in senile plaques within the brain’s extracellular matrix [5,6]. Extensive
research has focused on investigating AD’s aetiology and underlying biology [2,5–9], impli-
cating various factors, including genetics, lifestyle, and environment [2,9,10]. Nevertheless,
AD remains a multifaceted condition lacking curative treatments, thus posing a substantial
global, social, and economic burden [10,11].

Lipid disorders and coronary artery disease (CAD) considerably impact human
health [12–14]. Lipid disorders are recognised as a substantial risk factor for AD, just
as a relationship between CAD and AD has been reported [15–17]. Lipids are vital in
maintaining cell membrane structure, serving as energy reserves, and acting as signalling
molecules [18]. In the brain, lipids are integral components of neuronal membranes and
contribute substantially to various aspects of neuronal function, such as synaptic trans-
mission, membrane dynamics, and intracellular signalling pathways [15,16,18]. However,
abnormal lipid metabolisms have been implicated in AD pathogenesis, affecting factors
such as blood–brain barrier integrity, amyloid precursor protein processing, myelination,
receptor signalling, inflammation, oxidative stress, and energy imbalance [15,16,19]. Lipids
also interact with genes, influencing gene-specific lipid proteins, enzymes, and metabolic
pathways [15].

Recent studies, including those employing genome-wide association and cross-trait sta-
tistical analyses, have reported links or potential involvement of lipids in AD [15,16,20,21].
For instance, one study used the Mendelian randomisation (MR) method to reveal causal
associations between specific lipid metabolites and AD [15]. Another study similarly
explored polygenic associations between late-onset AD (LOAD) and blood lipid levels,
demonstrating genetic concordance between AD and certain lipid metabolites [16]. These
findings underscore the potential role of lipids in AD development but also suggest av-
enues for further investigation. CAD, characterised by the narrowing of the coronary
arteries and plaque formation, has strong genetic components similar to AD [22]. CAD’s
impact on the brain, including altered cerebrovascular function and blood–brain barrier
disruption, provides conducive avenues for Aβ aggregation and potentially contributes to
AD pathology [23].

Notably, observational evidence increasingly links CAD with cognitive impairment
and the risk of dementia [24,25]. Research suggests that individuals with CAD experience
an accelerated cognitive decline following diagnosis, with meta-analytical findings reveal-
ing a 26% higher relative risk of dementia among CAD patients [26,27]. Moreover, the
onset of CAD at a younger age may exacerbate cognitive deterioration due to prolonged
exposure to vascular lesions [26]. Despite these findings, the nature of the relationship
and the underpinning mechanisms for CAD’s association with AD and cognitive impair-
ment remains unclear. Given these premises and evidence for potential genetic overlap
between CAD and AD, genetic analyses offer opportunities to further explore the shared
mechanisms underlying these disorders [9,17].

Consistent with this position, a previous study has investigated the genetic determi-
nants of CAD and their impact on the risk of LOAD [17]. The study utilised genome-wide
association data, employing the MR analysis method (for causality testing), linkage equilib-
rium score regression (LDSC, for genetic correlation assessment), and GWAS-PW (a tool
for jointly analysing two GWASs and scanning for shared genetic determinants) to assess
the relationship between CAD and LOAD risk. The findings indicated a slightly higher
risk of LOAD associated with a genetically determined risk of CAD [17]. However, when
excluding the Apolipoprotein E (APOE) locus, the causal effect of CAD on LOAD risk was
not significant [17]. The results highlight the predominant role of the APOE locus in the
shared genetic architecture between CAD and LOAD, suggesting limited causal relevance
of CAD to LOAD risk once APOE is considered [17]. The study underscores the need for
further research to elucidate the potential shared genetic aetiology of CAD and LOAD.
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The connection between CAD and AD may partly reflect shared risk factors such as
dyslipidaemia and inflammation. However, there is also the potential for shared genetic
predispositions. For example, the APOE gene is well-established in AD, with individuals
carrying the ε4 allele at a higher risk of AD [28–31]. These individuals may also be more
likely to develop CAD due to their lipid profile and other related factors. Although APOE
is more prominently associated with AD, its role in lipid metabolism makes it relevant to
understanding CAD [17], underscoring the interconnectedness of genetic influences on
different aspects of cardiovascular and neurological health. Indeed, various lipids are asso-
ciated with cardiovascular diseases (CVD), and lipids likely influence the risk of dementia
through their association with CVD [32,33]. Furthermore, AD and CAD (or CVD, more
broadly) have been shown to share a range of pleiotropic genes, including GPBP1, SETDB2,
DAB2IP, and DNM2 [34,35]. Genetic variants such as rs116426890-T and rs62118504-G
have also been implicated [35]. The variant rs116426890-T is linked to the expression of
genes, including ABI2, CARF, ICA1L, FAM117B, and NBEAL1, which are associated with
various cardiovascular traits and potentially AD pathology [35]. Meanwhile, rs62118504-G
is mapped to EXOC3L2 and MARK4, which are linked to AD [35].

Thus, existing evidence supports a potential link between AD, lipids, and CAD
putatively through shared genetic susceptibility [15–17]. However, the relationships
and underlying biological mechanisms remain unresolved despite several years of en-
quiry [15–17,33,36]. Additionally, contrasting reports exist [33,37,38], just as the evidence
regarding the genetic overlap of AD with lipids and CAD traits is inconclusive [15–17,36].
Although AD currently has no curative treatments, disentangling the effects of abnormal
lipid metabolism and CAD traits on its risk (and vice versa) will have substantial im-
plications for advancing knowledge of its underlying biology and identifying potential
therapeutic targets for further investigation.

Our study employs a three-way cross-traits genetic analysis approach, focusing on
the interplay between lipids (comprising 13 representative traits from eight lipid classes),
CAD, and various CAD-related traits in relation to AD. Building upon previous research,
we investigate these relationships by leveraging increasingly powerful analytical methods
and well-powered datasets. Moreover, we examine the genetic overlap of AD with lipids
and CAD traits at single-nucleotide polymorphism (SNP) and gene-based levels to provide
a robust insight since genes are closer to biology than SNPs. Importantly, we identify
pleiotropic loci (using the local genetic correlation approach) and shared genes (using gene-
based association analysis) across AD, lipids, and CAD traits. Our research offers further
insights through a more comprehensive but targeted focus on AD (with rigorous [partial]
replication testing), specific representative lipids, and an array of CAD traits (i.e., not just
CAD but several related phenotypes). This study provides robust evidence, advances our
understanding of the intricate genetic connections between AD, lipids, and CAD-related
traits, and identifies potential targets for further investigation.

2. Results

Figure 1 presents a simplified workflow for this study. First, using the LDSC method [39],
we assessed and quantified SNP-level pairwise global (genome-wide) genetic correla-
tions between 13 lipids, seven CAD traits, and AD. Second, we conducted bi-directional
two-sample Mendelian randomisation (2SMR) [40] analyses to test for potential causal
associations between lipids, CAD traits, and AD. Third, we performed gene-based analy-
ses [41] and subsequently assessed gene-level genetic overlap of lipids and CAD traits with
AD. Using the results of our gene-based association analyses, we identify genome-wide
significant (GWS, sentinel) genes shared by AD, lipids, and CAD traits. Also, following the
practice employed in previous studies [19,42–49], we applied Fisher’s combined p-value
(FCP) method to identify shared genes reaching GWS for AD, lipids, and CAD traits. Lastly,
we assessed the local genetic correlations between lipids, CAD traits, and AD [50].
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Figure 1. Study design and workflow: assessing shared genetic associations between AD, lipids, and 
CAD traits. FCP: Fisher’s combined p value; MAGMA–multi-marker analysis of genomic annota-
tion; GWAS: genome-wide association studies; LDSC: linkage disequilibrium score regression; 
LAVA: local analysis of [co]variant association; MR: Mendelian randomisation; MR-PRESSO: Men-
delian randomisation pleiotropy residual sum and outlier. 
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Table 1. Summary of the GWAS data analysed. 

GWAS Summary Statistics Cases Controls Sample 
Size 

Ancestry Phenotype Source/Definition 

AD    European   

Main (Jansen et al. [28]) 71,880 383,378 455,258  Clinically diagnosed and UKB AD-
by-proxy2 

Validation (Lambert et al. [29]) * 17,008 37,154 54,162  Data from the EADI, GERAD, 
ADGC, and CHARGE study 

LIPID    European   
Sphingolipids:       

Palmitoyl sphingomyelin (Shin et al. [51])   7814  Data from the TwinsUK and KORA 
study 

154 SM C16:1 sphingomyelin (Draisma et al. 
[52]) 

  7428  Data from dataverse 

156 SM C18:1 sphingomyelin (Draisma et al. 
[52]) 

  7428  Data from dataverse 

Figure 1. Study design and workflow: assessing shared genetic associations between AD, lipids, and
CAD traits. FCP: Fisher’s combined p value; MAGMA–multi-marker analysis of genomic annotation;
GWAS: genome-wide association studies; LDSC: linkage disequilibrium score regression; LAVA:
local analysis of [co]variant association; MR: Mendelian randomisation; MR-PRESSO: Mendelian
randomisation pleiotropy residual sum and outlier.

2.1. Global Genetic Correlation of AD with Lipids and CAD Traits

Table 1 provides an overview of the GWAS datasets employed for the analysis of
the relationship between AD, lipids, and CAD traits. Further specific information for
each cohort can be found in Supplementary Table S1. Table 2 represents the results of the
genome-wide genetic correlation estimates between AD, lipids, and CAD traits using the
LDSC analysis method.

Table 1. Summary of the GWAS data analysed.

GWAS Summary Statistics Cases Controls Sample Size Ancestry Phenotype
Source/Definition

AD European

Main (Jansen et al. [28]) 71,880 383,378 455,258
Clinically diagnosed

and UKB
AD-by-proxy2

Validation (Lambert et al. [29]) * 17,008 37,154 54,162
Data from the EADI,
GERAD, ADGC, and

CHARGE study

LIPID European

Sphingolipids:
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Table 1. Cont.

GWAS Summary Statistics Cases Controls Sample Size Ancestry Phenotype
Source/Definition

Palmitoyl sphingomyelin (Shin
et al. [51]) 7814

Data from the
TwinsUK and
KORA study

154 SM C16:1 sphingomyelin
(Draisma et al. [52]) 7428 Data from dataverse

156 SM C18:1 sphingomyelin
(Draisma et al. [52]) 7428 Data from dataverse

Glycerophospholipids:

Beta-glycerophosphoric acid
(Shin et al. [51]) 5912

Data from the
TwinsUK and
KORA study

Lysophosphatidylinositol (Shin
et al. [51]) 7797

Data from the
TwinsUK and
KORA study

Fatty Acyls:

Palmitic acid (Shin et al. [51]) 7800
Data from the
TwinsUK and
KORA study

Stearic acid (Shin et al. [51]) 7803
Data from the
TwinsUK and
KORA study

Fatty Acyls [lipids or lipid-like
molecules]:

Caprylic acid (Shin et al. [51]) 7802
Data from the
TwinsUK and
KORA study

Organic compounds known as
medium-chain fatty acids:

Dodecanoic acid (Shin
et al. [51]), (also known as lauric

acid)
7793

Data from the
TwinsUK and
KORA study

Lipoproteins:

HDL (GLGC [12]) 188,577 Data from the GLGC

LDL (GLGC [12]) 188,577 Data from the GLGC

Neutral lipids:

TG (GLGC [12]) 188,577 Data from the GLGC

Steroids and steroid derivatives:

TC (GLGC [12]) 188,577 Data from the GLGC

CAD trait European

Angina pectoris Phecode 411.3
(Lee Lab [53]) 16,175 377,103 393,278

Full European data
subset from the

Lee Lab

Cardiac dysrhythmias Phecode
427 (Lee Lab [53]) 24,681 380,919 405,600

Full European data
subset from the

Lee Lab
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Table 1. Cont.

GWAS Summary Statistics Cases Controls Sample Size Ancestry Phenotype
Source/Definition

Coronary atherosclerosis
Phecode 411.4 (Lee Lab [53]) 20,023 377,103 397,126

Full European data
subset from the

Lee Lab

Ischemic heart disease Phecode
411 (Lee Lab [53]) 31,355 377,103 408,458

Full European data
subset from the

Lee Lab

Myocardial infarction Phecode
411.2 (Lee Lab [53]) 11,703 377,103 388,806

Full European data
subset from the

Lee Lab

Non-specific chest pain Phecode
418 (Lee Lab [53]) 31,429 377,532 408,961

Full European data
subset from the

Lee Lab

CARDIoGRAMplusC4D
(CGCC [12]) 22,233 64,762 86,995 Data from the CGCC

The ‘clinically diagnosed AD’ combined data from three case-control cohorts. The “AD-by proxy” data were
derived from the UKB phenotype definition, identifying individuals with biological parents affected by AD.
Information on the parents’ current age and, when applicable, age at death was included alongside the GWAS
data. A substantial genetic correlation of 0.81 exists between “clinically diagnosed AD” and “AD-by proxy”, sup-
porting their combination, as elaborated further in the related publication [28]. AD: Alzheimer’s disease; ADGC:
Alzheimer’s disease genetic consortium; CAD: Coronary artery disease; CGCC: CARDIoGRAMplusC4D consor-
tium; CHARGE: Cohorts for heart and ageing research in genomic epidemiology; EADI: European Alzheimer’s
disease initiative; GERAD: Genetic and environment risk in Alzheimer’s disease; GLGC: Global lipids genetics
consortium; HDL: High-density lipoprotein; KORA: Cooperative Health Research in the Region Augsburg; LDL:
Low-density lipoprotein; TC: Total cholesterol; TG: Triglycerides; UKB: United Kingdom Biobank. * The validation
set data were used for reproducibility testing in LDSC, gene-based, MR, and LAVA analysis. We note the data are
not completely independent; hence, we use ‘partial replication’ as is appropriate.

Table 2. Results of global genetic correlation analysis of Alzheimer’s disease with lipids and CAD
traits using LDSC.

AD Lipids rg Se p

Palmitoyl sphingomyelin −0.03 4.22 × 10−2 4.96 × 10−1

154 SM C16:1 sphingomyelin −0.02 1.07 × 10−1 8.78 × 10−1

156 SM C18:1 sphingomyelin 0.14 1.37 × 10−1 3.10 × 10−1

beta-Glycerophosphoric acid 0.05 5.69 × 10−2 4.28 × 10−1

Lysophosphatidylinositol 0.04 5.48 × 10−2 5.11 × 10−1

Palmitic acid 0.00 5.08 × 10−2 9.96 × 10−1

AD Stearic acid −0.03 4.34 × 10−2 5.49 × 10−1

Caprylic acid 0.00 4.56 × 10−2 9.51 × 10−1

Dodecanoic acid −0.01 3.94 × 10−2 7.20 × 10−1

HDL −0.05 3.85 × 10−2 1.81 × 10−1

LDL 0.13 7.10 × 10−2 6.49 × 10−2

TG 0.09 3.64 × 10−2 1.09 × 10−2

TC 0.13 7.01 × 10−2 5.48 × 10−2

AD CAD traits Rg Se p
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Table 2. Cont.

AD Lipids rg Se p

Angina pectoris 0.21 3.55 × 10−2 5.88 × 10−9

Cardiac dysrhythmias 0.14 3.78 × 10−2 3.49 × 10−4

Coronary arteriosclerosis 0.17 2.96 × 10−2 2.26 × 10−8

AD Ischemic heart disease 0.20 3.13 × 10−2 1.39 × 10−10

Myocardial infarction 0.17 3.84 × 10−2 1.03 × 10−5

Non-specific chest pain 0.22 3.91 × 10−2 2.06 × 10−8

CAD 0.15 4.25 × 10−2 3.74 × 10−4

AD: Alzheimer’s disease, data from Jansen et al. [28]; CAD traits: coronary artery disease traits [12,53]; HDL:
high-density lipoprotein; LDL: low-density lipoprotein; TC: total cholesterol; TG: triglycerides; p: estimated ρ
value; rg: global genetic correlation estimates; se: standard error; LDSC: linkage disequilibrium score regression.

In our first round of analyses, we assessed the global genetic correlation between AD
(Jansen et al. [28]) and 13 lipids, with a pairwise testing correction, considered significant
at p ≤ 0.025. Only one of the lipids (triglycerides) reached a significant status in its
genetic relationship with AD, demonstrating a positive global genetic correlation (rg = 0.09,
se = 0.04, p = 1.09 × 10−2). The results for the association of other lipids with AD reveal no
significant global genetic correlation, as summarised in Table 2. For a possible replication
of our findings, we further assessed the global genetic correlation between each of the
13 lipid traits and the AD GWAS from Lambert et al. [29]. This analysis reveals significant
positive global genetic correlations between AD and three lipid traits, including low-
density lipoproteins (LDLs) (rg = 0.12, se = 0.05, p = 1.87 × 10−2), triglycerides (rg = 0.08,
se = 0.04, p = 2.46 × 10−2), and total cholesterol (rg = 0.12, se = 0.05, p = 1.55 × 10−2)
(Supplementary Table S2).

Secondly, we assessed the global genetic correlation between the AD GWAS (from
Jansen et al. [28]) and seven CAD traits, all of which demonstrated a significant correlation
that survived the pairwise testing correction (ρ ≤ 0.025) in our LDSC analysis. The global ge-
netic correlations were significant and positive between AD and angina pectoris (rg = 0.21,
se = 0.04, p = 5.88 × 10−9), cardiac dysrhythmias (rg = 0.14, se = 0.04, p = 3.49 × 10−4), coro-
nary arteriosclerosis (rg = 0.17, se = 0.03, p = 2.26 × 10−8), ischemic heart disease (rg = 0.20,
se = 0.03, p = 1.39 × 10−10), myocardial infarction (rg = 0.17, se = 0.04, p = 1.03 × 10−5),
non-specific chest pain (rg = 0.22, se = 0.04, p = 2.06 × 10−8), and CAD (rg = 0.15, se = 0.04,
p = 3.74 × 10−4). Using the AD GWAS from Lambert et al. [29] as a partial replication set,
we found a significant genetic correlation with two of the CAD traits at the nominal level
of significance, including CAD (rg = 0.10, se = 0.05, p = 2.78 × 10−2) and non-specific chest
pain (rg = 0.07, se = 0.04, p = 4.15 × 10−2) (Supplementary Table S2). Additional details of
the genetic correlation analyses are available in the Supplementary Table S2.

Thirdly, completing a three-way assessment, we investigated the global genetic cor-
relation between each CAD trait and the 13 lipid traits (Table 3). Overall, significant
global genetic correlations were observed between CAD traits and lipids—high-density
Lipoproteins (HDLs), LDL, triglycerides, total cholesterol, and 154 SM C16:1 sphingomyelin
(Table 3 and Supplementary Table S3). Specifically, we found a significant and negative
global genetic correlation between HDL and all seven CAD traits, with the most signif-
icant result evidenced between CAD and HDL (rg = −0.37, se = 0.04, p = 6.52 × 10−17)
(Table 3). Interestingly, a significant negative global genetic correlation was also evidenced
between coronary arteriosclerosis and 154 SM C16:1 sphingomyelin (rg = −0.31, se = 0.12,
p = 1.18 × 10−2) (Table 3).
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Table 3. Results of global genetic correlation analysis between CAD traits and lipids using LDSC.

CAD Trait Lipids Trait rg Se p

Angina pectoris HDL −0.39 4.77 × 10−2 1.55 × 10−16

LDL 0.28 3.66 × 10−2 5.68 × 10−14

TG 0.41 5.73 × 10−2 8.92 × 10−13

TC 0.23 3.44 × 10−2 1.07 × 10−11

Cardiac dysrhythmias HDL −0.18 3.60 × 10−2 2.93 × 10−7

TG 0.14 4.00 × 10−2 3.70 × 10−4

Coronary arteriosclerosis HDL −0.36 4.44 × 10−2 8.72 × 10−16

LDL 0.3 3.78 × 10−2 4.93 × 10−15

TG 0.37 4.62 × 10−2 2.11 × 10−15

TC 0.25 3.59 × 10−2 2.10 × 10−12

154 SM C16:1
sphingomyelin −0.31 1.23 × 10−1 1.18 × 10−2

Ischemic heart disease HDL −0.38 4.66 × 10−2 2.65 × 10−16

LDL 0.28 3.55 × 10−2 3.08 × 10−15

TG 0.4 5.07 × 10−2 2.99 × 10−15

TC 0.24 3.28 × 10−2 1.73 × 10−13

Myocardial infarction HDL −0.37 5.27 × 10−2 1.25 × 10−12

LDL 0.29 3.82 × 10−2 6.62 × 10−14

TG 0.41 5.65 × 10−2 2.82 × 10−13

TC 0.26 3.59 × 10−2 3.98 × 10−13

Non-specific chest pain HDL −0.32 4.40 × 10−2 5.38 × 10−13

LDL 0.14 3.35 × 10−2 2.86 × 10−5

TG 0.31 5.29 × 10−2 7.10 × 10−9

TC 0.1 3.11 × 10−2 1.96 × 10−3

CAD HDL −0.37 4.40 × 10−2 6.52 × 10−17

LDL 0.39 4.52 × 10−2 1.48 × 10−17

TG 0.42 4.39 × 10−2 1.41 × 10−21

TC 0.35 4.24 × 10−2 2.67 × 10−16

CAD: coronary artery disease traits; HDL: high-density lipoprotein; LDL: low-density lipoprotein; TC: total
cholesterol; TG: triglycerides; p: estimated ρ value; rg: global genetic correlation estimates; se: standard error;
LDSC: linkage disequilibrium score regression.

Furthermore, we found a significant positive global genetic correlation between each
of the seven CAD traits and triglycerides, including angina pectoris (rg = 0.41, se = 0.06,
p = 8.92 × 10−13), cardiac dysrhythmias (rg = 0.14, se = 0.04, p = 3.70 × 10−4), coronary
arteriosclerosis (rg = 0.37, se = 0.05, p = 2.11 × 10−15), ischemic heart disease (rg = 0.40,
se = 0.05, p = 2.99 × 10−15), myocardial infarction (rg = 0.41, se = 0.06, p = 2.82 × 10−13),
non-specific chest pain (rg = 0.31, se = 0.05, p = 7.10 × 10−9), and CAD (rg = 0.42,
se = 0.04, p = 1.41 × 10−21) (Table 3). We observed similar significant and positive global
genetic correlations between LDL and all the CAD traits except cardiac dysrhythmias
(rg = 0.02, se = 0.03, p = 4.66 × 10−1) (Supplementary Table S3). Additional details of
the global genetic correlation analyses between lipids and CAD traits are presented in
Supplementary Table S3.
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2.2. Results of Gene-Level Genetic Overlap Analysis

We performed gene-based analysis to further assess the genetic overlap, at the gene
level, of lipids and CAD traits with AD. We restricted our gene-based analysis to include
lipids that were significant in our initial LDSC analyses (either main or validation set),
including HDL, LDL, triglycerides, and total cholesterol, and all the seven CAD traits–
angina pectoris, cardiac dysrhythmias, coronary arteriosclerosis, ischemic heart disease,
myocardial infarction, non-specific chest pain, and CAD. We tested the relationship of
these traits with AD to investigate whether they shared genetic components more than
by chance.

In our main analysis, we obtained the total number of SNPs overlapping between
AD and each lipid and CAD trait to ensure that we performed an equivalent gene-based
analysis (Supplementary Table S4). A total of 2,402,800 SNPs overlapped between AD
and HDL, 2,394,019 with LDL, 2,395,509 with triglycerides, 2,402,374 with total cholesterol,
and 2,393,041 with CAD. Similarly, 11,250,658 AD SNPs overlapped with angina pectoris,
11,251,568 with cardiac dysrhythmias, 11,250,900 with coronary arteriosclerosis, 11,251,741
with ischemic heart disease, 11,250,320 with myocardial infarction, and 11,251,773 with non-
specific chest pain. Following the gene-based association analysis, 18,960 protein-coding
genes were identified for angina pectoris, cardiac dysrhythmias, coronary arteriosclerosis,
ischemic heart disease, myocardial infarction, and non-specific chest pain (Table 4). We also
identified 17,735 protein-coding genes for non-specific chest pain, 17,683 for each of HDL
and total cholesterol, 17,671 for triglycerides, and 17,669 for LDL.

Table 4. Results of gene-level overlap assessment of Alzheimer’s disease with lipids and CAD traits.

Discovery Set Target
Set

Number of
Genes Proportion of Gene Overlap Binomial

Test

Lipids and
CAD Traits

Total
Number of

Genes in the
Discovery

Set (Lipid or
CAD Trait)

Number of
Genes in the

Discovery
Set

Pgene < 0.05

AD

Total
Number of

Genes in the
Target Set

(AD)

Number of
Genes in the
Target Set at
Pgene < 0.05

Overlapping
the Discovery
and the Target

Sets at
Pgene < 0.05

Expected (%) Observed
(%) p Value

* HDL 17,683 1880 AD 17,683 1768 294 10.6 16.6 9.84 × 10−15

LDL 17,669 1766 AD 17,669 1769 267 10.0 15.1 1.28 × 10−11

Triglycerides 17,671 1743 AD 17,671 1769 273 9.9 15.4 2.24 × 10−13

Total
cholesterol 17,683 1988 AD 17,683 1767 320 11.2 18.1 2.20 × 10−16

Angina
pectoris 18,960 2175 AD 18,960 1843 260 11.5 14.1 3.65 × 10−4

Cardiac
dysrhythmias 18,960 1776 AD 18,960 1843 212 9.4 11.5 1.48 × 10−3

Coronary
arteriosclerosis 18,960 2524 AD 18,960 1843 333 13.3 18.1 4.73 × 10−9

Ischemic heart
disease 18,960 2710 AD 18,960 1843 315 14.3 17.1 4.60 × 10−4

Myocardial
infarction 18,960 1995 AD 18,960 1843 244 10.5 13.2 1.18 × 10−4

Non-specific
chest pain 18,960 1943 AD 18,960 1843 212 10.2 11.5 3.69 × 10−2

CAD 17,735 1601 AD 17,735 1781 201 9.0 11.3 6.26 × 10−4

AD: Alzheimer’s disease; CAD: coronary artery disease; HDL: high-density lipoprotein; LDL: low-density
lipoprotein; p: p-value. * Result explained (using AD–HDL as an example): comparison of the expected proportions
of gene overlap (null hypothesis) with the observed proportion of gene overlap. The expected proportion of
gene overlap equals the number of genes associated with the discovery set (lipids and CAD traits) at Pgene < 0.05
divided by the total number of genes for each respective discovery set. For example, for Lipid—HDL, the number
of genes associated with the discovery set at Pgene < 0.05 (1880)/the total number of genes (17,683). The observed
proportion of genes equals the number of overlapping genes divided by the total number of genes associated with
the target set. Using HDL–AD analysis as an example, the number of overlapping genes at Pgene < 0.05 = 294/the
total number of genes associated with the target set at Pgene < 0.05 (1768). To test whether the observed proportion
of genes is more than expected by chance, we performed a one-sided exact binomial test within the R statistical
platform [binom.test(294,1768,0.106,alternative = c(“greater”))].
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To perform gene-level overlap assessment, we assigned lipids and CAD traits as the
discovery sets and AD as the target (Table 4). We identified the total number of genes associ-
ated with each trait in the discovery and target sets at Pgene < 0.05 (Table 4). Accordingly, at
Pgene < 0.05, 1880 genes were associated with HDL, 1766 with LDL, 1743 with triglycerides,
1988 with total cholesterol, 2175 with angina pectoris, 1776 with cardiac dysrhythmias,
2524 with coronary arteriosclerosis, 2710 with ischemic heart disease, 1995 with myocardial
infarction, 1943 with non-specific chest pain, and 1601 with CAD. We reported the number
of genes associated with AD at each corresponding analysis pair (Table 4). Moreover, at
Pgene < 0.05, we identified genes overlapping the target and corresponding discovery sets
with a total of 294 AD genes overlapping with HDL, 267 with LDL, 273 with triglycerides,
320 with total cholesterol, 260 with angina pectoris, 212 with cardiac dysrhythmias, 333 with
coronary arteriosclerosis, 315 with ischemic heart disease, 244 with myocardial infarction,
212 with non-specific chest pain, and 201 with CAD. To assess gene-level genetic overlap,
we compared the expected proportion of gene overlap, at Pgene < 0.05, with the observed
proportion of gene overlap (see methods for additional details).

The results of the exact binomial test support a significant gene-level genetic overlap, at
Pgene < 0.05, between AD and all four lipids including HDL (Pbinomial-test [Pb-t] = 9.84 × 10−15),
LDL (Pb-t = 1.28 × 10−11), triglycerides (Pb-t = 2.24 × 10−13), and total cholesterol (Pb-t = 2.20
× 10−16). Similarly, we found a significant gene-level overlap between AD and CAD traits
including angina pectoris (Pb-t = 3.65 × 10−4), cardiac dysrhythmias (Pb-t = 1.48 × 10−3),
coronary arteriosclerosis (Pb-t = 4.73 × 10−9), ischemic heart disease (Pb-t = 4.60 × 10−4),
myocardial infarction (Pb-t = 1.18 × 10−4), and CAD (Pb-t = 6.26 × 10−4). Non-specific chest
pain did not survive pairwise testing correction (p < 0.025) in gene-level overlap with AD.
However, it was significant at the nominal level (Pb-t = 3.69 × 10−2) (Table 4).

2.3. Genome-Wide Significant (Sentinel) Genes Shared by AD, Lipids, and CAD Traits

Our gene association analysis identified GWS genes (Pgene < 2.60 × 10−6, that is, genes
that were already GWS in our dataset, ‘sentinel genes’) across AD, lipids, and each of the
CAD traits (Supplementary Tables S5–S16). AD had 66 GWS genes (Pgene-AD < 2.60 × 10−6,
Supplementary Table S5). For CAD traits, coronary arteriosclerosis had the highest number
of GWS genes at 68 (Pgene-coronary-arteriosclerosis < 2.60 × 10−6, Supplementary Table S8), then is-
chemic heart disease with 53 (Pgene-ischemic-heart-disease < 2.60 × 10−6, Supplementary Table S9),
followed by cardiac dysrhythmias with 42 (Pgene-cardiac-dysrhythmias < 2.60 × 10−6, Supple-
mentary Table S7), and myocardial infarction with 38 (Pgene-myocardial-infarction < 2.60 × 10−6,
Supplementary Table S10), then angina pectoris with 24 (Pgene-angina-pectoris < 2.60 × 10−6,
Supplementary Table S6), and CAD with 11 (Pgene-CAD < 2.60 × 10−6, Supplementary
Table S12), and, lastly, non-specific chest pain with 9 (Pgene-non-specific-chest-pain < 2.60 × 10−6,
Supplementary Table S11). There were more GWS genes for lipids, with the highest number
at 216 for total cholesterol (Pgene-Total-cholesterol < 2.60 × 10−6, Supplementary Table S16),
followed by HDL with 172 genes (Pgene-HDL < 2.60 × 10−6, Supplementary Table S13),
and 154 GWS genes for both LDL (Pgene-LDL < 2.60 × 10−6, Supplementary Table S14) and
triglycerides (Pgene-Triglycerides < 2.60 × 10−6, Supplementary Table S15).

Assessing overlap between GWS (Pgene < 2.60 × 10−6) genes for AD, lipids, and CAD
traits, that is, sentinel genes; we found two (APOE and ZNF652) that were shared by AD
and angina pectoris (Supplementary Table S17), five (APOC1, APOE, PVRL2, TOMM40, and
ZNF652) by AD and both coronary arteriosclerosis (Supplementary Table S17) and ischemic
heart disease (Supplementary Table S17), three (APOC1, APOE, and TOMM40) by AD and
myocardial infarction (Supplementary Table S17), and five (APOC4, APOC4-APOC2, APOE,
CTB-129P6.11, and TOMM40) by AD and HDL (Supplementary Table S17). Additionally, 9
GWS genes overlap between AD and triglycerides (Supplementary Table S17), followed by
an overlap of 11 GWS genes between AD and total cholesterol (Supplementary Table S17)
and 16 between AD and LDL (Supplementary Table S17). We did not observe a GWS gene
(sentinel) overlap between AD and cardiac dysrhythmias, non-specific chest pain, and
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CAD. Table 5 (the upper section) summarises GWS genes (sentinel) overlapping AD and
two or more lipids or CAD traits.

Table 5. Genome-wide significant genes overlapping AD, lipids, and CAD traits.

Genes Chr START (hg19) STOP (hg19) AD, Lipids, and CAD
Traits

GWS genes (sentinel) overlapping AD and two or more CAD or lipid traits

APOC1 19 45,417,504 45,422,606 AD, CA, IHD, MI

APOC4 19 45,445,495 45,452,820 AD, HDL, LDL, TC

APOC4-APOC2 19 45,445,495 45,452,822 AD, HDL, TC

APOE 19 45,409,011 45,412,650 AD, AP, CA, HDL, IHD,
LDL, MI, TC, TG

BCL3 19 45,250,962 45,263,301 AD, LDL, TC

CBLC 19 45,281,126 45,303,891 AD, LDL, TC

CEACAM19 19 45,165,545 45,187,631 AD, LDL, TC

IGSF23 19 45,116,940 45,140,081 AD, LDL, TC

NKPD1 19 45,653,008 45,663,408 AD, LDL, TC

PVR 19 45,147,098 45,166,850 AD, LDL, TC

PVRL2 19 45,349,432 45,392,485 AD, CA, IHD, LDL, TG,
TC

TOMM40 19 45,393,826 45,406,946 AD, CA, HDL, IHD, LDL,
MI, TC, TG

ZNF652 17 47,366,568 47,439,835 AD, AP, CA, IHD

Genes reaching GWS in the FCP analysis overlapping AD and two or more CAD or lipid traits

ACMSD 2 135,596,117 135,659,604 AD, LDL, TC

ICA1L 2 203,640,690 203,736,708 AD, AP, LDL, TC

WDR12 2 203,739,505 203,879,521 AD, AP, LDL, TC

CARF 2 203,776,937 203,851,786 AD, AP, LDL, TC

PRRC2A 6 31,588,497 31,605,548 AD, CA, IHD

BAG6 6 31,606,805 31,620,482 AD, CA, IHD, NSCP

C6orf10 6 32,256,303 32,339,684 AD, CA, IHD, TC

HLA-DRA 6 32,407,619 32,412,823 AD, AP, CA, IHD, MI,
HDL, TG

HLA-DQB1 6 32,627,244 32,636,160 AD, AP, CA, LDL

TMEM106B 7 12,250,867 12,282,993 AD, AP, IHD

NDUFAF6 8 95,907,995 96,128,683 AD, CA, IHD

TRIB1 8 126,442,563 126,450,647 AD, CA, HDL

DOC2A 16 30,016,830 30,034,591 AD, CD, IHD

ZNF668 16 31,072,164 31,085,641 AD, LDL, TC

PRSS8 16 31,142,756 31,147,083 AD, LDL, TC
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Table 5. Cont.

Genes Chr START (hg19) STOP (hg19) AD, Lipids, and CAD
Traits

PLCG2 16 81,772,702 81,991,899 AD, AP, CA

RP11-81K2.1 17 47,448,102 47,554,350 AD, MI, NSCP

PHB 17 47,481,414 47,492,246 AD, CD, MI, NSCP

APOC2 19 45,449,243 45,452,822 AD, LDL, TG

RSPH6A 19 46,298,968 46,318,577 AD, LDL, TC
AD: Alzheimer’s disease, AP: angina pectoris, CA: coronary arteriosclerosis, CAD: coronary artery disease, CD:
cardiac dysrhythmias, IHD: ischemic heart disease, MI: myocardial infarction, HDL: high-density lipoprotein, LDL:
low-density lipoprotein, NSCP: non-specific chest pain, TG: triglycerides, TC: total cholesterol, Chr: chromosome,
FCP: Fisher’s combined p value, GWS: genome-wide significant, hg: human genome build.

2.4. Shared Genes Reaching Genome-Wide Significance for AD, Lipids, and CAD Traits

Given their significant SNP-level global genetic correlation and gene-based genetic
overlap, we performed a further assessment using the FCP method [19,42–49] to identify
genes shared by AD, lipids, and CAD traits. We identified a range of gene overlap between
AD and each lipid and CAD trait, many of which reached GWS (Pgene-AD < 2.60 × 10−6)
or with evidence of improvement following the FCP analysis, as seen in Supplementary
Tables S18–S28. We followed up on this analysis, aiming to identify genes that were
not previously GWS (based on our data) in AD (0.05 < Pgene-AD > 2.60 × 10−6) or lipids
(0.05 < Pgenes-lipids > 2.60 × 10−6) or CAD traits (0.05 < Pgene-CAD-traits > 2.60 × 10−6) but
reached the status following FCP analysis (PFCP < 2.60 × 10−6). For this analysis, we
identified nine genes (CARF, CKM, HLA-DQB1, HLA-DRA, HLA-DRB1, ICA1L, PLCG2,
TMEM106B, and WDR12) reaching GWS for AD and angina pectoris (Supplementary
Table S29). Two genes (DOC2A and PHB) reached GWS for AD and cardiac dysrhythmias
(Supplementary Table S29). Coronary arteriosclerosis shared 10 GWS genes with AD
(BAG6, C6orf10, HLA-DQB1, HLA-DRA, HLA-DRB1, NDUFAF6, NME7, PLCG2, PRRC2A,
and TRIB1), while myocardial infarction shared three genes with AD (HLA-DRA, PHB, and
RP11-81K2.1) [Supplementary Table S29]. Other genes reaching GWS across AD and each
lipid or CAD trait are presented in Supplementary Table S29. Table 5 (the lower section)
summarises genes reaching GWS in the FCP analysis across AD and at least two lipids or
CAD traits.

2.5. Results of Causal Relationship Assessment

We performed bi-directional 2SMR analyses to test for a potential causal association
of selected lipids and all seven CAD traits with AD. We restricted our 2SMR analysis to
only four lipids, including HDL, LDL, triglycerides, and total cholesterol. We included
LDL, triglycerides, and total cholesterol as they were observed to have a significant global
genetic correlation with AD in the main or validating analysis. Additionally, due to the
relationship between HDL and AD underscored in a recent publication [31], we included
HDL to further explore its potential causal associations with AD. We included all seven
CAD traits listed in this study based on their strong global genetic correlations with AD.

2.5.1. No Causal Relationship of Lipids with Alzheimer’s Disease

Our 2SMR assessment found no evidence of a significant causal association between
lipids—HDL, LDL, triglycerides, and total cholesterol—as the exposure and AD as the
outcome variable (Table 6). In reverse analyses, in which AD was assessed as the exposure
variable against each lipid as an outcome variable, our findings indicate that genetic liability
to AD had no significant causal effect on any of the lipids (Table 6). The results were
consistent across other MR models, including the weighted-median and MR-Egger models
(Table 6). We also did not observe any evidence of significant pleiotropy or heterogeneity in
our 2SMR analysis. When using the MR-PRESSO method, the raw output replicated similar
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IVW-based non-significant results for lipids—LDL, triglycerides, and total cholesterol—
except for HDL, which was not observed with an MR-PRESSO assessment, potentially a
reflection of too few instrumental variables (nIV = 3) (Table 6). There was no evidence of
outlier-corrected results based on removing potentially pleiotropic SNPs for lipids—LDL,
triglycerides, and total cholesterol. Additional details of the causal relationship of lipids
with AD are presented in Supplementary Table S5.

2.5.2. No Causal Relationship of CAD Traits with Alzheimer’s Disease

We first tested the causal association between CAD traits and AD, with CAD traits
as the exposure variables. We found no evidence of a significant causal effect of the seven
CAD traits on AD risk. We note an absence of results for non-specific chest pain as the
exposure variable on AD risk, with only one instrumental variable present for the 2SMR
analysis. These results were consistent across the IVW, weighted-median, MR-Egger, and
MR-PRESSO analyses (Table 6). Similarly, by changing the direction of our analysis, we
found no evidence of a significant causal effect between AD as the exposure and each of the
seven CAD traits assessed as outcome variables in our study. These results were replicated
across other MR models, including the weighted-median and MR-Egger models. We also
observed that MR-PRESSO did not produce output corrected for potential pleiotropy for the
bi-directional relationship of all seven CAD traits and AD, indicating no outlier instruments
to correct. Additional details of the causal relationship between CAD traits and AD are
presented in Supplementary Table S30.

2.6. Local Genetic Correlation of Alzheimer’s Disease with Lipids and CAD Traits

We used LAVA [50] to perform local genetic correlation analyses of lipids and CAD
traits with AD. This approach enabled us to identify disproportionate genetic correlations
in specific genomic regions between lipids, CAD traits, and AD. Unlike the LDSC method,
which takes an average of the correlation across the whole genome (global or genome-
wide correlation) [39], the LAVA approach provides insights into the local effects and
shared genetic basis between two or more traits [50]. At the threshold of ρ ≤ 1.40 × 10−3,
adjusting for multiple testing, LAVA detected 18 significant bivariate local genetic correla-
tions across eight loci, contributing to the relationship of AD with lipids and CAD traits
(Table 7 and Figure 2). The identified loci spread across chromosomes 6, 8, 17, and 19,
including 962 (chr6: 32,208,902–32,454,577) [AD–LDL], 963 (chr6: 32,454,578–32,539,567)
[AD–cardiac dysrhythmias], 964 (chr6: 32,539,568–32,586,784) [AD–LDL, AD–total choles-
terol, and AD–myocardial infarction], 965 (chr6: 32,586,785–32,629,239) [AD–angina pec-
toris], 966 (chr6: 32,629,240–32,682,213) [AD–LDL and AD–total cholesterol], 1351 (chr8:
125,453,323–126,766,827) [AD–total cholesterol], 2209 (chr17: 45,883,902–47,516,224) [AD–
ischemic heart disease], and 2351 (chr19: 45,040,933–45,893,307) [AD–HDL, AD–LDL,
AD–total cholesterol, AD–triglycerides, AD–angina pectoris, AD–coronary arteriosclerosis,
AD–ischemic heart disease, and AD–myocardial infarction] (Table 7 and Figure 2). Notably,
the locus at 2351 (chr19: 45,040,933–45,893,307) was the most implicated in several traits,
and the direction was positive in each of the analyses except in AD–HDL, where the effect
direction was negative (Table 7).
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Table 6. Results of bi-directional Mendelian randomisation analyses of Alzheimer’s disease with lipids and CAD traits.

Outcome Exposure nIV IVW Weighted
Median MR-Egger * Ppleiotropy # Pheterogeneity

MR-
PRESSO

OR
(95% CI) p Value OR

(95% CI) p Value OR
(95% CI) p Value RAW OR

(95% CI) p Value
Corrected

OR
(95% CI)

p Value

HDL 3 1.02
(0.94–1.12) 5.91 × 10−1 1.04

(0.94–1.14) 4.56 × 10−1 1.15
(0.79–1.67) 6.01 × 10−1 6.49 × 10−1 7.24 × 10−1 - - - -

LDL 62 1.00
(0.99–1.02) 4.19 × 10−1 1.00

(0.99–1.02) 7.19 × 10−1 1.00
(0.99–1.02) 6.19 × 10−1 9.93 × 10−1 4.15 × 10−1 1.00

(0.99–1.02) 4.23 × 10−1 NA NA

Triglycerides 43 1.01
(0.99–1.02) 2.13 × 10−1 1.00

(0.99–1.03) 5.74 × 10−1 1.00
(0.98–1.02) 9.33 × 10−1 2.31 × 10−1 5.84 × 10−1 1.01

(1.00–1.02) 2.06 × 10−1 NA NA

Total
cholesterol 66 1.00

(0.99–1.02) 4.65 × 10−1 1.00
(0.98–1.02) 7.41 × 10−1 1.00

(0.98–1.02) 9.50 × 10−1 6.93 × 10−1 4.92 × 10−1 1.00
(0.99–1.02) 4.66 × 10−1 NA NA

Angina
pectoris 15 1.00

(0.99–1.02) 4.70 × 10−1 1.01
(0.99–1.03) 2.53 × 10−1 1.01

(0.98–1.04) 5.09 × 10−1 7.05 × 10−1 1.44 × 10−1 1.00
(0.99–1.02) 4.81 × 10−1 NA NA

AD Cardiac
dysrhythmias 24 1.00

(0.99–1.02) 4.15 × 10−1 1.01
(0.99–1.02) 3.95 × 10−1 1.02

(1.00–1.05) 1.13 × 10−1 1.64 × 10−1 9.40 × 10−1 1.00
(1.00–1.01) 2.99 × 10−1 NA NA

Coronary
arteriosclerosis 37 1.00

(1.00–1.01) 4.20 × 10−1 1.01
(0.99–1.02) 3.53 × 10−1 1.02

(1.00–1.04) 3.06 × 10−2 4.16 × 10−2 3.88 × 10−1 1.00
(1.00–1.01) 4.25 × 10−1 NA NA

Ischemic heart
disease 33 1.01

(1.00–1.02) 7.62 × 10−2 1.01
(0.99–1.03) 2.15 × 10−1 1.01

(0.98–1.03) 5.06 × 10−1 8.57 × 10−1 2.75 × 10−1 1.01
(1.00–1.02) 8.58 × 10−2 NA NA

Myocardial
infarction 14 1.00

(0.99–1.02) 5.97 × 10−1 0.99
(0.98–1.01) 4.89 × 10−1 1.02

(0.99–1.04) 2.68 × 10−1 3.22 × 10−1 2.24 × 10−1 1.00
(0.99–1.02) 6.06 × 10−1 NA NA

Non-specific
chest pain 1 - - - - - - - - - - - -

CAD 13 1.00
(0.99–1.01) 9.41 × 10−1 1.00

(0.98–1.01) 7.21 × 10−1 0.99
(0.95–1.03) 5.71 × 10−1 5.70 × 10−1 9.27 × 10−1 1.00

(0.99–1.01) 9.06 × 10−1 NA NA
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Table 6. Cont.

Outcome Exposure nIV IVW Weighted
Median MR-Egger * Ppleiotropy # Pheterogeneity

MR-
PRESSO

OR
(95% CI) p Value OR

(95% CI) p Value OR
(95% CI) p Value RAW OR

(95% CI) p Value
Corrected

OR
(95% CI)

p Value

HDL 2 0.77
(0.30–2.00) 5.86 × 10−1 - - - - - 1.26 × 10−1 - - - -

LDL 10 1.00
(0.79–1.26) 9.81 × 10−1 1.14

(0.82–1.57) 4.33 × 10−1 1.03
(0.33–3.22) 9.56 × 10−1 9.51 × 10−1 6.00 × 10−1 1.00

(0.80–1.24) 9.79 × 10−1 NA NA

Triglycerides 10 0.90
(0.69–1.18) 4.42 × 10−1 0.75

(0.54–1.04) 8.74 × 10−2 1.93
(0.56–6.72) 3.31 × 10−1 2.55 × 10−1 1.19 × 10−1 0.90

(0.69–1.18) 4.62 × 10−1 NA NA

Total
cholesterol 10 0.94

(0.74–1.18) 5.85 × 10−1 1.09
(0.80–1.47) 5.97 × 10−1 0.89

(0.29–2.77) 8.46 × 10−1 9.30 × 10−1 4.99 × 10−1 0.94
(0.75–1.17) 5.85 × 10−1 NA NA

Angina
pectoris 23 0.85

(0.65–1.11) 2.25 × 10−1 1.17
(0.81–1.67) 4.07 × 10−1 1.43

(0.93–2.20) 1.14 × 10−1 8.07 × 10−3 2.66 × 10−1 0.85
(0.65–1.11) 2.37 × 10−1 NA NA

Cardiac
dysrhythmias AD 27 0.96

(0.84–1.10) 5.50 × 10−1 1.09
(0.90–1.31) 3.85 × 10−1 1.11

(0.93–1.32) 2.76 × 10−1 2.62 × 10−2 8.29 × 10−1 0.96
(0.86–1.08) 4.92 × 10−1 NA NA

Coronary
arteriosclerosis 22 0.96

(0.75–1.22) 7.29 × 10−1 1.32
(0.96–1.82) 9.06 × 10−2 1.23

(0.82–1.85) 3.36 × 10−1 1.59 × 10−1 2.96 × 10−1 0.96
(0.75–1.22) 7.32 × 10−1 NA NA

Ischemic heart
disease 2 1.03

(0.40–2.61) 9.57 × 10−1 - - - - - 3.06 × 10−1 - - - -

Myocardial
infarction 24 1.09

(0.82–1.44) 5.61 × 10−1 1.19
(0.78–1.79) 4.21 × 10−1 1.23

(0.75–2.01) 4.27 × 10−1 5.67 × 10−1 8.77 × 10−1 1.09
(0.86–1.37) 4.85 × 10−1 NA NA

Non-specific
chest pain 25 0.94

(0.81–1.89) 3.87 × 10−1 0.98
(0.80–1.21) 8.61 × 10−1 0.92

(0.74–1.15) 4.60 × 10−1 8.20 × 10−1 8.16 × 10−1 0.94
(0.82–1.06) 3.24 × 10−1 NA NA

CAD 9 1.50
(0.73–3.10) 2.72 × 10−1 2.14

(0.83–5.47) 1.11 × 10−1 2.03
(0.08–53.19) 6.82 × 10−1 8.57 × 10−1 6.12 × 10−1 1.50

(0.79–2.86) 2.51 × 10−1 NA NA

AD: Alzheimer’s disease; CAD traits: coronary artery disease traits; HDL: high-density lipoprotein; IVW: inverse variance weighted; LDL: low-density lipoprotein; MR-Egger: Mendelian
randomisation-Egger; MR-PRESSO: Mendelian randomisation pleiotropy residual sum and outlier; nIV: number of instrumental variables (nSNPs: number of single-nucleotide
polymorphisms); OR: odds ratio, 95% CI: 95% confidence interval. * MR-Egger intercepts p-value, assessing potential horizontal or directional pleiotropy. # p-value for the heterogeneity
test. Note: spaces marked ‘NA’ indicate no outlier-corrected results (potential pleiotropy not detected) in the MR-PRESSO analyses, while those with a dash (-) represent no results were
produced due to insufficient instruments.
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Table 7. Results of bivariate local genetic correlation of Alzheimer’s disease with lipids and CAD
traits using LAVA.

Locus Chr Start Stop SNP (n) Phenotype1 Phenotype2 RHO R2 p Mean.RHO

2351 19 45,040,933 45,893,307 375 AD HDL −0.29 0.09 3.75 × 10−10 −0.29

962 6 32,208,902 32,454,577 538 AD LDL 0.64 0.41 1.69 × 10−4

964 6 32,539,568 32,586,784 26 AD LDL 0.34 0.11 1.14 × 10−3

966 6 32,629,240 32,682,213 161 AD LDL 0.76 0.58 1.72 × 10−5

2351 19 45,040,933 45,893,307 369 AD LDL 0.34 0.11 2.21 × 10−100 0.52

2351 19 45,040,933 45,893,307 371 AD Triglycerides 0.26 0.07 1.02 × 10−4 0.26

964 6 32,539,568 32,586,784 26 AD Total
cholesterol 0.41 0.17 1.22 × 10−3

966 6 32,629,240 32,682,213 161 AD Total
cholesterol 0.51 0.26 3.85 × 10−4

1351 8 125,453,323 126,766,827 1102 AD Total
cholesterol 0.30 0.09 1.04 × 10−79

2351 19 45,040,933 45,893,307 373 AD Total
cholesterol 0.38 0.14 3.86 × 10−9 0.40

965 6 32,586,785 32,629,239 651 AD Angina
pectoris 0.34 0.12 2.69 × 10−4

2351 19 45,040,933 45,893,307 2620 AD Angina
pectoris 0.37 0.14 1.29 × 10−10 0.35

963 6 32,454,578 32,539,567 89 AD Cardiac
dysrhythmias −0.38 0.14 7.25 × 10−6 −0.38

2351 19 45,040,933 45,893,307 2620 AD Coronary arte-
riosclerosis 0.53 0.28 9.80 × 10−28 0.53

2209 17 45,883,902 47,516,224 4658 AD Ischemic
heart disease 0.33 0.11 1.28 × 10−3

2351 19 45,040,933 45,893,307 2620 AD Ischemic
heart disease 0.44 0.19 6.70 × 10−17 0.38

964 6 32,539,568 32,586,784 496 AD Myocardial
infarction 0.41 0.16 8.95 × 10−4

2351 19 45,040,933 45,893,307 2620 AD Myocardial
infarction 0.45 0.20 3.37 × 10−14 0.43

AD: Alzheimer’s disease; CAD: coronary artery disease; Chr: chromosome; HDL: high-density lipoprotein; LAVA:
local analysis of [co]variant associations; LDL: low-density lipoprotein; p: ρ-value; SNP (n): total number of
single-nucleotide polymorphisms.

We further assessed the chromosome and loci for each significant pairwise correlation
hotspot (Table 7 and Figure 2). Chromosome 19 and Chromosome 6 were each observed
with the highest number (n = 8) of pairwise trait associations (Figure 2). On chromo-
some 19, pairwise trait associations were observed at a singular locus region (chr19: 2351
[45,040,933–45,893,307]), whereas on chromosome 6, associations were observed across
multiple locus positions (chr 6: 962 [32,208,902–32,454,577], 963 [32,454,578–32,539,567],
964 [32,539,568–32,586,784], 965 [32,586,785–32,629,239], and 966 [32,629,240–32,682,213])
(Figure 2).

Additionally, for lipids, including AD–LDL, we found local genetic correlations
on chromosome 6 (chr6: 962 [32,208,902–32,454,577], 964 [32,539,568–32,586,784], and
966 [32,629,240–32,682,213]), and chromosome 19 (chr19: 2351 [45,040,933–45,893,307])
(Table 7 and Figure 2). For AD–total cholesterol, we observed local correlations on
three chromosomes including chromosome 6 (chr 6: 964 [32,539,568–32,586,784], and
966 [32,629,240–32,682,213]), chromosome 8 (chr 8: 1351 [125,453,323–126,766,827]), and
chromosome 19 (chr19: 2351 [45,040,933–45,893,307]) (Table 7 and Figure 2). On the other
hand, for CAD traits, for AD–angina pectoris we observed local correlations on chromo-
some 6 (chr6: 965 [32,586,785–32,629,239]), for AD–cardiac dysrhythmias on chromosome
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6 (chr6: 963 [32,454,578–32,539,567]), and for AD–ischemic heart disease on chromosome
17 (chr17: 2209 [45,883,902–47,516,224]). Both AD–angina pectoris and AD–ischemic heart
disease were also observed on chromosome 19 (chr19: 2351 [45,040,933–45,893,307]) (Table 7
and Figure 2). Table 7 and Figure 2 summarise other identified loci.
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2.7. Comparing LDSC and LAVA Results

To compare the global and local genetic correlation results across the pairs of traits
assessed, we utilised the ‘rg’ (genetic correlation) estimates for LDSC and the ‘Mean.RHO’
(average of RHO estimates) from LAVA. We then assessed whether these measures met their
respective pairwise testing correction cutoffs to determine if they had significant differences.
(Tables 2 and 7 and Figure 3). Firstly, we examined whether any significant correlations
identified in LDSC were absent in LAVA and vice versa. In our primary analysis, following
adjustments for pairwise testing, we detected a positive correlation between AD and ‘non-
specific chest pain’ using LDSC (rg = 0.22, p = 2.06 × 10−8, see Table 2). Conversely, in LAVA,
the correlations between these traits were only marginally significant and did not survive
correction for pairwise testing (p = 1.43 × 10−3, see Figure 3 and Supplementary Table S31).
Likewise, employing LDSC, we identified a significant positive correlation between AD
and CAD (rg = 0.15, p = 3.74 × 10−4, see Table 2); however, in LAVA, these correlations
were only significant at the nominal level (see Figure 3 and Supplementary Table S31).
On the other hand, with LAVA, following adjustments for pairwise testing correction, we
identified a significant negative correlation between AD and HDL (Mean.RHO = −0.29,
p = 3.75 × 10−10, see Table 3) and a significant and positive correlation between AD and
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LDL (Mean.RHO = 0.52, see Table 3) and AD and total cholesterol (Mean.RHO = 0.40, see
Table 3); however, these pairwise traits were evidenced as non-significant in our LDSC
analysis (see Supplementary Table S2).
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Figure 3. Comparison of LDSC and LAVA assessments for lipids, CAD traits, and Alzheimer’s
disease. Figure explained: Figure 3 illustrates the comparative results of genetic correlations between
various traits assessed using two distinct methods: LDSC and LAVA. This figure provides a visual
representation of how these methods yield different insights into the genetic relationships of AD with
lipids and CAD traits. For example, the figure highlights significant genetic correlations detected
between pairs of traits using LDSC and LAVA and shows where the two methods agree or differ.
By analysing these differences, Figure 3 underscores the importance of using multiple analytical
approaches to gain a comprehensive understanding of genetic correlations, offering insights into how
genetic factors may differentially influence the studied traits. There are three areas of comparison:
(a) Significant in LDSC but not in LAVA: (i) AD and non-specific chest pain: a significant positive
correlation in LDSC but only marginal significance in LAVA; (ii) AD and CAD: a significant positive
correlation in LDSC but only nominally significant in LAVA. (b) Significant in LAVA but not in LDSC:
(i) AD and HDL: significant negative correlation in LAVA but not significant in LDSC; (ii) AD and
LDL: significant positive correlation in LAVA, but not significant in LDSC; (iii) AD and TC: significant
positive correlation in LAVA, but not significant in LDSC. (c) Concordance in effect for significant
results: (i) AD and cardiac dysrhythmias: significant positive correlation in LDSC but a significant
negative correlation in LAVA. AD: Alzheimer’s disease; CAD traits: coronary artery disease traits;
HDL: high-density lipoprotein; TC: total cholesterol; LAVA: local analysis of [co]variant associations;
LDL: low-density lipoprotein; LDSC: linkage disequilibrium score regression.

Secondly, we investigated concordance in the direction of effect between LDSC and
LAVA. For example, we assessed whether the observed positive correlation in LDSC is
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consistent with LAVA’s directionality, whether LAVA shows an opposing trend or did
not detect any significant correlation. For AD and cardiac dysrhythmias, LDSC found a
significant positive correlation (rg = 0.14, p = 3.49 × 10−4); however, LAVA analysis repre-
sented an opposing output, being a significant negative correlation (Mean.RHO = −0.38,
p = 7.25 × 10−6) (Figure 3).

3. Discussion

Research has long suggested that lipids play a role in AD [15,16,18,19]. Similarly,
observational studies indicate a potential comorbid relationship between AD and CAD
traits [22,23]. Evidence also shows that lipids are implicated in CAD traits [12–14]. However,
the nature of AD’s association with lipids and CAD traits remains largely unresolved [9,17,54].
In this study, we performed a comprehensive analysis to systematically assess the genetic
relationship of AD [28,29] with 13 lipids (from eight representative classes) [12,51,52]
and seven CAD traits, using well-regarded and advanced statistical genetic analytic
tools [39–48,50]. Our study reveals noteworthy findings, providing new insights into the
complex relationships between these traits.

Our comprehensive LDSC analysis (discovery and validation sets) reveals a significant
and positive global genetic correlation between AD and three lipid traits: LDL, triglycerides,
and total cholesterol. These correlations suggest that, at the least, a proportion of individuals
with a genetic predisposition to elevated levels of the lipids may have an increased risk of
AD. However, not all lipid traits were significantly associated with AD. For example, we
did not observe a significant global genetic correlation between AD and HDL, although our
gene-level overlap analysis uncovered this association. This selective association suggests
that certain lipid traits may have a more direct genetic link with AD, potentially through
specific pathways. In contrast, many lipids assessed were genetically correlated with CAD
traits. Specifically, we found significant genetic correlations between CAD traits and lipid
profiles such as HDL, LDL, triglycerides, and total cholesterol, aligning with the existing
literature that underscores the genetic interplay in cardiovascular risk factors [55,56]. The
negative correlation between HDL and CAD traits is consistent, generally (‘generally’
because a U-shaped relationship is also known [57]), with studies highlighting HDL’s
protective role against CVD, while the positive correlations observed between triglycerides
and CAD traits reinforce the view that elevated triglyceride levels are a significant risk
factor for cardiovascular events [56].

Interestingly, our study also reveals a negative correlation between coronary arte-
riosclerosis and 154 SM C16:1 sphingomyelin, suggesting potential unexplored pathways
involving lipid metabolism that warrant further investigation. Contrasting findings have
been reported on the role of various sphingolipids on CVD risk [58–60]. Our current
findings, however, provide genetic evidence supporting the potential association of the
154 SM C16:1 sphingomyelin with a reduced risk of a CAD trait while highlighting the
complexity of lipid interactions in cardiovascular pathology. The finding that all CAD traits
were positively correlated with AD (supported strongly by our gene-level genetic overlap
results), despite only some lipids being associated with AD, suggests a possible indirect
pathway linking some lipids to AD through CAD traits. It is conceivable that the genetic
factors contributing to CAD traits, which are closely associated with a broad range of lipid
profiles, also increase the risk of AD. This observation could indicate a shared genetic
architecture or common risk factors that predispose individuals to both CAD and AD.

Our global genetic correlation findings contrast with some studies, such as those of Zhu
et al. [61], which evaluated the genetic correlation between AD and specific lipid traits using
the LDSC approach. Unlike Zhu et al. [61], we found no significant correlation between AD
and HDL (although our gene-level analysis made this discovery). Additionally, our study
uncovered a notable positive correlation between AD and other lipids, including LDL,
triglycerides, and total cholesterol, which were not identified in Zhu et al.’s analysis [61].
Furthermore, Grace et al. [17] reported no genetic correlation between the two conditions
in their LDSC cross-trait analysis between AD and CAD. In contrast, our investigation
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revealed a significant positive genetic correlation of AD with CAD and all CAD-related
traits evaluated in our study (not just CAD). These disparities may arise from variations
in the datasets analysed, including differences in sample sizes. In the current study, we
conducted a comprehensive assessment by integrating additional data, utilising relatively
larger sample sizes, and assessing the potential partial replication of our results, thereby
enhancing the robustness of our investigation.

To deepen our understanding of the relationship between AD, lipids, and CAD traits,
we conducted bi-directional 2SMR analyses. Our findings did not support a causal link
between AD, lipids, and CAD traits, regardless of the direction of analysis—whether AD
was used as the exposure or outcome variable. Our results remained consistent across
various sensitivity tests and MR models, including the MR-Egger intercept for a pleiotropy
test, the MR-Egger model, the weighted median, and the MR-PRESSO method. These
outcomes partially align with the findings of Grace et al. [17], where CAD was causally
associated with a 7% increased LOAD risk, primarily attributed to variants in the APOE
region. However, the association dissipated upon excluding the APOE region [17]. In
contrast, our analysis encompassed all IVs satisfying the MR assumptions in examining
the relationship between AD and the seven CAD traits—not solely CAD as assessed by
Grace et al. [17]. Our findings revealed no evidence of a causal association between AD and
CAD traits. Thus, while AD is genetically correlated with CAD (as observed in our study
but not in Grace et al. [17]), MR results suggest that causal inference cannot explain their
relationship. Notably, a recent study [37] reported a significant causal association between
AD and HDL. This finding was not evident in our study, and the reported direction of
causation contradicts the negative genetic correlation observed between AD and HDL by
others [17,61], revealing inconsistent findings, which may be explained by the datasets
analysed and the U-shape relationship of HDL [57], suggesting that the lipid is not a
homogeneous entity. The lipid consists of various subtypes with potentially different
functions. The protective effects of HDL might depend on its functionality rather than its
concentration alone.

Our analysis delves deeper into understanding the correlations at a local level, focusing
on specific genomic loci [39,50]. Even in instances where no global genetic correlation was
observed, correlations may still exist at specific genomic regions, thus underscoring the fo-
cus of our analysis. In this regard, we utilised a newly developed and potentially more pow-
erful analysis tool, LAVA [50], and our investigation yielded essential insights. For instance,
we identified 18 significant bivariate local genetic correlations across eight loci, contributing
to the association between AD, lipids, and CAD traits. These loci were distributed across
chromosomes 6, 8, 17, and 19. Notably, the locus at 2351 (chr19: 45,040,933–45,893,307)
exhibited significant involvement across multiple traits, consistently showing a positive
correlation in all analyses except for AD–HDL, which demonstrated a negative association.

Comparing LAVA and LDSC results, we observed, firstly, concordance between the
global and local genetic correlation for AD and lipid traits, namely HDL, LDL, triglyc-
erides, and total cholesterol, as well as for CAD traits, including angina pectoris, coronary
arteriosclerosis, ischemic heart disease, and myocardial infarction, providing additional
evidence of shared genetic components of AD with these traits [39,50]. Our gene-level
genetic overlap assessment further supported and highlighted these findings [41–43]. Of
note, Zhu et al. [61] utilised p-Hess for their local genetic correlation analyses and reported
only one significant region, on chromosome 19, for the local genetic correlation between
AD and LDL. In our study, using LAVA for the local genetic correlation between AD and
LDL, we found a significant hotspot on chromosome 19, as well as multiple loci (962,
964, and 966) on chromosome 6. LAVA has previously been shown (through extensive
simulations) to demonstrate well-controlled type 1 error and superior performance over
existing approaches, including p-Hess [50,62]. Hence, we consider our findings robust,
providing new insights into the relationship of these traits.

Secondly, our findings revealed a discordance between the results of LDSC and LAVA
regarding the correlation between AD and cardiac dysrhythmias, particularly regarding
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the direction of the effects. While LDSC suggested a positive genetic correlation, LAVA
revealed a negative association at several identified loci. Additionally, discordance was
observed between AD and other CAD traits, such as non-specific chest pain and CAD.
For example, while LDSC indicated a significant and positive global genetic correlation,
LAVA’s results for these pair of traits did not survive pairwise testing correction (although
nominally significant). These findings remained largely consistent in the replication set.
The discrepancies observed between LDSC and LAVA results underscore the intricate na-
ture of genetic interactions and emphasise the importance of employing multiple analytical
approaches when investigating genome-wide genetic correlations [42,43,63]. Furthermore,
our LAVA analysis revealed that several of the identified pleiotropic loci were at chromo-
some 19 and chromosome 6, indicating that these are the local genomic loci contributing
more disproportionately to the relationship between AD, lipids, and CAD traits. On the
other hand, we found local genetic correlations for AD—total cholesterol (chr8: locus 1351)
and for AD—ischemic heart disease (chr17: locus 2209), indicating that these hotspots
represent important targets for further investigation in AD and the respective CAD traits.

We performed further analysis to identify GWS genes (sentinel genes) overlapping be-
tween AD, lipids, and CAD traits in our datasets. Consistent with previous studies [14,35,64],
our study revealed that APOE, TOMM40, and many genes on chromosome 19 are shared
across AD, multiple lipids (such as HDL, LDL, triglycerides, and total cholesterol), and
CAD traits (including coronary arteriosclerosis, myocardial infarction, and ischemic heart
disease). Further, we assessed genes reaching GWS following our FCP analysis. Findings
in this analysis revealed multiple genes not previously GWS for AD, lipids, or CAD traits
but reached the status, potentially indicating them to be putatively novel genes (based on
our data); there is a possibility they have been identified in other GWAS data, which would,
in essence, validate our finding. Also, we identified a GWS sentinel gene on chromosome
17 and others reaching the status through the FCP analysis on chromosomes 2, 6, 7, 8, and
16. Our findings for these GWS genes agree largely with our LAVA local genetic correlation
results, which revealed chromosomes 19 and 6 as major hotspots for AD and the named
lipids and CAD traits.

Our study is notable for utilising a comprehensive suite of complementary and highly
regarded statistical genetic analysis models. These methods were rigorously employed
to assess the intricate relationship between AD, selected representative lipids, and CAD
traits, offering new insights into the complex interplay among these traits. Nonetheless,
our study has limitations that warrant careful consideration when interpreting its findings.
Firstly, the GWAS data utilised are from individuals of European ancestry; caution is
advised when extrapolating or comparing our findings to populations of diverse ancestries.
Secondly, while sample overlap is known to confound some of the analyses (for example,
genetic correlation and MR analyses), our preliminary assessment indicates no evidence
for substantial overlap of samples between AD and the traits assessed. Lastly, despite our
study’s inability to establish a significant causal effect between AD and the traits examined,
we acknowledge the possibility of such a relationship. Notably, some GWAS datasets
employed in our study may be limited by the number of instrumental variables available,
potentially influencing our present results. Consequently, future research endeavours
leveraging more robust GWAS datasets, not necessarily based on sample size [65] (as they
become available), are worthwhile to further elucidate and refine the causal relationships
observed in our study.

4. Materials and Methods
4.1. Data Sources

We assessed the relationship between AD and 13 representative lipid traits encom-
passing eight major lipid classes. These lipid classes include fatty acyls, which comprise
palmitic acid [51], stearic acid [51], and caprylic acid [51]; glycerophospholipids, repre-
sented by beta-Glycerophosphoric acid [51] and lysophosphatidylinositol [51]; lipoproteins
including HDL and LDL [12]; neutral lipids, denoted by triglycerides [12]; medium-chain
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fatty acids, specifically dodecanoic acid (also known as lauric acid) [51]; steroids and
steroid derivatives, encompassing total cholesterol (TC) [12]; and sphingolipids, repre-
sented by palmitoyl sphingomyelin [51], 154 SM C16:1 sphingomyelin [52], and 156 SM
C18:1 sphingomyelin [52].

Detailed information regarding the GWAS data for each lipid trait is presented in
Table 1, with additional cohort-specific details available in Supplementary Table S1. The
GWAS summary data were sourced from popular databases, repositories, and large-scale
research consortia. These sources include data for beta-Glycerophosphoric acid (sam-
ple size [N] = 5912) [51], caprylic acid (N = 7802) [51], dodecanoic acid (N = 7793) [51],
Lysophosphatidylinositol (N = 7797) [51], palmitic acid (N = 7800) [51], palmitoyl sphin-
gomyelin (N = 7814) [51], and stearic acid (N = 7803) [51], all of which were obtained from
the TwinsUK and KORA cohort (Cooperative Health Research in the Region of Augsburg).
Additionally, we accessed lipid GWAS data, including 154 SM C16:1 sphingomyelin C16:1
(N = 7428) [13] and 156 SM C18:1 sphingomyelin C18:1 (N = 7428) [51] from dataverse,
comprising seven cohorts originating from five countries, including the Netherlands, Ger-
many, Australia, Estonia, and the UK. Other lipid GWAS, including LDL (N = 188,577) [12],
HDL (N = 188,577) [12], triglycerides (N = 188,577) [12], and TC (N = 188,577) [12], were
sourced from the Global Lipids Genetics Consortium (GLGC 2013) and the University of
Michigan [12].

Moreover, we assessed the relationship of seven CAD traits with AD using publicly
available GWAS summary data. These traits encompassed angina pectoris (cases = 16,175 and
controls = 377,103, N = 393,278), cardiac dysrhythmias (cases = 24 681 and controls = 380,919,
N = 405,600), coronary arteriosclerosis (cases = 20,023 and controls = 377,103, N = 397,126),
ischemic heart disease (cases = 31,355 and controls = 377,103, N = 408,458), myocardial
infarction (cases = 11,703 and controls = 377,103, N = 388,806), and non-specific chest
pain (cases = 31,429 and controls = 377,532, N = 408,961). These GWAS summary data
comprised full White British samples and were sourced from the Lee Lab for Statistical
Genetics (https://www.leelabsg.org/resources, accessed between 1 November 2022 and
30 November 2022) [53]. Some of these data or others from this source have been utilised
in previous studies [44,66,67]. Additionally, we utilised GWAS data for CAD from the
CARDIoGRAMplusC4D (CGCC), encompassing 22,233 cases and 64,762 controls, with a
total sample size of 86,995 [13].

We used two large-scale GWAS summary data for AD in the present study. The
first of these comprised clinically diagnosed AD and AD-by-proxy cases (cases = 71,880
and controls = 383,378) [28]. For possible (partial) replication of our findings, we also
used AD GWAS summary data from the Informed Genetics Annotated Patient (iGAP)
Registry, which includes contributions from research consortia such as the European
Alzheimer’s Disease Initiative, Genetic and Environment Risk in Alzheimer’s Disease,
Alzheimer’s Disease Genetic Consortium, and Cohorts for Heart and Ageing Research in
Genomic Epidemiology) (EADI, GERAD, ADGC, and CHARGE) (N = 17,008 cases and
37,154 controls) [29]. Supplementary Table S1 provides details about the data sources, along
with relevant download links. Comprehensive information on the GWAS datasets and
their corresponding quality control protocols can be found in their relevant referenced
publications. All GWAS summary data analysed in the present study were derived from
individuals of European descent, ensuring genetic homogeneity across our investigations.

4.2. Statistical Analyses

We employed well-regarded analytical approaches to comprehensively investigate
the genetic relationships of AD with lipids and CAD traits. As represented in Figure 1, we
performed analyses at both the SNP and gene levels. SNP-level analysis comprises genetic
correlation assessment at the global and local levels. To assess global (genome-wide) and
local (specific genomic locations) genetic correlations of AD with lipids and CAD traits, we
utilised the linkage disequilibrium score regression (LDSC) [39] and the local analysis of
[co]variant association (LAVA) methods [50], respectively. Additionally, at the SNP level,
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we investigated the potential causal links of AD with lipids and CAD traits using the 2SMR
analysis method [40]. Furthermore, we performed analyses at the gene-based level, given
that genes are more closely related to biology and can provide greater power for gaining
insights into underpinning mechanisms of complex traits. First, we conducted gene-based
association analysis and utilised their results to assess genetic overlap at the gene level,
complementing our SNP-level genetic overlap assessment [42–48]. This investigation
provides further insights into the interplay of AD with lipids and CAD traits beyond what
is possible at the SNP level. Second, we utilised our gene-based association analysis results
to assess genes shared by AD, lipids, and CAD traits.

4.3. Assessing Global Genetic Correlation

We conducted a comprehensive genome-wide genetic correlation assessment using
the LDSC analysis method [39]. LDSC is a powerful statistical genetic technique employed
to estimate the global genetic correlation between multiple traits, utilising GWAS summary
data [39]. For our analyses, we used the standalone version of the software (https://github.
com/bulik/ldsc, accessed between 20 December 2022 and 25 January 2023). We used
precomputed LD scores derived from the European population’s 1000 Genome Project data
and used common SNPs in HapMap3 in all our analyses. We first performed pairwise
cross-trait analysis, assessing the genetic correlation between AD and each of the 13 lipid
traits. Subsequently, we examined the genetic correlation between AD and seven CAD
traits. To complete a three-way assessment, we also examined the genetic correlation
between all seven CAD traits and the 13 lipid traits.

We employed another set of GWAS summary data for AD to test the reproducibility
of our findings. Notably, LDSC adjusts for potential sample overlap between different
GWAS datasets when the genetic covariance intercepts are not constrained [39]. In our
investigation, we initially performed LDSC analyses without constraining the genetic
covariance intercept, probing for any potential sample overlap between AD, CAD, and lipid
GWAS datasets. Our findings indicated that the estimated genetic covariance intercepts
were not significantly different from zero, signifying no evidence of substantial overlap of
samples of AD and lipids or CAD traits, as detailed in Supplementary Table S2. Therefore,
we reported the LDSC-based genetic correlation results with the genetic covariance intercept
constrained. Accounting for multiple pairwise bivariate tests in LDSC (our analyses were
performed at a pairwise level), we considered genetic correlation findings statistically
significant at ρ < 0.025.

4.4. Gene-Level Genetic Overlap Assessment

We assessed the gene-level overlap of AD with lipids and CAD traits, aiming to inves-
tigate whether the traits share more genes than would be expected by chance. Gene-level
association studies complement SNP-based investigations, providing more interpretable
results for deciphering the intricate relationships between AD, lipids, and CAD traits.
Our analytical approach in this study is grounded in similar methodologies employed in
previous research [42–49].

Firstly, we performed gene-based association analysis separately for AD, lipids, and
CAD traits using the multi-marker analysis of genomic annotation (MAGMA version 1.08)
within the FUMA online platform (https://fuma.ctglab.nl, version 1.5.2, accessed between
4–5 April 2023) [41]. Our objective was to ensure uniform gene-based tests across the board;
hence, we restricted our analysis to SNPs shared by AD and each of the respective lipid
and CAD trait GWASs. We used the EUR 1000G Phase 3 data as a reference panel in our
gene-based association analyses, and SNPs were assigned to genes in MAGMA with a
window size of ‘±0 kb’.

Secondly, we leveraged the outcomes of the gene-based analysis for AD, lipids, and
CAD traits, extracting genes associated with each trait at a significance threshold of
ρgene < 0.05 for subsequent evaluation of gene-level genetic overlap. At this threshold,
we identified the total number of genes linked to AD and the corresponding lipid and CAD
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trait GWASs. Additionally, we ascertained the total number of genes that exhibited overlap
across paired traits. Finally, we assigned lipids and CAD traits as the discovery sets and AD
as the target. We used the exact binomial test to compare the expected proportion of gene
overlap (the null) with the observed proportion of gene overlap. The anticipated proportion
of gene overlap (expected) was calculated as the total number of genes associated with
each lipid or CAD trait at ρgene < 0.05 divided by the total number of genes generated from
the gene-based analysis for the respective lipids or CAD traits [42,43].

In contrast, the observed proportion of gene overlap represented the ratio of over-
lapping genes, for example, those shared between AD and CAD-angina pectoris GWAS
at ρgene < 0.05, relative to the total number of genes linked to AD at ρgene < 0.05 [42,43].
The one-sided exact binomial test, implemented within the R statistical platform, was then
employed to evaluate whether the observed proportion of the gene overlap surpassed
what would be expected by random chance. For a gene-level genetic overlap to be deemed
significant, the observed proportion of gene overlap must exhibit statistical significance be-
yond the null hypothesis. In the ‘result explained’ sub-section (under Table 4), we provided
additional information on the analyses, using an example from our findings.

4.5. Identifying Genes Shared by AD, Lipids, and CAD Traits

We assess genes shared by AD across lipids and CAD traits at two levels. First, we
identify GWS sentinel genes (Pgene < 2.60 × 10−6), genes that were already GWS in our data
and overlap between AD and each of the lipids or CAD traits assessed. Further, we identify
GWS sentinel genes overlapping AD and two or more lipids or CAD traits for insights
into genes shared across these disorders. Second, using a similar approach to previous
studies, we employed the FCP method to merge gene association p values for AD and each
lipid and CAD trait, allowing us to identify their shared genes that achieved GWS. For
this analysis, we used the results from equivalent gene-based association analyses (outputs
from MAGMA) for the pair of AD GWASs and each lipid or CAD trait. We first identified
GWS genes for AD and each lipid or CAD trait separately, applying an adjusted p value
of 2.60 × 10−6. We then combined the association p values using the FCP approach. The
FCP analysis results helped us identify shared genes in two broad categories. First are
the GWS genes for AD shared by lipids or CAD traits and vice versa (with evidence for
improvement in the FCP analysis). Second are the genes not GWS in either AD or lipids or
CAD traits GWAS but reaching this status after the FCP analysis (putatively novel shared
genes based on our data).

4.6. Causal Relationship Assessment

We conducted 2SMR analyses to comprehensively investigate the bi-directional causal
relationship between CAD traits, lipids, and AD. Inclusion criteria for the 2SMR analysis
encompassed only those traits that exhibited significant global genetic correlation and
gene-level overlap with AD. MR is a robust statistical method that leverages instrumental
variables to mimic randomised control trials, providing a cost-effective means of estimating
causality between two traits, referred to as the ‘exposure’ and ‘outcome’ variables [40].
In this study, our 2SMR analysis was performed using the standalone 2SMR package
(https://mrcieu.github.io/TwoSampleMR/) (accessed between 23 October 2023 and 31
January 2024), implemented within the R statistical package (v4.3.0).

For our analysis, we assessed lipids (HDL, LDL, triglycerides, and total cholesterol)
and the seven CAD traits’ GWAS as the ‘exposure’ against the AD GWAS (from the Jansen
et al. dataset [28]) as the ‘outcome’ variables. Instrumental variables (IVs) for the exposure
data were selected at the genome-wide significance level (ρ < 5 × 10−8), and LD clumping
was performed (at r2 < 0.001) to guarantee the independence of the IVs. Subsequently, we
extracted the IVs from the outcome data and carried out data harmonisation to ensure
that SNP effects corresponded to the same allele for both the exposure and outcome data.
In a bi-directional analysis, we also performed a 2SMR analysis using AD GWAS as the
exposure and both lipids and CAD traits as outcome data. Moreover, we used data from
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another AD GWAS (containing only clinically-diagnosed cases) to test the reproducibility
of our 2SMR findings [29].

Our primary 2SMR approach employed the inverse variance-weighted (IVW) model,
recognised as the most powerful model for detecting causal associations in MR analysis
when all instruments are valid [40]. To evaluate the potential violation of the assumption
of no horizontal or directional pleiotropy, we employed the MR-Egger intercept, expecting
that the intercept should not significantly deviate from zero where the assumption of
no unbalanced pleiotropy holds. Additionally, we implemented two supplementary MR
models, namely the weighted-median and the MR-Egger regression methods, for sensitivity
testing and to complement the IVW model in assessing causality [68,69]. The weighted-
median and MR-Egger models are robust to genetic heterogeneity. They can provide
estimates even when a substantial proportion of the IVs are invalid, making them essential
for rigorous causal assessment. Lastly, we implemented the Mendelian randomisation
pleiotropy residual sum and outlier (MR-PRESSO) method to detect (global test) and
correct (outlier test) horizontal pleiotropy and test for significant distortion in the causal
estimates [70].

Additionally, Figure 4 outlines the principles of Mendelian randomisation analysis
and assumptions that need to be met for unbiased causal estimates between all seven CAD
traits and four lipids (HDL, LDL, triglycerides, and total cholesterol) and AD [50,70].
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Figure 4. Two-sample Mendelian randomisation assumptions and workflow summary [40,71]. A
causal effect of exposure can be inferred only if the three assumptions for the instrumental variables
are met [40,71]. The instrumental variable must have a robust association with the exposure variable
(Assumption 1), the instrumental variable may not be related to any known or unknown confounding
causal factors of the exposure variable and the outcome variable (Assumption 2), and the instrumental
variable may only be related to the outcome variable through the exposure variable [40,71]. Assump-
tions 2 and 3 can help determine the absence of pleiotropy for the instrumental variable [40,71].
CAD traits: coronary artery disease traits; HDL: high-density lipoprotein; LDL: low-density lipopro-
tein; MR: two-sample Mendelian randomisation; MR-PRESSO: Mendelian randomisation pleiotropy
residual sum and outlier; SNPs: single-nucleotide polymorphisms. * We conducted a bidirectional MR
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analysis by changing the direction of the analysis. Lipids and CAD traits were used as exposure, and
AD was used as the outcome variable. In the reverse analysis, we used AD as the exposure, while
lipids and CAD traits were utilised as the outcome variables.

4.7. Local Genetic Correlation Analysis

To enhance our understanding beyond the broad global genetic correlations, we
conducted local genetic correlation analyses for the relationship of AD with lipids and
CAD traits. Global genetic correlations, such as those estimated by the LDSC method,
provide valuable insights into the average genetic relationships between two traits across
the entire genome [39,72]. However, they may mask significant genetic correlations when
local genetic effects act in opposing directions at different genetic loci. To refine our
comprehension of genetic relationships, we harnessed the power of a recently developed
integrated framework for local genetic correlation analysis known as LAVA (local analysis
of [co]variant association) [50].

LAVA is a versatile method that can simultaneously model multiple binary or continu-
ous phenotypes, facilitating univariate, bivariate, and multivariate assessments between
phenotypes, including partial correlation analysis between two or more traits [50]. We
implemented LAVA through RStudio, enabling us to estimate bivariate local genetic correla-
tions for AD, lipids (specifically HDL, LDL, triglycerides, and total cholesterol), and seven
CAD traits. Our analysis first evaluated potential sample overlap between the included
traits, which was assessed using the LDSC approach [39]. To ensure the integrity of LAVA
results, aligning the direction of effect allele consistently across all phenotypes is vital.
LAVA achieves this by extracting SNPs common to the GWAS summary statistics data
and harmonising their effect alleles with reference genotype data (1000G EUR) before
analysis [50]. We utilised the semi-LD independent locus definition file provided by the
program developer in the present study [50].

Subsequently, we conducted LAVA-based univariate analyses to estimate local genetic
heritability for AD, lipids, and CAD traits. A robust signal in the local univariate analysis is
a prerequisite for detecting bivariate genetic correlations in LAVA [50]. From the outcomes
of the univariate analysis, we selected traits for bivariate analysis at a significance level
of ρ < 5 × 10−2 (to allow for more bivariate analysis without the risk of false positives
as recently implemented in [49]). Finally, similar to a recent study [49], we conducted
pairwise bivariate local genetic correlation analyses across the genome for AD, lipids (HDL,
LDL, triglycerides, and total cholesterol), and seven CAD traits. Applying a Bonferroni
correction for the highest number of bivariate tests performed (AD Jansen et al. [28] vs. CAD
(35 bivariate tests), we considered bivariate analysis results significant at ρ < 1.4 × 10−3

(that is 0.05/35).

5. Conclusions

Our study contributes to the ongoing investigation into the complex relationships
between AD, lipids, and CAD traits. Despite the previous literature suggesting connections
of AD with lipids and CAD, the precise nature of these relationships remained unresolved.
Through a comprehensive analysis integrating genetic data from large cohorts, we system-
atically assessed the cross-trait genetic overlap of AD with 13 representative lipids and
seven CAD traits, leveraging robust analytical methods. Our study uncovered several key
findings. The global genetic correlation analyses revealed significant associations between
AD and specific lipid traits, including LDL, triglycerides, and total cholesterol, suggesting
shared genetic components that may predispose individuals to AD and dyslipidaemia.
Furthermore, we identified a positive genetic correlation between AD and various CAD
traits, indicating a potential comorbid relationship between these disorders. Gene-level
analyses largely reinforce these findings and highlight the genetic overlap between AD
and high-density lipoproteins (HDLs), which was not evident in the global genetic corre-
lation assessment. Notably, our bi-directional Mendelian randomisation analyses did not
provide evidence for a causal link between AD, lipids, and CAD traits, underscoring the
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complexity of these genetic relationships and indicating that shared genetic susceptibility
may better explain their observed correlations. Local genetic correlation analysis using
the LAVA method pinpointed specific genomic loci, particularly on chromosomes 6, 8, 17,
and 19, significantly contributing to the association between AD and these traits, agreeing
largely with our identified shared genes for AD and each lipid or CAD trait. Completing
a three-way analysis, we confirm a strong genetic correlation between lipids and CAD
traits, with HDL and sphingomyelin demonstrating negative correlations. Current findings
provide valuable insights into the genetic underpinnings of AD and its relationship with
lipids and CAD traits, offering potential avenues for further research and therapeutic de-
velopment. Overall, our study enhances understanding of the complex genetic landscape
of AD and its connections with cardiovascular health, providing a foundation for further
investigations aimed at unravelling the underlying mechanisms and identifying novel
treatment strategies.
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