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Abstract: Regular exercise improves several functions, including cognition, in patients with stroke.
However, the effect of regular exercise on neurogenesis related to cognition remains doubtful. We
investigated the most effective exercise intensity for functional recovery after stroke using RNA
sequencing following regular treadmill exercise. Photothrombotic cerebral infarction was conducted
for 10-week-old male Sprague-Dawley rats (n = 36). A Morris water maze (MWM) test was performed
before a regular treadmill exercise program (5 days/week, 4 weeks). Rats were randomly divided
into four groups: group A (no exercise); group B (low intensity, maximal velocity 18 m/min); group
C (moderate intensity, maximal velocity 24 m/min) and group D (high intensity, maximal velocity
30 m/min). After 4 weeks, another MWM test was performed, and all rats were sacrificed. RNA
sequencing was performed with ipsilesional hippocampal tissue. On the day after cerebral infarction,
no differences in escape latency and velocity were observed among the groups. At 4 weeks after
cerebral infarction, the escape latencies in groups B, C, and D were shorter than in group A. The
escape latencies in groups B and C were shorter than in group D. The velocity in groups A, B, and C
was faster than in group D. Thirty gene symbols related to neurogenesis were detected (p < 0.05, fold
change > 1.0, average normalized read count > four times). In the neurotrophin-signaling pathway,
the CHK gene was upregulated, and the NF-κB gene was downregulated in the low-intensity group.
The CHK and NF-κB genes were both downregulated in the moderate-intensity group. The Raf and
IRAK genes were downregulated in the high-intensity group. Western blot analysis showed that
NF-κB expression was lowest in the moderate-intensity group, whereas CHK and Raf were elevated,
and IRAK was decreased in the high-intensity group. Moderate-intensity exercise may contribute to
neuroplasticity. Variation in the expression of neurotrophins in neurogenesis according to exercise
intensity may reveal the mechanism of neuroplasticity. Thus, NF-κB is the key neurotrophin for
neurogenesis related to exercise intensity.

Keywords: cerebral infarction; aerobic exercise; neurogenesis; neurotrophin; gene expression;
functional recovery

1. Introduction

Post-stroke cognitive impairment (PSCI), which occurs in up to 60% of stroke survivors
and ranges from mild to severe [1], is associated with several adverse outcomes contributing
to a lower quality of life [2]. PSCI may also complicate effective and timely treatment [3].

Regular exercise improves cognitive function in patients with stroke [4]. Activity-
regulated structural and functional changes in hippocampal cells may modulate neuroplas-
ticity [5]. Exercise can promote increased levels of neurotrophic factors, change the levels of
various cytokines, and alter microglial function in the brains of patients with neurodegener-
ative diseases [6]. Long-term exercise training in rats may enhance memory by regulating
brain-derived neurotrophic factor (BDNF) expression and microglial activation [7,8].

Exercise therapy for neurorehabilitation during functional recovery plays a key role in
patients with stroke [9]. However, such patients may have difficulty performing exercise
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properly because mobility and endurance may be restricted by neurologic deficits. An effec-
tive therapeutic exercise program should be precisely prescribed for a favorable outcome
following a stroke.

Nonetheless, the effective exercise intensity for neurogenesis related to cognitive
function remains unclear. A previous study revealed that swimming exercise of moderate-
duration intensity is an effective exercise in a cerebral infarction rat model via neuro-
plasticity [10]. Several studies of treadmill exercise showed that prolonged low-intensity
exercise was more effective than high-intensity exercise [11,12]. Other research revealed
that high-intensity exercise may inhibit neurogenesis compared with low- to moderate-
intensity exercise [13,14], whereas a systematic review reported that acute high-intensity
interval training may enhance executive function in patients with stroke [15]. One recent
study reported that varying intensities of treadmill exercise improved working memory in
rats [16]. Thus, the optimal treadmill exercise protocol for neurogenesis related to cognitive
function remains uncertain.

The aim of the present study was to determine the therapeutic exercise intensity that
most effectively promotes cognitive functional recovery in stroke using RNA sequencing
following regular treadmill exercise.

2. Results
2.1. Morris Water Maze Test of Neurobehavioral Function

The escape latency on the first day after cerebral infarction was 100.97 ± 36.28 s in
group A, 97.67 ± 33.34 s in group B, 115.51 ± 28.23 s in group C, and 115.04 ± 77.44 s in
group D. There was no significant difference among groups (p = 0.798). After 4 weeks, the
escape latencies were 189.90 ± 74.57, 96.89 ± 64.87, 73.51 ± 29.49, and 134.39 ± 47.19 s
in groups A–D, respectively. The follow-up escape latencies in groups B, C, and D were
significantly shorter than those in group A, and latencies in groups B and C were shorter
than those in group D (p = 0.001). Repeated-measures analysis of variance (ANOVA) with
the Duncan post hoc test showed a significant time × group interaction effect (F = 5.851,
p = 0.003). However, no significant effect was shown for time (F = 2.097, p = 0.157) (Figure 1).

The velocities on the first day after cerebral infarction were 31.37 ± 9.30 cm/s in group
A, 27.55 ± 6.22 cm/s in group B, 27.50 ± 8.53 cm/s in group C, and 24.93 ± 7.49 cm/s in
group D. There was no significant difference among the groups (p = 0.406). After 4 weeks,
the velocities were 24.35 ± 2.77, 27.79 ± 4.42, 27.81 ± 3.69, and 20.71 ± 3.71 cm/s in groups
A–D. Respectively, the Duncan post hoc correction revealed faster velocities in groups B
and C compared with groups A and D after 4 weeks of exercise (p = 0.002). However,
repeated-measures ANOVA with the Duncan post hoc test showed no significant effects
for time and time × group interaction (F = 2.375, p = 0.133; F = 0.334, p = 0.567) (Figure 2).

2.2. RNA Sequencing Data

QuantSeq RNA analysis revealed 17,048 gene symbols. We identified several symbols
showing significant fold changes in each exercise group compared with the control group.
Thirty gene symbols related to neurogenesis (Iqgap1, Lrrc7, Coq7, Myef2, Mapk3, Vhl,
Fuom, Pex5, Il33, Kdm4c, Ldb1, Heyl, Baiap2, Kdm1a, Mapkapk5, Epha2, Enah, Snw1,
Nefm, Hsp90aa1, Nr2f6, Btbd6, Bloc1s5, Fbxo7, Cdh11, Trappc4, Cacna1a, Mapk6, Vcan,
and Dag1) were detected (p < 0.05, fold change > 1.0, average normalized read count
[RC] > 4). To use the clustering heatmap, the patterns of gene expression in the low- and
moderate-intensity treadmill exercise groups were similar and different from the control
and high-intensity treadmill exercise groups (Figure 3).
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Figure 1. Escape latency during the Morris water maze test. No differences in escape latency on the 
day after cerebral infarction were found among the groups (p = 0.798). The follow-up escape laten-
cies in groups B, C, and D were significantly shorter than those in group A, and latencies in groups 
B and C were shorter than those in group D (p = 0.001). Repeated-measures ANOVA with the Dun-
can post hoc test showed a significant time × group interaction (F = 5.851, p = 0.003). However, no 
significant effect was shown for time (F = 2.097, p = 0.157). *,† p < 0.05. 
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Figure 1. Escape latency during the Morris water maze test. No differences in escape latency on the
day after cerebral infarction were found among the groups (p = 0.798). The follow-up escape latencies
in groups B, C, and D were significantly shorter than those in group A, and latencies in groups B and
C were shorter than those in group D (p = 0.001). Repeated-measures ANOVA with the Duncan post
hoc test showed a significant time × group interaction (F = 5.851, p = 0.003). However, no significant
effect was shown for time (F = 2.097, p = 0.157). *,† p < 0.05.

2.3. KEGG Mapper Tool Analysis

We subjected the gene symbols with greater expression in the experimental groups
than in the control group (p < 0.05, fold change > 1.0, average normalized RC > 4) to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) mapper tool analysis. We found
changes in gene expression of components of the neurotrophin-signaling pathway after
low-intensity treadmill exercise: the CHK gene was upregulated, and the NF-κB gene was
downregulated (Figure 4). After moderate-intensity treadmill exercise, both the CHK and
NF-κB genes were downregulated (Figure 5). In the high-intensity treadmill exercise group,
gene expression was significantly different compared with the low- and moderate-intensity
exercise groups, with downregulation of the Raf and IRAK genes (Figure 6).
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Figure 2. Velocity during the Morris water maze test. No differences in velocity were noted among
groups on the day after cerebral infarction (p = 0.406). The Duncan post hoc correction revealed faster
velocities in groups B and C compared with groups A and D after 4 weeks of exercise (p = 0.002).
However, repeated-measures ANOVA with the Duncan post hoc test showed no significant effects
for time and time × group interaction (F = 2.375, p = 0.133; F = 0.334, p = 0.567). * p < 0.05.

2.4. Western Blot Analyses

Western blot analyses with antibodies to NF-kB, CHK, Raf, and IRAK were conducted
for the ipsilesional hippocampal tissues 4 weeks following cerebral infarction. The reactivi-
ties of NF-kB protein were 0.461 ± 0.023 µg protein in group A, 0.518 ± 0.468 µg protein
in group B, 0.375 ± 0.037 µg protein in group C, and 0.456 ± 0.079 µg protein in group D.
The expression of the NF-kB protein in group C was weaker than in groups A, B, and D
(p = 0.001) (Figure 7).
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Figure 3. Hierarchical clustering heatmap in each group. Average normalized read count (RC) of
gene expression and fold change of gene expression in each group compared with the control group
(p < 0.05, fold change > 1.0, average normalized RC > 4). The patterns of gene expression in the low-
and moderate-intensity treadmill exercise groups were similar and different from the control and
high-intensity treadmill exercise groups. C: control group (no treadmill exercise); H: high-intensity
treadmill exercise group; L: low-intensity treadmill exercise group; M: moderate-intensity treadmill
exercise group.

The reactivities of the CHK protein were 0.453 ± 0.005 µg protein in group A, 0.472
± 0.003 µg protein in group B, 0.484 ± 0.016 µg protein in group C, and 0.588 ± 0.005 µg
protein in group D. The expression of the CHK protein was stronger in group D than in
groups A, B, and C (p = 0.05) (Figure 8).
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Figure 4. Neurotrophin-signaling pathways in the low-intensity exercise group (coral: upregulation; 
blue: downregulation). The CHK gene was upregulated, and the NF-κB gene was downregulated 
with low-intensity treadmill exercise. The neurotrophin-signaling pathway was elicited with the 
KEGG Mapper Search and Color Pathway tool (http://www.genome.jp/kegg/tool/map_path-
way2.html, accessed on 19 December 2020). 

 

Figure 4. Neurotrophin-signaling pathways in the low-intensity exercise group (coral: upregulation;
blue: downregulation). The CHK gene was upregulated, and the NF-κB gene was downregulated with
low-intensity treadmill exercise. The neurotrophin-signaling pathway was elicited with the KEGG
Mapper Search and Color Pathway tool (http://www.genome.jp/kegg/tool/map_pathway2.html,
accessed on 19 December 2020).
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was elicited with the KEGG Mapper Search and Color Pathway tool (http://www.genome.jp/kegg/
tool/map_pathway2.html, accessed on 19 December 2020).
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Figure 8. Effects of treadmill exercise on CHK protein concentrations. The reactivities of the CHK pro-
tein were 0.4532 ± 0.005 µg protein in group A, 0.4724 ± 0.003 µg protein in group B, 0.4835 ± 0.016 µg
protein in group C, and 0.5883 ± 0.005 µg protein in group D. The expression of the CHK protein was
stronger in group D than in groups A, B, and C. * p = 0.05.

The reactivities of the Raf protein were 0.797 ± 0.016 µg protein in group A, 0.906 ±
0.014 µg protein in group B, 0.973 ± 0.038 µg protein in group C, and 1.059 ± 0.018 µg
protein in group D. The expression of the Raf protein was stronger in group D than in
groups A, B, and C (p = 0.05) (Figure 9).
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Figure 9. Effects of treadmill exercise on Raf protein concentrations. The reactivities of the Raf protein
were 0.797 ± 0.016 µg protein in group A, 0.906 ± 0.014 µg protein in group B, 0.973 ± 0.038 µg
protein in group C, and 1.059 ± 0.018 µg protein in group D. The expression of the Raf protein was
stronger in group D than in groups A, B, and C. * p = 0.05.
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The reactivities of IRAK protein were 0.252± 0.012µg protein in group A, 0.247± 0.011µg
protein in group B, 0.236 ± 0.010 µg protein in group C, and 0.227 ± 0.014 µg protein in group
D. The expression of the IRAK protein was weaker in group D than in group A (p = 0.05)
(Figure 10).
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3. Discussion

Stroke is a neurologic disorder associated with cerebrovascular events, and it often
causes functional deficits. Maximal functional recovery is the primary goal for patients
with stroke. Therapeutic approaches to functional recovery have been applied in such
patients in combination with proper neurorehabilitation management and medical therapy.

In the neurorehabilitation of patients with stroke, the main strategy for neurobehav-
ioral functional recovery is based on neuroplasticity, which is the ability of the brain to
transfer neural connections to a different brain area. Neuroplasticity serves to optimize
neural connectivity after brain tissue damage [17]. However, neuroplasticity may not
be directly correlated with neurobehavioral functional recovery. Exercise intensity may
enhance or decrease neurobehavioral functional recovery in stroke neurorehabilitation.
Therefore, flexible and appropriate exercise intensity is important for patients with stroke
to attain optimal functional recovery based on neuroplasticity.

Neuroplasticity is related to three mechanisms: neurogenesis, angiogenesis, and
synaptogenesis. In particular, neurogenesis involves several neurotrophic pathways that
promote the proliferation, differentiation, repair, and survival of neural tissues in the
brain [18]. Among several neurotrophins that regulate the neurotrophic pathways related
to neurogenesis, the best known are BDNF, nerve growth factor (NGF), neurotrophin-
3, vascular endothelial growth factor, insulin-like growth factor-1, and erythropoietin
in the adult hippocampus [19]. Still, there are many unknown neurotrophic pathways
for neurogenesis by which neurotrophins may modulate neuroplasticity in each area of
the brain.

Csk homologous kinase (CHK) was downregulated in the moderate-intensity group
and upregulated in the low-intensity group, compared with the control group. CHK
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may modulate the terminal differentiation of oligodendrocytes and neurons in the central
nervous system. CHK is involved in the neurite outgrowth of PC12 cells in response
to NGF through its participation in TrkA-signaling [20]. However, overexpression of
CHK in hippocampal neurons facilitates aggregation of cell bodies, axon fasciculation,
and changes in neuronal morphology [21]. The level of CHK expression may enhance or
inhibit neurogenesis.

By contrast, high-intensity treadmill exercise showed different gene expression pat-
terns compared with low- and moderate-intensity exercise. The Raf and IRAK genes were
downregulated with high-intensity treadmill exercise. IRAK-1 and IRAK-4 are recruited to
the receptor complex [22], and lack of IRAK-1 expression in neurons may induce recalci-
trancy of NF-κB activation during Toll-like receptor (TLR) pathway signaling [23]. Further,
Ras/Raf/ERK signaling participates in the neuronal apoptosis observed in the hippocam-
pus in early post-subarachnoid hemorrhage brain injury [24]. The downregulation of Raf
and IRAK may have inhibited neurogenesis by interrupting neuronal apoptosis in the
present research.

The Western blot analysis showed different results: CHK and Raf expression were
elevated, but IRAK expression was decreased in high-intensity treadmill exercise. Thus, the
regulation of CHK, Raf and IRAK would not be the main pathway of neurogenesis related
to exercise intensity if these may affect the process of neurogenesis.

In this study, the regulation of NF-κB was the most important in these neurotrophic
pathways. NF-κB in the central nervous system plays a role in neuroplasticity and neu-
rocognitive function. Previous studies showed that activation of NF-κB through p75NTh
may promote the migration of extracellular matrix proteins during nerve regeneration in
Schwann cells [25]. NF-κB can be activated by BDNF and NGF and may facilitate synapto-
genesis by glutamate [26]. Recent studies have reported that NF-κB is a key neurotrophin
for learning and memory in mice [27,28]. NF-κB may regulate cognitive functions such
as learning and memory by modulating synaptogenesis [29–33] and by regulating den-
drite growth [34]. NF-κB target genes may be essential for neurogenesis by modulating
neurotransmitters, cytokines, and kinases [31,35]. However, we found that the NF-κB gene
was downregulated in the low- and moderate-intensity exercise groups compared with the
control group. Also, expression of the NF-kB protein in the low- and moderate-intensity
exercise groups showed the greatest protein decrease relative to the other groups.

Some studies have shown that overexpression of NF-κB in a transgenic mouse com-
bined with massive expression of ncaIKK-2 may cause the destruction of granule cells and
stimulate astrocytosis [36]. Further, the presence of the p50 subunit of NF-κB may affect
brain tissue [37]. In p50−/−mice, half of the newborn neurons survived in the dentate
gyrus, although spatial short-term memory was impaired [38]. The function of NF-κB
remains unclear, and further research is needed to determine the effects of the subunits of
NF-κB in neurogenesis.

NF-κB caused excitotoxic damage in the hippocampus in a middle cerebral artery
occlusion model via an anti-inflammatory cytokine [37]. Inhibiting NF-κB could suppress
neuroinflammation in peri-infarcted areas of the brain and protect neuronal cells [39,40].
In the present research, the brain may still have been in the inflammatory period, and
long-term exercise may have provided an anti-inflammatory effect in the cerebral infarction
rat model after stabilizing neurogenesis in the brain. Therefore, moderate-intensity exercise
training may be sufficient to suppress the expression of the NF-κB gene as an inflammation-
related gene.

In the behavioral test, we found that low- and moderate-intensity exercise had a
greater effect than high-intensity treadmill exercise on neurogenesis in the cerebral in-
farction rat model. The difference in functional recovery would depend on the level of
gene expression in each intensity condition, and NF-κB is the key neurotrophin for neu-
rogenesis related to exercise intensity. Therefore, prescribing an exercise program of the
proper intensity could play a pivotal role in maximal functional recovery during a stroke
neurorehabilitation program.
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There are some limitations in this study. First, it does not reflect aging and comorbidi-
ties as the most important risk factors for stroke. However, in this study, 14-week-old rats
may be considered as aged rats after a 4-week exercise program. Previous studies reported
that aged rats could have limited recovery of neurologic function because of the lack of
neuroprotective factors, immune imbalance, and comorbidities related to stroke risk factors
such as obesity and metabolic syndrome [41–43]. Further studies are needed to consider
aging and comorbidities in stroke experiments. Second, this study showed gene expression
with RNA sequencing analyses and performed Western blot analyses for the quantification
of proteins related to gene expression. Several studies have used quantitative methods,
such as Western blot analyses after RNA sequencing [44–46]. However, there are several di-
rect analyses, such as immunofluorescence, enzyme-linked immunosorbent assay (ELISA)
or reverse transcription-polymerase chain reaction (RT-PCR), to confirm the mechanism.
Therefore, it would have been better to quantify gene expression with immunofluores-
cence, ELISA, or RT-PCR. Further studies are needed to use direct analysis methods for
standardizing the biomechanism of neurogenesis after various exercise intensities.

4. Materials and Methods
4.1. Experimental Subjects and Ethics Approval

All experimental protocols were approved by the Institutional Animal Care and Use
Committee (IACUC) of Chonnam National University (approval number: CNU IACUC-H
02018-2). Thirty-six 10-week-old male Sprague-Dawley (SD) rats (Samtako; Osan, Republic
of Korea) were used. All experimental rats were housed following the protocol of the
Animal Care Laboratory at Chonnam National University.

4.2. Methods
4.2.1. Photothrombotic Cerebral Infarction Rat Model

We induced photothrombotic cerebral infarction in rats using Watson’s method [47].
Every SD rat was anesthetized with 5% isoflurane and maintained with 2% isoflurane in a
70% nitrous oxide and 30% oxygen mixture during the surgical procedure. The operation
was performed on a homeothermic plate (Harvard Apparatus; Holliston, MA, USA) to
maintain body temperature at 37.5 ± 0.5 ◦C. Each rat was placed in a stereotactic frame
(Stoelting; Wood Dale, IL, USA) in a prone position. After an incision and exposure of the
scalp, we injected Rose Bengal dye (50 mg/kg; Sigma-Aldrich Co., St. Louis, MO, USA)
into the left femoral vein, and light exposure (3300 K, 150 W; KL 1500 LCD; SCHOTT AG,
Mainz, Germany) was applied to the mixed zone of the left M1 and S1, known as the
primary sensorimotor cortex, for 10 min.

4.2.2. Regular Treadmill Exercise Program

All rats were randomly assigned to four groups: group A (no treadmill exercise; n = 9);
group B (regular treadmill exercise with maximal velocity of 18 m/min, 5 days a week for
4 weeks; n = 9); group C (regular treadmill exercise with maximal velocity of 24 m/min,
5 days a week for 4 weeks; n = 9); and group D (regular treadmill exercise with maximal
velocity of 30 m/min, 5 days a week for 4 weeks; n = 9). Exercise intensity was decided
by Bedford’s theory as 50%, 65%, or 80% of rat maximal oxygen uptake [48]. An electric
treadmill machine (Columbus Instruments; Columbus, OH, USA) was used for the exercise.
The apparatus consisted of a 3-lane animal exerciser using single-belt construction with
dividing walls suspended over the tread surface. The overall dimensions of the treadmill
were 80.0 × 50.0 × 50.8 cm (width × depth × height), and the dimensions of each exercise
lane were 56 × 12 × 13 cm (width × depth × height). All rats were placed on a moving
belt facing away from the electrified grid (stimulus intensity 1.0 mA), and they ran in
the direction opposite to the belt movement to acclimate to the treadmill exercise at an
inclination of 0◦.
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4.2.3. Neurobehavioral Test: The Morris Water Maze

Spatial learning memory was measured using the Morris water maze (MWM) test
based on the method described by Morris [49]. The MWM test was conducted in a circular
metal pool (diameter 184 cm, height 60 cm) filled with water and maintained at 20–25 ◦C.
The pool was divided into four approximately equal quadrants, one of which was allocated
as the target quadrant. Visual cues were placed at the perimeter of each quadrant. A circular
escape platform (diameter 10 cm, height 38 cm) was placed in the center of the target
quadrant. The water level in the pool was adjusted so that the platform was submerged
1 cm below the surface of the water.

The animals were placed in the water maze facing the maze wall at random entry
points, which were distributed equally around the maze perimeter. After finding the
platform, the rats were allowed to remain there for 10 s before the next trial. Any rat that
did not find the hidden platform within 120 s was guided to the platform and allowed to
stay there for 15 s. Then, the rat was removed from the pool, dried, and placed back in its
holding bin for a period of 5 min, after which the second trial was conducted. All groups
were acclimated to the abovementioned pre-training process for 3 consecutive days before
induction of photothrombotic cerebral infarction. After the treadmill exercise program,
the follow-up MWM test was performed. In this trial, rats had to find the platform within
300 s. The time to reach the platform (escape latency) and the length of the swim path
were recorded automatically by a video tracking system (Ethovision Color-Pro®; Noldus,
Wageningen, The Netherlands). Velocity was calculated by dividing the length of the swim
path by the escape latency.

4.2.4. RNA Sequencing Analysis

RNA sequencing analysis followed Kim’s method [50]. RNA sequencing was per-
formed with ipsilesional hippocampal tissue. Total RNA was isolated with TRIzol™ reagent
(Thermo Fisher Scientific; Waltham, MA, USA). A NanoDropTM 2000 spectrophotometer
(Thermo Fisher Scientific; Waltham, MA, USA) was used for RNA quantification. QuantSeq
3′ mRNA-Seq Library Prep Kit (Lexogen, Inc.; Vienna, Austria) was used for library prepa-
ration. High-throughput sequencing was performed with NextSeq 500 (Illumina, Inc.; San
Diego, CA, USA).

QuantSeq 3′ mRNA-Seq reads were aligned using Bowtie 2 [51]. Expressed genes
were determined on counts with Bedtools [52]. The RC data were measured by edgeR
within R using a Bioconductor [53]. DAVID (https://david.ncifcrf.gov/, accessed on
19 December 2020) and Medline (http://www.ncbi.nlm.nih.gov/, accessed on 19 December
2020) databases were used for gene classification. A clustering heatmap was developed
using MultiExperiment Viewer version 4.9.0 (http://mev.tm4.org, accessed on 19 December
2020) based on log2 values for the average of normalized data.

The neurotrophin-signaling pathway was elicited using the KEGG Mapper Search and
Color Pathway tool We identified the gene symbols with greater expression in the experi-
mental groups than in the control group (p < 0.05, fold change > 1.0, average normalized
RC > 4). The identified genes were entered on the website, and we clicked ‘included aliases’
and ‘uncolored diagram’. Then, the related pathways were identified [54]. We chose the
neurotrophin-signaling pathway listed for the various pathways in each group.

4.2.5. Western Blot Analysis

Hippocampal tissues were homogenized with 300 µL of a lysis buffer. The tissue was
immediately put on ice and stored at –80 ◦C. After centrifugation at 13,000 rpm for 10 min at
4.0 ◦C, the supernatant liquid was collected (Centrifuge 5424; Eppendorf, Germany). For the
detection of the NF-κB, CHK, Raf, and IRAK proteins, 20 µg of each sample was separated
using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gels were
transferred to a polyvinylidene difluoride membrane at 300 mA for 1 h. The membranes
were stained with Ponceau Red to confirm equal protein loading. Immunodetection of each
protein was done by blocking the membrane with 5% nonfat milk for 1 h. Tris-buffered
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saline, including 0.1% Tween-20 (TBS-T) for 1 h at room temperature. The membranes
were rinsed with TBS-T four times within 10 min. Then, the membranes were incubated
with the primary antibodies against NF-κB (rabbit polyclonal antibody 1:1000; Thermo
Fisher Scientific), CHK (rabbit polyclonal antibody 1:1000; Abcam, Cambridge, UK), Raf
(rabbit polyclonal antibody 1:1000; Abcam), and IRAK (rabbit polyclonal antibody 1:1000;
Abcam), overnight at 4.0 ◦C in TBS-T. Excess antibodies were removed by washing with
TBS-T three times over 5 min and for a series of four times each. The membranes were
incubated with a horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin G
(1:1000 dilution; Thermo Fisher Scientific, US) secondary antibody blocking solution for 1 h.
The membranes were rinsed with TBS-T three times within 5 min and for a series of three
times each. Immunoreactive bands were visualized by Enhanced Chemiluminescence Plus
using Immobilon Western Chemiluminet substrate (Millipore; Burlington, MA, USA). After
the protein bands were photographed in grayscale at a resolution of 600 dpi, the bands
were quantified using ImageJ (National Institutes of Health; Washington, DC, USA).

4.2.6. Timing of the Experiments

Figure 11 shows the timing of the experiments in this study. Photothrombotic cerebral
infarction was conducted for 10-week-old male SD rats (n = 36). All rats were acclimated to
the abovementioned pre-training process for 3 consecutive days before photothrombotic
cerebral infarction. The MWM test was performed before and after a regular treadmill
exercise program (5 days/week, 4 weeks). The follow-up MWM test was performed after
the treadmill exercise program; all rats were sacrificed after the MWM test to obtain the
brain tissues.
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Figure 11. Schematic representation of the experiments. Photothrombotic cerebral infarction was
conducted for 10-week-old male Sprague-Dawley (SD) rats (n = 36). All rats were acclimated to
the abovementioned pre-training process for 3 consecutive days before photothrombotic cerebral
infarction. The Morris water maze (MWM) test was performed before and after a regular treadmill
exercise program (5 days/week, 4 weeks). The follow-up MWM test was performed after the treadmill
exercise program; all rats were sacrificed after the MWM test to obtain the brain tissues.

4.2.7. Statistical Analyses

Statistical analyses were performed using SPSS version 23.0 (IBM Corp.; North Castle,
NY, USA). A repeated-measures analysis of variance with a post hoc analysis was used for
the behavioral test. The Chi-squared test was performed for western blot analyses. Data are
shown as mean ± standard deviation. Differences were considered statistically significant
when the p-value was < 0.05.

5. Conclusions

Neurobehavioral functional recovery may have been affected by exercise intensity
in a cerebral infarction rat model. Moderate-intensity exercise may contribute to neu-
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roplasticity. Variation in the expression of neurotrophins in neurogenesis according to
exercise intensity may reveal the mechanism of neuroplasticity, and in our study, NF-κB
was the key neurotrophin involved in neurogenesis related to exercise intensity. Overall,
this study demonstrated that an exercise program of the proper intensity plays a major
role in assuring favorable functional recovery, and especially for the recovery of cognitive
function, in stroke rehabilitation.
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