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Abstract: Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable
challenges in global health, characterized by intricate pathophysiological mechanisms and multi-
faceted disease progression. This comprehensive review integrates insights from diverse perspectives
to elucidate the intricate roles of long non-coding RNAs (IncRNAs) in the pathogenesis of COPD
and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the
context of COPD, dysregulated IncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5,
emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their
identification, profiling, and correlation with the disease severity present promising avenues for
prognostic and diagnostic applications, thereby shaping personalized disease interventions. These
IncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic
potential across both diseases. In the domain of lung cancer, IncRNAs play intricate modulatory
roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic
indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progres-
sion by modulating the tumor microenvironment, influencing immune cell infiltration, and altering
cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis,
and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic
markers. This review summarizes the transformative potential of IncRNA-based diagnostics and
therapeutics for COPD and lung cancer, offering valuable insights into future research directions for
clinical translation and therapeutic development.

Keywords: chronic obstructive pulmonary disease (COPD); long non-coding RNAs (IncRNAs);
molecular pathogenesis; inflammation; lung cancer; diagnostic biomarkers
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1. Introduction

COPD represents a formidable global health challenge, characterized by a progressive
and irreversible decline in airflow, caused by chronic inflammation and other types of respi-
ratory symptoms [1]. Principally associated with prolonged exposure to noxious particles,
notably tobacco smoke, COPD imposes a substantial burden on individuals and healthcare
systems worldwide [2]. Recent years have witnessed heightened scrutiny of the intricate
molecular mechanisms underpinning COPD pathogenesis. Among the diverse array of
factors contributing to its etiology, IncRNAs have emerged as pivotal regulators of gene
expression and cellular processes [3]. LncRNAs, characterized as RNA molecules longer
than 200 nucleotides with limited protein-coding potential, play critical roles in cellular
processes through their complex interactions with chromatin structure, transcriptional
regulation, and post-transcriptional mechanisms [4]. Recent advancements have further
refined the definition of IncRNAs, extending the length criterion to over 500 nucleotides,
reflecting an updated understanding of their functional scope and biological significance [5].
Dysregulated expression of IncRNAs in the context of COPD has been intricately linked
to processes of inflammation, oxidative stress, and tissue remodeling, underscoring their
potential as diagnostic and prognostic markers of disease progression [6].

The intricate interplay between COPD and lung cancer further complicates the clinical
landscape, presenting overlapping risk factors such as tobacco smoke exposure and inde-
pendently amplifying the risk of lung cancer development [7]. This intricate relationship
involves a convergence of molecular pathways, creating a microenvironment conducive to
malignant transformation [8]. Epidemiological studies indicate that individuals with COPD
have a significantly increased risk of developing lung cancer, independent of smoking
history. The chronic inflammatory environment in COPD, characterized by persistent oxida-
tive stress and recurrent airway injury, creates a fertile ground for malignant transformation.
This inflammatory milieu fosters genomic instability, promotes mutagenesis, and disrupts
normal cellular regulatory mechanisms, thereby accelerating the progression from chronic
inflammation to carcinogenesis. LncRNAs, which play crucial roles in regulating gene
expression, have emerged as key players in both COPD and lung cancer [9]. Dysregulated
IncRNAs in COPD influence the expression of tumor suppressors and oncogenes, thereby
contributing to the inflammation and cell proliferation that drive the development of lung
cancer [10]. By elucidating the specific IncRNA-mediated pathways that connect COPD and
lung cancer, we can identify novel biomarkers for early detection and potential therapeutic
targets to mitigate the progression from COPD to lung cancer [11]. This integrated approach
underscores the importance of molecular research in bridging the gap between chronic
inflammatory diseases and cancer, offering new avenues for intervention and improved
patient outcomes.

The present review embarks on a comprehensive overview of COPD’s multifaceted
background, accentuating clinical challenges and the pressing need for deeper molecular
insights. Central to this discourse is the pivotal role of IncRNAs in COPD pathophysiology
and their potential as both biomarkers and modulators of key signaling cascades for
disease progression. Moreover, this review summarizes the intricate linkages between
COPD and lung cancer progression, shedding light on common molecular signatures and
their potential therapeutic interventions.

2. Chronological Progression of COPD

COPD is a complex and multifactorial respiratory condition characterized by persistent
airflow limitation and respiratory symptoms, including cough, sputum production, and
dyspnea [12]. Its progression often takes several decades and is marked by distinct stages,
each contributing to the gradual deterioration of respiratory function [13]. This review
delves into the mode and mechanism of the progression of COPD and explores current
approaches to its diagnosis and monitoring.



Int. J. Mol. Sci. 2024, 25,9001

3 of 35

2.1. Disease Progression in COPD

The pathogenesis of COPD comprises various stages, involving both structural and
functional changes to the respiratory system. It typically occurs after prolonged exposure
to noxious substances, such as cigarette smoke, that cause chronic inflammation, mucus
hypersecretion, and alterations in ciliary function [14]. This initial insult triggers a cascade
of events, including oxidative stress and protease—antiprotease imbalances, resulting in the
destruction of lung parenchyma and shortness of breath (emphysema) [15].

As COPD advances, the airway is remodeled by elevating smooth muscle mass,
fibrosis, and narrowing lumens. Chronic bronchitis may manifest with persistent cough and
sputum production. The lung function, measured as the forced expiratory volume in one
second (FEV1), gradually declines, marking a critical juncture of the disease progression [16].
In later stages, respiratory functions may deteriorate, contributing to worsened disease
morbidity and mortality [17]. Furthermore, COPD-associated cachexia, manifested as
weight loss and muscle dysfunction, exacerbates the overall impact of the disease [18].
Understanding the disease progression, as well as identification of individuals at risk and
the mitigation of exposure and inflammation, is essential for COPD management and
prevention [19].

2.2. The Major Causative Factors of COPD

The development and progression of COPD are influenced by a myriad of factors,
including genetic predisposition, environmental exposures, and individual lifestyle behav-
iors [20]. Understanding the interplay between these factors is essential for elucidating
the pathogenesis of COPD and developing effective prevention and management strate-
gies (Supplementary Figure S1). We will introduce several major causative factors of
COPD below.

Air Pollution: Outdoor and indoor air pollution represent significant risk factors for
COPD [21]. Inhalation of fine particulate matter, including nitrogen dioxide, sulfur dioxide,
ozone from vehicle emissions, industrial activities, and biomass combustion, increases
the risk of respiratory symptoms such as COPD. Urbanization, industrialization, and
climate change exacerbate air pollution levels, raising public concerns about COPD [22].
Implementation of clean air policies, sustainable transportation strategies, and new energy
sources is critical for reducing air pollution and protecting respiratory health [23].

Environmental Exposures: Exposure to environmental pollutants, occupational haz-
ards, and indoor air contaminants contributes to the development and exacerbation of
COPD [24]. Inhalation of particulate matter, chemical fumes, and noxious gases from
industrial processes, biomass burning, and indoor cooking fuels leads to airway inflam-
mation, oxidative stress, and lung damage in susceptible individuals. Environmental
regulations, workplace safety measures, and indoor air quality improvements are essential
for reducing environmental exposures and mitigating the burden of COPD in the general
population [25].

Cigarette Smoking: Cigarette smoking stands as the primary causative factor for the
development of COPD. The inhalation of toxic substances present in cigarette smoke, such
as tar, nicotine, and carbon monoxide, triggers inflammation and damage to the airways
and lung parenchyma [26]. Chronic exposure to cigarette smoke leads to the progressive
destruction of lung tissue, airflow limitation, and respiratory symptoms characteristic
of COPD. Moreover, smoking cessation remains the most effective intervention to slow
disease progression and reduce morbidity and mortality associated with COPD [27].

Gender: Gender differences play a significant role in the prevalence and clinical
manifestations of COPD [28]. Historically, COPD has been more prevalent among males
due to higher rates of smoking. However, recent studies have shown an increasing burden
of COPD among females, reflecting changes in smoking behaviors as well as the occurrence
of environmental irritants that preferentially afflict women [29].

Differences in Smoking Patterns: Historically, COPD has been more strongly associated
with males due to higher rates of smoking among men. However, smoking patterns have
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changed over time, with an increasing number of females smoking cigarettes. In recent
years, smoking prevalence among females has risen, contributing to a higher incidence of
COPD in women [30].

Biological Differences: Biological factors play a significant role in the development and
progression of COPD. Generally, females have narrower airways compared to males, which
may contribute to increased susceptibility to COPD. Additionally, hormonal differences
between males and females, such as estrogen levels, may influence inflammatory responses
to pollutants [31].

Exposure to Indoor Air Pollutants: Women may be more exposed to indoor air pollu-
tants such as biomass fuel smoke, cooking fumes, and secondhand smoke, particularly in
regions where indoor cooking with solid fuels is common. Prolonged exposure to these
pollutants can increase the risk of developing COPD [32].

Occupational Exposures: Certain occupational exposures, such as working in indus-
tries with high levels of airborne pollutants or dust, may disproportionately affect females
and contribute to the development of COPD. For example, women working in women-
dominant occupations such as house cleaning and textile manufacturing may be exposed
to respiratory hazards that increase their risk of COPD [33].

Socioeconomic Factors: Socioeconomic factors, including income level, education, and
access to healthcare, influence the risk of COPD development and disease outcomes. Indi-
viduals from lower socioeconomic backgrounds are disproportionately affected by COPD
due to higher rates of smoking, occupational exposures, and limited access to healthcare
services [34-37]. Socioeconomic disparities contribute to delayed diagnosis, inadequate
treatment, and poorer prognosis in COPD patients from disadvantaged communities [38].
Addressing socioeconomic inequalities is essential for reducing the burden of COPD among
vulnerable populations [39].

Aging: Aging is a major risk factor for the development of COPD. Age-related lung
structure and function changes, including decreased lung elasticity, reduced mucocil-
iary clearance, and impaired immune responses, predispose older adults to COPD and
exacerbations [40]. Moreover, cumulative exposure to environmental pollutants, respira-
tory infections, and other comorbidities further exacerbates the decline of lung functions
and disease progression in elderly individuals. Comprehensive geriatric assessment and
management strategies are essential for improving COPD care and outcomes in older
patients [41].

Respiratory Infections: Respiratory infections, particularly viral and bacterial in-
fections, contribute to the pathogenesis and exacerbations of COPD. Acute respiratory
infections, such as influenza and pneumonia, trigger airway inflammation, mucous produc-
tion, and exacerbation in COPD patients [42]. Moreover, recurrent respiratory infections
accelerate the decline of lung functions and worsen the clinical outcomes of COPD patients.
Vaccination and appropriate antimicrobial therapies play crucial roles in preventing and
managing COPD [43].

Genetic Factors: Genetic predisposition plays a significant role in COPD suscepti-
bility and disease heterogeneity [44]. Variations in genes involved in lung development,
inflammation, and immunological defense influence susceptibility to COPD and response
to environmental exposures, such as cigarette smoke and air pollution [45]. For example,
alpha-1 antitrypsin deficiency, an inherited disorder, is a well-established genetic risk factor
for early-onset COPD. Understanding the genetic basis of COPD facilitates early identifica-
tion of at-risk individuals and personalized treatment based on genetic profiling [46].

2.3. Diagnosis and Monitoring of COPD

Accurate and timely diagnosis of COPD is fundamental for effective management
and intervention. Diagnosis is typically established through a combination of clinical
assessment, spirometry, and consideration of risk factors such as smoking history and
environmental exposures [47]. Spirometry, measuring the FEV1 and the ratio of FEV1 to
forced vital capacity (FVC), remains the gold standard for diagnosing airflow limitation [48].
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Monitoring disease progression involves regular assessments of symptoms, exacerbation
history, and lung function. The global initiative for chronic obstructive lung disease (GOLD)
classification provides a framework for categorizing disease severity based on spirometric
measurements [49]. However, it is increasingly recognized that a comprehensive assess-
ment of COPD should extend beyond spirometry, encompassing symptoms, exacerbation
risk, and impact on patient health status [50]. Novel approaches to COPD monitoring
involve the exploration of biomarkers and imaging techniques to provide a more nuanced
understanding of disease activity. Blood biomarkers, such as C-reactive protein (CRP)
and fibrinogen, have shown promise in reflecting systemic inflammation and predicting
exacerbation risk [51]. Imaging modalities, including computed tomography (CT) and mag-
netic resonance imaging (MRI), offer insights into structural lung changes and phenotypic
variations, aiding in personalized therapeutic strategies [52]. While traditional diagnostic
and monitoring methods, including spirometry, clinical assessment, and imaging, remain
indispensable in the management of COPD, emerging molecular approaches offer the
potential for more precise and personalized care. Among these, IncRNAs have gained
attention as novel biomarkers that can provide deeper insights into the pathophysiological
mechanisms of COPD [53]. By integrating IncRNA profiling into clinical practice, we can
enhance our ability to predict disease progression, tailor therapeutic interventions, and
improve patient outcomes. This molecular dimension adds a significant layer of specificity
and sensitivity to COPD diagnosis and monitoring, paving the way for innovative strate-
gies in the fight against this debilitating disease [54]. The following section delves into the
prognostic and diagnostic significance of IncRNAs in COPD, highlighting their potential to
revolutionize our understanding and management of the disease.

3. Exploring LncRNA Profiles and Clinical Significance in COPD

COPD is a multifaceted respiratory condition characterized by persistent airflow
limitation and chronic inflammation [55]. Recent advances in molecular biology have
highlighted the pivotal role of IncRNAs in the pathogenesis and progression of COPD.
Exploring IncRNA profiles in COPD patients has revealed distinct expression patterns as-
sociated with disease severity, exacerbation frequency, and response to therapy [56]. These
IncRNAs, which were once considered transcriptional noise, are now recognized as critical
regulators of gene expression, influencing inflammatory pathways, immune responses,
and cellular processes such as apoptosis and proliferation [57]. By mapping the IncRNA
landscape in COPD, researchers have identified potential biomarkers for early diagnosis,
disease monitoring, and personalized treatment strategies. The clinical significance of
IncRNAs extends beyond their biomarker potential; they also offer new therapeutic targets,
providing a novel avenue for intervention in COPD management [58]. Understanding
the intricate roles of IncRNAs in COPD not only enhances our comprehension of the dis-
ease’s molecular underpinnings but also opens up innovative pathways for improving
patient outcomes.

3.1. Identification and Profiling of COPD-Associated LncRNAs

The validated IncRNAs associated with COPD and lung cancer have been exten-
sively reviewed in the current literature (Figure 1). These IncRNAs, in conjunction with
miRNAs, play a significant role in interacting with mRNAs, thereby influencing the pro-
gression of COPD and/or cancer through competitive endogenous RNA (ceRNA) networks
(Supplementary Excel Files S1 and S2). The ceRNA hypothesis posits that IncRNAs can
function as molecular sponges for miRNAs, thereby modulating the expression of miRNA
target genes [59]. This complex interaction framework highlights the potential of IncR-
NAs to impact COPD (Supplementary Excel File S1) and lung cancer (Supplementary
Excel File S2). By acting as ceRNAs, IncRNAs can sequester miRNAs, preventing them
from binding to their target mRNAs, which in turn affects gene expression and cellular
processes involved in disease progression [60]. This regulatory mechanism provides a
new perspective on the roles of IncRNAs in the pathogenesis of COPD and lung cancer,
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of these diseases.
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Figure 1. Profiling of LncRNAs in COPD and lung cancer. (A) Representative network of interacting
IncRNAs/mRNAs in lung cancer: This network visualization offers a comprehensive view of the intri-
cate interactions between these RNA species (indirect interaction mediated by miRNAs), highlighting
their regulatory roles and potential significance in the context of lung cancer. By mapping out these
interactions, this representation aims to unravel the complex molecular mechanisms underlying lung
cancer development and progression. (B) Representative network of interacting IncRNAs/mRNAs in
COPD: This network elucidates the intricate relationships between these RNA molecules, shedding
light on their regulatory roles and potential implications in COPD pathogenesis. Through systematic
analysis, this representation aims to provide insights into the underlying molecular mechanisms
driving COPD progression. (C) Venn Diagram to illustrate the shared INRNAs between COPD and
lung cancer: This visual representation showcases the overlapping IncRNA profiles between the two
respiratory conditions, offering valuable insights into potential common molecular pathways and
regulatory mechanisms; the blue color indicates IncRNAs and the red color indicates mRNAs. This
figure created using Cytoscape 3.10.2 software, integrates data derived from Supplementary Excel
Files compiled from the PubMed database.

Identifying and profiling COPD-associated IncRNAs represents a critical step to-
ward understanding the molecular mechanisms underlying the disease’s pathogenesis
and progression. Genome-wide expression profiling studies have consistently revealed
dysregulated expression patterns of IncRNAs in COPD patients compared to healthy con-
trols, underscoring their potential utility as diagnostic and prognostic biomarkers [61].
Such dysregulation highlights the importance of IncRNAs in the disease process and their
potential role in the development of therapeutic strategies.

Recent advancements in high-throughput sequencing technologies and bioinformatics
tools have facilitated the systematic characterization of IncRNA expression profiles in
COPD [62]. Transcriptomic analyses utilizing next-generation sequencing platforms have



Int. J. Mol. Sci. 2024, 25,9001

7 of 35

enabled the comprehensive identification of novel IncRNAs and the elucidation of their
regulatory networks in COPD pathophysiology [63].

One of the challenges in IncRNA profiling studies is the heterogeneity of COPD
phenotypes and disease severity, which necessitates careful selection of patient cohorts
and appropriate control groups for comparative analyses [64]. Integrative approaches
combining transcriptomic data with clinical parameters, imaging findings, and functional
assays are essential for prioritizing candidate IncRNAs and elucidating their biological
significance in COPD [65]. A thorough understanding of the regulatory mechanisms
controlling IncRNA expression in COPD is essential for elucidating their functional roles
and clinical significance. Emerging evidence indicates that IncRNAs undergo dynamic
regulation by transcription factors, epigenetic modifiers, and signaling pathways involved
in COPD pathogenesis. Moreover, these IncRNAs influence mRNA levels, a process
frequently mediated by miRNAs through competitive endogenous RNA interactions [66].

3.2. Master Regulators of Gene Expression in Lung Cancer Progression

LncRNAs are pivotal regulators of gene expression in lung cancer progression. They
control gene expression through various mechanisms, including epigenetic modifications,
competition with microRNAs (miRNAs), and direct interaction with mRNA transcripts [67].
Through these diverse pathways, IncRNAs exert precise control over gene expression
programs implicated in lung cancer progression (Figure 2), underscoring their importance
in the disease’s molecular landscape [68].

Transcriptional Regulation: LncRNAs are known to play crucial roles in transcriptional
regulation by influencing gene expression at the chromatin level [69]. One such example
is MALAT1, which has been extensively studied in the context of lung cancer metastasis.
MALAT1 functions as a key regulator of gene transcription by interacting with transcription
factors and chromatin-modifying proteins [70]. Through these interactions, MALAT1
modulates the expression of genes involved in various aspects of lung cancer progression,
including metastasis. For instance, MALAT1 has been shown to promote the expression
of metastasis-associated genes by facilitating chromatin remodeling and transcriptional
activation [71].

Epigenetic Regulation: Epigenetic regulation mediated by IncRNAs is a fundamental
mechanism governing gene expression in lung diseases. An illustrative example is HO-
TAIR, which has been implicated in epigenetic modifications associated with lung cancer
progression [72]. HOTAIR functions as a scaffold for chromatin-modifying complexes, such
as polycomb repressive complex 2 (PRC2), leading to alterations in histone methylation
patterns. Specifically, HOTAIR interacts with PRC2 to promote the deposition of repressive
histone marks, such as histone H3 lysine 27 trimethylation (H3K27me3), at target gene
promoters [73].

Post-transcriptional Regulation: Post-transcriptional regulation by IncRNAs plays a
critical role in modulating gene expression levels and mRNA processing in lung diseases.
A notable example is GAS5, which functions as a competing endogenous RNA (ceRNA)
in idiopathic pulmonary fibrosis (IPF) [74]. GAS5 has been shown to sequester miR-21, a
known regulator of fibrosis-related genes, thereby relieving its inhibitory effect on target
mRNAs. By acting as a molecular sponge for miR-21, GAS5 promotes the expression
of its target gene PTEN (Phosphatase and Tensin Homolog), leading to decreased cell
proliferation and fibrosis progression in IPF [75].

Signaling Pathway Regulation: LncRNAs are involved in the regulation of signaling
pathways that govern cellular processes in lung diseases, offering potential targets for
therapeutic intervention. An exemplary IncRNA in this context is H19, which modulates
the transforming growth factor-beta (TGF-f3) signaling pathway in lung cancer [76]. H19
has been shown to enhance TGF- signaling by promoting the phosphorylation and nuclear
translocation of Smad2/3, key mediators of the TGF-f3 pathway. This enhanced signaling
cascade induces epithelial-mesenchymal transition (EMT) and promotes metastasis in lung
cancer cells [77].
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RNA-RNA Interactions: Interactions between IncRNAs and other RNA molecules
contribute to the complex regulatory networks governing gene expression in lung diseases.
A notable example is the IncRNA XIST, which interacts with the mRNA of the tumor
suppressor gene RBM5 (RNA Binding Motif Protein 5) in lung cancer cells [78]. XIST-
mediated sequestration of RBM5 mRNA leads to decreased protein expression levels,
resulting in enhanced proliferation and survival of lung cancer cells [79]. This RNA-RNA
interaction exemplifies the intricate crosstalk between IncRNAs and mRNAs, highlighting
their role in shaping the molecular landscape of lung diseases.
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Figure 2. LncRNA regulators of gene expression in lung cancer. (A) Transcriptional regulation:
LncRNA interacts either with transcription factors (TFs) or directly with DNA, resulting in either
repression or enhancement of gene expression. (B) Epigenetic Regulation by LncRNAs. IncRNAs
mediate the repression of target genes through modifications to histone proteins, leading to altered
chromatin states that silence gene expression (1), IncRNAs facilitate the activation of target genes
by modifying histone proteins, promoting a chromatin environment that supports transcriptional
activity (2). (C) Post-transcriptional regulation: LncRNA directly binds to mRNA, leading to its
degradation (1); IncRNA can also act as a competitive inhibitor with miRNA, forming a scaffold
that binds to mRNA, thereby rescuing it from degradation (2). Additionally, IncRNA plays a role in
facilitating the maturation process of miRNA (3). (D) Signaling pathway regulation: LncRNA and
miRNAs collaborate to create a scaffold complex, orchestrating the beta-catenin signaling pathway.
This complex regulates gene expression to promote the epithelial-mesenchymal transition (EMT)
process. (E) RNA-RNA interaction: LncRNAs play a pivotal role in modulating mRNA stability
through various mechanisms. These include sequestering miRNAs or RNA-binding proteins (RBPs)
to prevent their interaction with mRNA molecules (1), directly binding to miRNAs (2) or RBPs (3), and
binding to mRNA via RBPs (4). Additionally, IncRNA can regulate RNA modification by interacting
with m6A machinery proteins (5). (F) Translation/post-translation regulation: cytoplasmic IncRNA
compete for ribosomal protein to mRNA to regulate expression by regulating mRNA stability (1);
IncRNA binds to RBPs (2); mRNA translation (3); few IncRNA contain small open reading frames
(ORFs) that can be translated in biological active small peptides (4). In addition, IncRNA competes
for miRNA binding (5). The figure was designed using the BioRender platform based on reference
sources [80-82].
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3.3. Tobacco Smoke Exposure and Expression Profiles of LncRNA in COPD

Exposure to tobacco smoke is a major risk factor for the development and progres-
sion of COPD, a complex and debilitating respiratory condition characterized by chronic
inflammation, airway obstruction, and irreversible lung damage (Figure 3) [83]. Tobacco
smoke contains thousands of toxic compounds, including carcinogens and reactive oxy-
gen species, which can induce widespread genomic alterations and dysregulate various
cellular processes in the lung microenvironment [84]. Emerging evidence suggests that
exposure to tobacco smoke profoundly influences the landscape of IncRNAs in COPD,
contributing to disease pathogenesis and progression. This reflects the complex interplay
between environmental stimuli, genetic predisposition, and epigenetic modifications in
disease pathophysiology [85]. High-throughput sequencing technologies and genome-
wide expression profiling have facilitated the identification of tobacco smoke-responsive
IncRNAs associated with COPD susceptibility, severity, and treatment outcomes. These
dysregulated IncRNAs exhibit altered expression patterns in response to tobacco smoke
exposure, modulating key cellular processes involved in inflammation, oxidative stress,
and tissue remodeling in the lung [86].

Functional characterization of tobacco smoke-responsive IncRNAs provides insights
into their roles as critical regulators of gene expression networks and signaling pathways
implicated in COPD pathogenesis [87]. Tobacco smoke-induced IncRNAs, such as HO-
TAIR, MALAT1, and NEAT1, modulate inflammatory responses and fibrotic processes by
interacting with chromatin-modifying complexes, transcription factors, and RNA-binding
proteins [88]. Dysregulated expression of these IncRNAs contributes to exacerbated airway
inflammation, oxidative stress, and tissue damage in COPD patients [89]. Furthermore, to-
bacco smoke exposure alters the epigenetic landscape of the lung, leading to aberrant DNA
methylation patterns, histone modifications, and chromatin remodeling events that regulate
IncRNAs’ expression and function in COPD [90]. Such epigenetic changes may reprogram
the transcriptional profiles of IncRNAs involved in immune response, cell proliferation, and
apoptosis, driving disease progression and exacerbation in COPD patients. Understanding
the molecular mechanisms for the effects of tobacco smoke exposure on the landscape of
IncRNAs in COPD is essential for identifying novel biomarkers and therapeutic targets for
disease intervention and personalized treatment approaches [91].

The intricate landscape of IncRNAs has emerged as a crucial player in COPD pathogen-
esis, orchestrating diverse cellular processes implicated in disease onset and progression. In
response to tobacco smoke exposure, aberrant expression patterns of IncRNAs contribute
to mitochondrial dysfunction, chronic inflammation, mucus dysregulation, epigenetic
alterations, and cellular senescence, which are key pathological hallmarks of COPD [92].

Mitochondrial dysfunction in COPD patients exposed to tobacco smoke is significantly
influenced by aberrant IncRNA expression. LINC-PINT, for instance, is downregulated
in lung epithelial cells upon exposure to cigarette smoke, resulting in oxidative stress and
impaired mitochondrial function [93]. Similarly, H19 has been implicated in mitochondrial
dysfunction in lung cells, where its dysregulation exacerbates oxidative damage and
respiratory deficiencies [94]. Lnc-MRGPRF-5 is another example, whose overexpression
in smokers’ lung tissues is associated with compromised mitochondrial integrity and
function [95]. MALAT1, known for its role in various cellular processes, also impacts
mitochondrial dynamics and bioenergetics in COPD, with its dysregulation leading to
mitochondrial impairment [96]. Lastly, MEG3, reduced in response to cigarette smoke,
contributes to mitochondrial dysfunction and oxidative stress, furthering the pathology of
COPD [97].
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Chronic inflammation is another hallmark of COPD exacerbated by tobacco smoke,
with several IncRNAs playing pivotal roles. NEAT1 is notably upregulated in COPD,
where it modulates immune responses, contributing to a sustained inflammatory envi-
ronment [98]. HOTAIR is similarly elevated in COPD patients, promoting inflammatory
pathways that exacerbate lung damage due to tobacco exposure [99]. PVT1 overexpression
is linked to increased production of inflammatory cytokines, thus perpetuating chronic
inflammation in COPD [100]. Lnc-IL7R, involved in immune regulation, is upregulated in
smokers’ lung tissues, thereby contributing to the inflammatory milieu [101]. FENDRR,
another IncRNA, is dysregulated in COPD, playing a significant role in maintaining chronic
inflammation [102].

Mucus dysregulation is a critical feature of COPD, influenced by the aberrant expres-
sion of specific IncRNAs. MUC5B-ASI, for instance, regulates the expression of MUC5B, a
mucin gene implicated in mucus hypersecretion characteristic of COPD [103]. LCNCR1
is upregulated in response to tobacco smoke, leading to increased mucus production and
contributing to airway obstruction in COPD patients [104]. GAS5 influences mucus secre-
tion pathways, and its dysregulation is associated with exacerbated mucus production
in COPD [105]. C21orf91 modulates genes involved in mucus regulation, with its dys-
regulation contributing to the pathological mucus production observed in COPD [106].
Additionally, LINC00473 is implicated in mucus hypersecretion, where its dysregulation
exacerbates the mucus-related symptoms of COPD [107].

Epigenetic alterations induced by tobacco smoke are critical in the pathogenesis of
COPD, with IncRNAs playing a substantial role. HOTAIR, for example, mediates epi-
genetic modifications through histone methylation, thus contributing to the disease’s
progression [108]. MEGS3 affects DNA methylation patterns in lung tissues, with its dysreg-
ulation being a significant factor in COPD [109]. ANRIL modulates chromatin remodeling
and is implicated in the epigenetic changes associated with COPD [110]. KCNQ1OT1
regulates epigenetic modifications via imprinting control regions, and its dysregulation due
to cigarette smoke exposure further complicates COPD pathology [111]. H19 is involved in
DNA methylation and histone acetylation, with its aberrant expression contributing to the
epigenetic landscape observed in COPD [112].

Cellular senescence is prominently featured in COPD and is exacerbated by tobacco
smoke through the dysregulation of IncRNAs. UCAL1 is upregulated in COPD, where it
contributes to cellular senescence in response to tobacco smoke [113]. MALAT1, another
IncRNA, is linked to the promotion of cellular senescence in COPD patients, with its
dysregulation exacerbating the disease [114]. TERRA influences telomere maintenance
and senescence pathways in lung cells, and its aberrant expression is a significant factor in
COPD progression [115]. CDKN2B-AS1 (ANRIL) regulates the expression of senescence-
associated genes, with its dysregulation promoting cellular senescence in COPD [116].
Lastly, PANDAR is upregulated in COPD, where it is associated with increased cellular
senescence in lung tissues exposed to tobacco smoke [117].

These examples underscore the critical role of IncRNAs in mediating the deleterious
effects of tobacco smoke in COPD. Understanding the specific mechanisms by which
these IncRNAs contribute to mitochondrial dysfunction, chronic inflammation, mucus
dysregulation, epigenetic alterations, and cellular senescence can provide valuable insights
into the pathogenesis of COPD and potential therapeutic targets.
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Figure 3. Overview highlighting the role of tobacco smoke in modulating LncRNAs during COPD
pathogenesis. Exposure to tobacco smoke induces significant alterations in the expression and
functions of IncRNAs, precipitating a cascade of augmented COPD pathologies characterized by
mitochondrial impairment, persistent inflammatory response, aberrant mucus production, epigenetic
modifications, and cellular senescence or accelerated cellular aging. Noteworthy IncRNAs implicated
in this multifaceted process include ANRIL, C21orf91, FENDRR, GAS5, H19, HOTAIR, KCNQ10T1,
LCNCR1, LINC00473, LINC-PINT, Inc-IL7R, Lnc-MRGPRF-5, MALAT1, MEG3, MUC5B-AS], NEATI,
PANDAR, PVT1, TERRA, and UCA1, each intricately woven into the intricate tapestry of COPD-
associated molecular dysregulation. The figure was designed using the BioRender platform, and
incorporates information derived from reference sources [118], and from the PubMed database
on ANRIL, C21orf91, FENDRR, GAS5, H19, HOTAIR, KCNQ1OT1, LCNCR1, LINC00473, LINC-
PINT, Inc-IL7R, Lnc-MRGPRF-5, MALAT1, MEG3, MUC5B-AS1, NEAT1, PANDAR, PVT1, TERRA,
and UCAL.

3.4. Correlation Between LncRNA Expression and COPD Severity

The correlation between IncRNA expression and COPD severity is a topic of significant
interest in respiratory medicine, offering insights into disease progression and clinical
outcomes [119]. Several studies have reported associations between aberrant IncRNA
expression profiles and various parameters of COPD severity, including a decline in lung
function, exacerbation frequency, and radiological features [120].

MALAT], one of the most extensively studied IncRNAs in COPD, has been positively
correlated with disease severity metrics such as FEV1 and the BODE index (Body mass
index, airflow Obstruction, Dyspnea, and Exercise capacity). Elevated MALAT1 expres-
sion levels have been associated with accelerated lung function decline, increased risk of
exacerbations, and poorer prognosis in COPD patients [121].

Similarly, HOTAIR expression levels have also been positively correlated with COPD
severity scores and radiological evidence of emphysema and airway remodeling. The
dysregulation of HOTAIR-mediated signaling pathways, including TGF-f3 (transforming
growth factor-f3) and Wnt/ 3-catenin, has been implicated in the pathogenesis of COPD
and the progression of emphysema [122]. The prognostic value of IncRNAs in predicting
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COPD outcomes extends beyond their individual expression levels to encompass their
interactions with other molecular mediators and cellular pathways. Integrative analyses
incorporating IncRNA signatures with other clinical predictors and biomarkers of COPD
hold promise for refining risk stratification models and optimizing therapeutic strategies
for the disease [123].

3.5. Prognostic and Diagnostic Value of LncRNA in Predicting COPD Outcomes

LncRNAs have emerged as crucial regulators of gene expression, exerting significant in-
fluence on various biological processes. Unlike their protein-coding counterparts, IncRNAs
do not encode proteins but instead orchestrate diverse cellular functions through mecha-
nisms such as chromatin remodeling, transcriptional regulation, and post-transcriptional
processing [124]. In the context of COPD, the dysregulation of IncRNAs has been impli-
cated in disease pathogenesis and progression, offering promising avenues for prognostic
and diagnostic applications. COPD is a multifactorial respiratory disorder characterized
by persistent airflow limitation and progressive decline in lung function [125]. Despite
advances in therapeutic strategies, COPD remains a leading cause of morbidity and mor-
tality worldwide [126]. Therefore, the identification of reliable prognostic and diagnostic
biomarkers is imperative for early disease detection, prognostic assessment, and personal-
ized treatment strategies.

LncRNAs are particularly noteworthy due to their tissue-specific expression patterns,
stability in various biological fluids, and functional relevance in COPD pathophysiol-
ogy [127]. Certain IncRNAs may be predominantly expressed in specific cell types within
the lung, such as epithelial cells, fibroblasts, or immune cells, which can significantly
influence their functional roles and impact disease mechanisms [128]. Certain IncRNAs
may be predominantly expressed in specific cell types within the lung, such as epithelial
cells, fibroblasts, or immune cells, which can significantly influence their functional roles
and impact disease mechanisms. This cell-type specificity can significantly impact their
role as biomarkers and therapeutic targets. LncRNAs are particularly noteworthy due to
their tissue-specific expression patterns, stability in various biological fluids, and functional
relevance in COPD pathophysiology [129]. For instance, HOTAIR is highly expressed in
lung epithelial cells and has been implicated in lung cancer progression by modulating
chromatin states and gene expression [130]. In fibroblasts, MALAT1 has been shown to
regulate fibroblast activation and fibrosis, contributing to COPD pathogenesis [131]. Im-
mune cell-specific IncRNAs such as NEAT1 play a role in modulating immune responses
and inflammation, which are critical in both COPD and lung cancer [132]. Understanding
these cell-type-specific expression profiles is crucial as they can significantly influence the
functional roles of IncRNAs and their impact on disease mechanisms.

The prognostic value of IncRNAs in predicting COPD outcomes is a burgeoning area
of research, with implications for disease monitoring, treatment response prediction, and
personalized patient care [133]. Longitudinal cohort studies have identified specific IncRNA
signatures associated with disease progression, exacerbation risk, and mortality in COPD
patients. GAS5, a well-characterized IncRNA involved in the regulation of apoptosis, has
emerged as a good prognostic biomarker for COPD outcomes [134]. Decreased GAS5
expression levels are correlated with increased risk of exacerbations, hospitalizations, and
mortality among COPD patients [135]. Conversely, NEAT1, a nuclear-enriched IncRNA in-
volved in the regulation of chromatin organization and gene expression, has been linked to
a worse prognosis in COPD patients [136]. Elevated NEAT1 expression levels are associated
with an accelerated decline in lung function, poorer response to bronchodilator therapy,
and increased mortality. Similarly, elevated expression levels of MALAT1 and NEAT1 are
correlated with adverse clinical outcomes and poorer prognosis [137]; these observations
strongly suggest that these IncRNAs serve as prognostic indicators for risk stratification
and treatment optimization, as well as diagnostic biomarkers for COPD, offering potential
alternatives or complementary tools to traditional clinical assessments [138]. Furthermore,
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the expression levels of certain IncRNAs such as MALAT1, HOTAIR, and GAS5 predict
COPD phenotypes and the degrees of disease severity and exacerbation risk [139].

Beyond their diagnostic and prognostic implications, IncRNAs also hold promise
as therapeutic targets and predictors of disease progression and therapeutic response
for COPD, enabling personalized treatment regimens tailored to individual patient pro-
files [140]. The dysregulation of IncRNAs contributes to key pathophysiological processes
underlying COPD, including inflammation, oxidative stress, and airway remodeling. Tar-
geted modulation of such dysregulated IncRNAs through pharmacological interventions
or gene therapy represents a promising strategy for mitigating disease progression and
improving patient outcomes [141].

4. Regulatory Functions of LncRNAs in COPD

LncRNAs regulate gene expression through various mechanisms at different stages of
gene expression, including transcription, RNA processing, and translation. These mech-
anisms involve interactions with chromatin-modifying complexes, transcription factors,
miRNAs, and other RNA-binding proteins [142].

Chromatin Remodeling: LncRNAs can influence chromatin structure and accessibility by
recruiting chromatin-modifying complexes to specific genomic loci. For example, IncRNAs
can interact with histone-modifying enzymes such as histone methyltransferases or histone
deacetylases to promote or inhibit histone modifications that regulate gene expression [143].
By altering chromatin structure, IncRNAs can control the accessibility of transcriptional
machinery to target genes [144].

Transcriptional Regulation: LncRNAs can directly influence transcriptional activity by
interacting with transcription factors or RNA polymerase complexes. Some IncRNAs act
as co-activators or co-repressors of transcription by binding to transcription factors and
modulating their activity or recruitment to target gene promoters [145]. Others serve
as scaffolds for the assembly of transcriptional complexes, bringing together regulatory
proteins and DNA elements to regulate gene expression [146].

RNA Processing and Stability: LncRNAs can regulate RNA processing events, such
as alternative splicing, RNA editing, and RNA stability. By binding to pre-mRNA tran-
scripts or RNA processing factors, IncRNAs can influence splice site selection or exon
inclusion/exclusion patterns, leading to the production of different mRNA isoforms with
distinct functions [147]. Additionally, IncRNAs can stabilize or destabilize target mRNAs
by forming RNA duplexes or competing for binding with miRNAs, thereby modulating
mRNA turnover and translation efficiency [148].

Epigenetic Regulation: LncRNAs can regulate gene expression in a heritable manner by
influencing epigenetic modifications such as DNA methylation and histone modification
patterns. Some IncRNAs act as guides or scaffolds for recruiting chromatin-modifying
enzymes to specific genomic loci, leading to changes in DNA methylation status or histone
acetylation/methylation patterns that affect gene expression. These epigenetic changes can
be stably inherited through cell divisions and play important roles in cell fate determination
and differentiation [149].

Subcellular Localization: LncRNAs can localize to specific subcellular compartments,
such as the nucleus or cytoplasm, where they exert distinct regulatory functions [150].
Nuclear IncRNAs often regulate transcriptional processes by interacting with chromatin or
transcriptional machinery, while cytoplasmic IncRNAs may modulate post-transcriptional
events such as mRNA stability, translation, or protein localization. Overall, IncRNAs play
diverse and complex roles in the regulation of gene expression, acting at multiple levels to
fine-tune cellular processes and maintain cellular homeostasis [151].

Given the multifaceted roles of IncRNAs in regulating gene expression and main-
taining cellular homeostasis, it is evident that they also play crucial roles in the immune
dysregulation observed in COPD. By influencing key molecular pathways and cellular
processes, IncRNAs contribute to the chronic inflammation and immune responses charac-
teristic of COPD [152]. This regulatory influence is particularly significant in the modulation
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of immune-related genes and signaling pathways, which underscores the importance of
understanding IncRNA-mediated immune responses in the pathogenesis of COPD. The
next section will delve into the specific IncRNAs involved in these immune mechanisms
and their impacts on COPD progression.

4.1. LncRNA-Mediated Immune Response in COPD

COPD is characterized by persistent inflammation and immune dysregulation in the
airways and lung parenchyma, driven by complex interactions between immune cells,
cytokines, and regulatory molecules. LncRNAs have emerged as critical regulators of
the immune response in COPD, modulating inflammatory signaling pathways, immune
cell differentiation, and cytokine production in the lung microenvironment [153]. Sev-
eral IncRNAs, including NEAT1 [154], GAS5 [155], MALAT1 [156], HOTAIR [157], and
TUGI [158], have been implicated in the modulation of immune responses in COPD. These
IncRNAs interact with RNA-binding proteins, miRNAs, and transcription factors to regu-
late the expression of immune-related genes and signaling pathways involved in COPD
pathogenesis [159].

NEATT1 is a nuclear retained IncRNA that forms the structural scaffold for the formation
of nuclear bodies known as paraspeckles. In COPD, dysregulated expression of NEAT1
alters inflammatory cytokine production and immune cell function, contributing to disease
progression [160]. NEAT1 interacts with RNA-binding proteins like SFPQ and transcription
factors such as RELA to regulate the expression of immune-related genes involved in COPD
pathogenesis [161].

GASS is a stress-induced IncRNA that regulates the proliferation and apoptosis of
immune cells, including T cells and macrophages. Dysregulated expression of GAS5 in
COPD affects immune cell function and inflammatory cytokine production, exacerbating
airway inflammation and tissue damage [162]. GAS5 modulates the activity of key signaling
pathways involved in COPD pathogenesis, including NF-kB and JAK-STAT signaling, by
binding to the glucocorticoid receptor and sequestering miRNAs such as miR-21, which in
turn modulates the expression of target genes [163].

HOTAIR is an oncogenic IncRNA implicated in the regulation of immune responses
in COPD. Dysregulated expression of HOTAIR alters the expression of immune-related
genes and cytokines, contributing to chronic inflammation and tissue damage in COPD
patients [164]. HOTAIR interacts with chromatin-modifying complexes such as PRC2 and
LSD1 and transcription factors like STAT3 to regulate the expression of genes involved in
immune cell activation and cytokine signaling [165].

MALAT1 is a highly conserved IncRNA that regulates immune responses and in-
flammatory signaling pathways in COPD. Dysregulated expression of MALAT1 affects
immune cell infiltration, cytokine production, and tissue remodeling processes in COPD
patients [166]. MALATT1 interacts with RNA-binding proteins such as HuR and miRNAs
like miR-146a, modulating the expression of genes involved in inflammatory responses
and immune cell function [167].

TUG1 is an IncRNA implicated in the regulation of immune responses and inflamma-
tory signaling pathways in COPD. Dysregulated expression of TUGI alters the expression
of immune-related genes and cytokines, contributing to airway inflammation and tissue
remodeling in COPD patients [168]. TUG1 interacts with chromatin-modifying complexes
such as EZH2 and transcription factors like NF-«B to regulate the expression of genes
involved in immune cell activation and inflammatory responses [169].

4.2. Complexities of LncRNA-Mediated Inflammation in COPD

Recent studies have implicated IncRNAs as key regulators of inflammatory pathways
in various diseases, including COPD [170]. Dysregulated expression of IncRNAs has
been associated with aberrant inflammatory responses, airway remodeling, and disease
progression. Several IncRNAs have been identified as critical regulators of inflammatory
signaling pathways in COPD pathogenesis, modulating the expression of key mediators
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involved in COPD-associated inflammation, such as chemokines, growth factors, and
proteases [171]. The contributing epithelial cells (endothelial, fibroblast, and epithelial
cells) and immune cells (neutrophils, macrophages, and eosinophils) secrete mediators
and proteinases that orchestrate the recruitment and activation of inflammatory cells,
intensifying the inflammatory environment within the airways through the regulation of
IncRNAs (Figure 4A) [172].

In the pathogenesis of COPD, IncRNAs play pivotal roles by modulating the ac-
tivities of various immune and structural cells, including fibroblasts, CD8+ T cells, and
neutrophils. Among the key IncRNAs involved, NEAT1, HOTAIR, and TUGI are cru-
cial in regulating fibroblasts. NEAT1 influences fibroblast activation and proliferation by
modulating the production of inflammatory cytokines [173], while HOTAIR affects gene
expression related to tissue remodeling and fibroblast activation through its interaction
with chromatin-modifying complexes [174]. TUG1 further contributes by regulating genes
involved in extracellular matrix production, interacting with transcription factors and
chromatin modifiers [175].

In CD8+ T cells, IncRNAs such as GAS5, MALAT1, and ANRIL are essential. GAS5
regulates the proliferation and apoptosis of these cytotoxic T cells, with dysregulated expres-
sion exacerbating alveolar destruction in COPD [176]. MALAT1 modulates inflammatory
signaling pathways and cytokine production, influencing CD8+ T cell function [177], while
ANRIL affects inflammation and cell proliferation through its interaction with chromatin-
modifying complexes [178]. Neutrophil activity is regulated by NEAT1, MALAT1, and
MEGS3. NEAT1 enhances neutrophil recruitment and activation by regulating chemotactic
factors like IL-8, whereas MALAT1 modulates neutrophil infiltration and inflammatory
cytokine production [179]. MEG3 impacts neutrophil activity by regulating inflammatory
cytokines and proteases, affecting transcription factors such as NF-«B [180].

Cigarette smoke and various irritants are primary instigators of COPD, igniting in-
flammatory cascades within the respiratory tract [181]. Activated macrophages liberate
potent neutrophil chemotactic factors like interleukin-8 (IL-8) and leukotriene B4 (LTB4),
priming the groundwork for cellular recruitment and activation [182]. Neutrophils, once
mobilized, unleash proteases that inflict damage upon the lung parenchyma, fostering
emphysematous changes and exacerbating mucus hypersecretion [183]. IncRNAs such as
NEAT1 and MALAT1 influence the balance between proteases and inhibitors, including
alpha-1-antitrypsin, secretory leukocyte protease inhibitor (SLPI), and tissue inhibitors of
metalloproteinases (TIMPs), thereby modulating the dynamic interplay governing tissue
homeostasis [184]. Additionally, cytotoxic T cells (CD8+) and fibroblasts orchestrate alveo-
lar wall destruction and fibrotic remodeling under the influence of growth factors released
by macrophages and epithelial cells [185].

Inflammation in COPD is a complex phenomenon orchestrated by a myriad of
activated inflammatory and structural cells. Lipid mediators such as LTB4, alongside
chemokines including monocyte chemotactic protein-1 (MCP-1) and macrophage inflam-
matory protein-1 alpha (MIP-1x), emerge as pivotal in orchestrating leukocyte recruitment
and activation [186]. Interleukin-8 (IL-8), growth-related oncogene alpha (GRO-«x), and
interferon-gamma-inducible protein-10 (IP-10) further potentiate this cellular influx, attract-
ing cytotoxic T cells and generating reactive oxygen species (ROS) and nitric oxide (NO).
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-o) assumes a central
role in amplifying inflammation, gene expression, and mediating systemic sequelae of
COPD [187]. IncRNAs such as HOTAIR and XIST modulate these inflammatory media-
tors and their downstream effects [188]. Endothelin and transforming growth factor-beta
(TGF-p) are pivotal mediators in fibrotic remodeling, epitomizing the intricate interplay
between inflammation and tissue remodeling in COPD pathogenesis [189]. The release
of proteases, including neutrophil elastase, proteinase C, cathepsins, and MMPs, under-
scores the proteolytic milieu perpetuating elastolysis and mucus hypersecretion, thus
perpetuating the hallmark pathophysiology of COPD [190].
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In the complex inflammatory milieu of COPD, IncRNAs intricately modulate the
immune response across various contributing cell types. NEAT1, prominently expressed
in epithelial cells, neutrophils, and macrophages, regulates IL-8 production, thereby in-
fluencing neutrophil recruitment and inflammatory responses [191]. MALATT1 is highly
versatile, modulating IL-8, ROS, and NO in epithelial and neutrophil cells, while also
affecting the expression of MCP-1, MIP-1«, GRO-«, IP-10, and GM-CSF in endothelial cells,
orchestrating monocyte and neutrophil survival and activation. Additionally, MALAT1
impacts the macrophage-driven production of LTB4, contributing to the overall inflam-
matory cascade [192]. HOTAIR regulates TGF-f3 and TNF-o production in fibroblasts and
macrophages, playing a pivotal role in fibrosis and systemic inflammation [193]. MEGS3 in-
fluences TGF-f production in fibroblasts and macrophages and modulates MCP-1, MIP-1«,
and IL-8 expression, affecting monocyte recruitment and fibrotic responses [194]. GAS5,
by modulating ROS, NO, and GM-CSF in epithelial, neutrophil, and macrophage cells,
impacts inflammatory responses and neutrophil survival. Furthermore, TUG1's regulation
of neutrophil elastase, proteinase, cathepsins, and MMPs underscores its significant role
in tissue remodeling and elastolysis, highlighting its importance in neutrophil-mediated
proteolytic activity [195].

Collectively, these IncRNAs orchestrate a complex network of cellular interactions
that drive the inflammatory and immune responses in COPD. Their regulation of fibrob-
lasts, CD8+ T cells, neutrophils, and other immune cells underscores their potential as
therapeutic targets for mitigating disease progression, emphasizing the critical roles of
NEAT1, MALAT1, HOTAIR, MEG3, GAS5, and TUGL in the pathogenesis and progression
of COPD (Figure 4B).
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and structural cells, orchestrating a symphony of mediators. Among them, lipid mediators like
LTB4 beckon neutrophils, while chemokines such as MCP-1 and MIP-1« allure monocytes. IL-8 and
GRO-« extend their call to both neutrophils and monocytes, while IP-10 beckons CD8+ cells alongside
ROS and NO. GM-CSF prolongs the survival of neutrophils, while TNF-« ignites inflammation by
activating multiple inflammatory genes and may underscore systemic manifestations of the disease.
Meanwhile, endothelin and TGF-§3 set the stage for fibrosis. Concurrently, a host of proteinases
including neutrophil elastase, proteinase C, cathepsins, and MMPs orchestrate elastolysis, ushering
in the hallmark pathophysiology of COPD characterized by inflammatory cell activation, elastolysis,
and mucus hypersecretion. (B) Representative network of epithelial and immune cell contributions
in COPD: Epithelial and immune cells, including neutrophils, macrophages, and eosinophils, play
a crucial role in COPD by secreting proteinases and mediators that drive inflammation. NEAT1,
MALAT1, HOTAIR, MEG3, GAS5, and TUGI are key IncRNAs regulating this process. NEAT1 and
MALAT1 modulate IL-8 production in epithelial cells, neutrophils, and macrophages, while MALAT1
also affects ROS, NO, and several chemokines in endothelial cells. HOTAIR influences TGF-3 and
TNF-« in fibroblasts and macrophages, and MEG3 regulates TGF-(3, MCP-1, MIP-1«, and IL-8 in
macrophages. GAS5 affects ROS, NO, GM-CSF, and TNF-« in various cells, and TUGI1 controls
neutrophil elastase and other proteases. These interactions exacerbate the inflammatory milieu in the
airways, highlighting the potential of IncRNAs as therapeutic targets for COPD. (A) was designed
using BioRender, incorporating data from reference sources [196]. (B), developed with Cytoscape
software, is based on additional references from PubMed.

4.3. Modulation of Cellular Processes by LncRNA in COPD

LncRNAs play pivotal roles in modulating cellular processes implicated in COPD,
contributing to disease pathogenesis and progression. Through diverse mechanisms,
including regulation of gene expression, modulation of signaling pathways, and interaction
with cellular components, IncRNAs influence key cellular processes in COPD [197].

Epithelial-to-Mesenchymal Transition (EMT): EMT is a cellular process characterized
by the transition of epithelial cells into mesenchymal cells, leading to increased cell motility,
invasiveness, and fibrosis [198]. Dysregulated expression of IncRNAs such as HOTAIR and
MALAT1 has been implicated in promoting EMT in COPD. These IncRNAs regulate the ex-
pression of genes involved in EMT-related pathways, including TGF-f signaling and matrix
metalloproteinases, facilitating airway remodeling and fibrosis in COPD patients [199].

Cell Proliferation and Apoptosis: Dysregulated cell proliferation and apoptosis con-
tribute to tissue remodeling, airway obstruction, and emphysema in COPD [200]. LncRNAs
such as GAS5 and TUG1 modulate cell cycle progression, apoptosis, and senescence in
COPD by regulating the expression of genes involved in cell growth and survival pathways.
Dysregulated expression of these IncRNAs alters the balance between cell proliferation and
apoptosis, contributing to disease progression and exacerbation in COPD patients [201].

Inflammatory Signaling Pathways: Chronic inflammation is a hallmark feature of
COPD, characterized by increased production of pro-inflammatory cytokines and chemokines
in the lung microenvironment [202]. LncRNAs such as NEAT1 and XIST regulate inflam-
matory signaling pathways in COPD by modulating the expression of genes involved
in cytokine production, immune cell infiltration, and tissue remodeling. Dysregulated
expression of these IncRNAs contributes to sustained inflammation and tissue damage in
COPD patients, exacerbating disease severity and progression [203].

Oxidative Stress Response: Oxidative stress plays a central role in COPD pathogenesis,
contributing to airway inflammation, oxidative damage, and impaired lung function [204].
LncRNAs such as H19 and MEG3 regulate oxidative stress response pathways in COPD by
modulating the expression of antioxidant enzymes, stress-responsive genes, and redox sig-
naling molecules. Dysregulated expression of these IncRNAs disrupts cellular homeostasis
and exacerbates oxidative damage in COPD patients, contributing to disease progression
and exacerbation [205].
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Fibrotic Processes: Pulmonary fibrosis is a common complication of COPD, charac-
terized by excessive deposition of extracellular matrix proteins and tissue remodeling in
the lung parenchyma [206]. LncRNAs such as FENDRR and HOTAIR regulate fibrotic
processes in COPD by modulating the expression of genes involved in fibroblast activation,
collagen synthesis, and tissue remodeling. Dysregulated expression of these IncRNAs
promotes aberrant fibroblast proliferation and extracellular matrix deposition, leading to
progressive fibrosis and loss of lung function in COPD patients [207]. Understanding the
molecular mechanisms by which IncRNAs modulate cellular processes in COPD offers
insights into disease pathogenesis and potential therapeutic targets for COPD management.
Targeting dysregulated IncRNAs may offer novel strategies for inhibiting airway remodel-
ing, inflammation, oxidative stress, and fibrosis in COPD patients, ultimately improving
disease outcomes and quality of life [208].

5. Modulatory Mechanisms of COPD-Associated LncRNA in Lung Cancer Progression

Lung cancer remains a significant global health challenge, with high mortality rates
and limited treatment options. LncRNAs have emerged as critical regulators of lung cancer
progression, offering potential insights into novel therapeutic strategies and prognostic
markers [209]. This review explores the intricate modulatory mechanisms of IncRNAs in
lung cancer progression, focusing on the interaction between COPD-associated IncRNAs
and lung cancer pathways, the regulatory functions of IncRNA in lung cancer development
from COPD, and the implications of IncRNA dysregulation in lung cancer metastasis [210].

5.1. Interaction Between COPD-Associated LncRNA and Lung Cancer Pathways

COPD and lung cancer are two major respiratory diseases that share common risk fac-
tors, including cigarette smoking and exposure to environmental pollutants [211]. Emerging
evidence suggests that dysregulated IncRNAs play pivotal roles in both COPD pathogenesis
and lung cancer progression [212]. This review delves into the intricate relationship be-
tween COPD-implicated IncRNAs and lung cancer progression, highlighting the molecular
mechanisms underlying their interplay and potential implications for disease management.

5.1.1. Shared Molecular Pathways

COPD-implicated IncRNAs and lung cancer progression often converge on shared
molecular pathways involved in inflammation, oxidative stress, and cellular prolifera-
tion [213]. For instance, IncRNA H19, initially identified as a regulator of embryonic
development and imprinting, exhibits dysregulated expression in COPD and lung cancer
tissues [214]. H19 promotes lung cancer progression by modulating pathways associated
with cell proliferation, invasion, and metastasis. Its overexpression correlates with ad-
vanced tumor stage and poor prognosis in lung cancer patients, highlighting its potential
as a prognostic biomarker and therapeutic target [215].

Similarly, IncRNA MALAT1 has been implicated in COPD pathogenesis and lung
cancer metastasis. MALAT1 expression is upregulated in COPD and lung cancer tissues,
where it promotes tumor invasion and metastasis by regulating alternative splicing events
and gene expression programs associated with metastatic progression [216]. Its aberrant
expression correlates with disease aggressiveness and poor clinical outcomes in lung cancer
patients, underscoring its potential as a therapeutic target for metastatic disease [217].

5.1.2. Regulatory Roles of COPD-Associated LncRNA in Lung Cancer

COPD-implicated IncRNAs exert diverse regulatory functions in lung cancer progres-
sion, including modulation of gene expression, epigenetic regulation, and interaction with
signaling pathways implicated in tumor development and metastasis [218]. For instance,
ANRIL (antisense non-coding RNA in the INK4 locus) is upregulated in COPD and lung
cancer tissues, where it promotes tumor growth and metastasis by interacting with chro-
matin remodeling complexes and transcription factors involved in oncogenic signaling
pathways [219].
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Moreover, IncRNA TUG1 exhibits dysregulated expression in COPD and lung cancer
tissues, contributing to disease aggressiveness and treatment resistance [220]. TUG1 pro-
motes lung cancer progression by modulating epithelial-to-mesenchymal transition (EMT)
and metastasis through its interaction with miRNAs and protein-coding genes involved in
tumor initiation and progression. Its aberrant expression serves as a prognostic marker for
poor survival outcomes in lung cancer patients with a history of COPD, highlighting its
potential as a therapeutic target for preventing disease progression [221].

5.2. Dysregulated Expression of COPD-Associated LncRNAs in Lung Cancer

COPD is a prevalent respiratory condition characterized by airflow limitation and
chronic inflammation, primarily caused by exposure to tobacco smoke and environmental
pollutants. It significantly increases the risk of developing lung cancer, the leading cause
of cancer-related mortality worldwide. Recent studies have highlighted the dysregulated
expression of IncRNAs in both COPD and lung cancer, suggesting their potential roles as
biomarkers and therapeutic targets in disease progression [222]. This review aims to explore
the dysregulated expression of COPD-associated IncRNAs in lung cancer, elucidating their
molecular mechanisms and clinical implications.

ANRIL: ANRIL, also known as CDKN2B-AS], is a well-characterized IncRNA impli-
cated in COPD and lung cancer pathogenesis [223]. Its dysregulated expression contributes
to aberrant cell cycle progression, apoptosis, and cellular senescence, promoting tumor
growth and metastasis. In COPD, ANRIL upregulation correlates with disease severity and
airflow limitation, suggesting its potential as a biomarker for COPD progression. Similarly,
ANRIL overexpression in lung cancer tissues is associated with advanced tumor stage,
lymph node metastasis, and poor prognosis in patients [224]. Mechanistically, ANRIL
regulates the expression of tumor suppressor genes, oncogenes, and cell cycle regulators,
orchestrating a complex network of molecular interactions that drive oncogenic processes
in lung cancer cells [225].

H19: H19 is a maternally expressed IncRNA involved in embryonic development
and genomic imprinting, whose dysregulated expression has been implicated in COPD
and lung cancer progression. In COPD patients, H19 upregulation correlates with airway
inflammation, oxidative stress, and lung function decline, suggesting its potential as a
diagnostic and prognostic biomarker [226]. In lung cancer, H19 promotes tumor growth,
angiogenesis, and metastasis through its interactions with miRNAs, transcription factors,
and signaling pathways involved in tumor progression. Its aberrant expression in lung
cancer tissues is associated with tumor aggressiveness, treatment resistance, and poor
clinical outcomes in patients [227].

MALAT1: MALATT1 is a highly conserved IncRNA implicated in COPD pathogenesis
and lung cancer metastasis. Its dysregulated expression contributes to disease progres-
sion by modulating alternative splicing events, gene expression programs, and signaling
pathways associated with tumor invasion and metastasis [228]. In COPD, MALAT1 up-
regulation correlates with airway remodeling, mucus hypersecretion, and disease severity,
suggesting its potential as a therapeutic target for COPD management. In lung cancer,
MALAT1 promotes metastatic spread, EMT, and resistance to chemotherapy and targeted
therapies, highlighting its prognostic value and therapeutic potential in advanced-stage
disease [229].

TUGL: TUGI is a conserved IncRNA implicated in COPD pathogenesis and lung
cancer progression, whose dysregulated expression correlates with disease severity and
poor clinical outcomes. In COPD patients, TUG1 upregulation is associated with airway
inflammation, oxidative stress, and lung function decline, indicating its potential as a
biomarker for disease progression and exacerbation risk [230]. In lung cancer, TUG1
promotes tumor growth, metastasis, and resistance to therapy by modulating the expression
of oncogenes, tumor suppressors, and signaling pathways involved in cell proliferation and
survival. Its aberrant expression serves as a prognostic marker for poor survival outcomes
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in lung cancer patients, highlighting its therapeutic potential as a target for personalized
treatment approaches [231].

HOTAIR: HOTAIR is a well-characterized IncRNA implicated in COPD and lung
cancer pathogenesis, whose dysregulated expression correlates with disease severity and
progression. In COPD patients, HOTAIR upregulation is associated with airway inflam-
mation, fibrosis, and lung function decline, suggesting its potential as a biomarker for
disease exacerbation and progression risk. In lung cancer, HOTAIR promotes tumor in-
vasion, metastasis, and angiogenesis by modulating chromatin remodeling complexes,
transcription factors, and signaling pathways involved in tumor progression [232]. Its
aberrant expression is associated with advanced tumor stage, lymph node metastasis, and
poor prognosis in patients, highlighting its prognostic value and therapeutic potential in
advanced-stage disease [233].

UCA1: UCAL1 is an oncogenic IncRNA implicated in COPD pathogenesis and lung
cancer progression, whose dysregulated expression contributes to disease aggressiveness
and poor clinical outcomes [234]. In COPD patients, UCA1 upregulation correlates with
airway inflammation, mucus hypersecretion, and disease severity, indicating its potential as
a biomarker for disease progression and exacerbation risk. In lung cancer, UCA1 promotes
tumor growth, metastasis, and resistance to therapy by modulating cell proliferation,
apoptosis, and DNA repair mechanisms. Its aberrant expression serves as a prognostic
marker for poor survival outcomes in lung cancer patients, highlighting its potential as a
therapeutic target for personalized treatment approaches [235].

FENDRR (Fetal-lethal Non-coding Developmental RNA): FENDRR is a develop-
mentally regulated IncRNA implicated in COPD and lung cancer pathogenesis, whose
dysregulated expression correlates with disease severity and progression. In COPD pa-
tients, FENDRR upregulation is associated with airway inflammation, oxidative stress, and
lung function decline, suggesting its potential as a biomarker for disease exacerbation and
progression risk [236]. In lung cancer, FENDRR functions as a tumor suppressor by inhibit-
ing cell proliferation, invasion, and metastasis through its interactions with miRNAs and
transcription factors involved in tumor progression. Its downregulation is associated with
advanced tumor stage, lymph node metastasis, and poor prognosis in patients, highlighting
its potential as a prognostic biomarker and therapeutic target in lung cancer [237].

AK098656: AK098656 is a less studied IncRNA but has been implicated in both
COPD and lung cancer. Its dysregulated expression suggests potential roles in disease
pathogenesis and progression, although further research is needed to elucidate its molecular
mechanisms and clinical implications in COPD and lung cancer [238].

6. LncRNA in Body Fluids for COPD Diagnosis and Therapy

LncRNAs have emerged as promising biomarkers and therapeutic targets for COPD.
Detection of IncRNA biomarkers in body fluids such as blood and urine offers non-invasive
diagnostic tools for early disease detection and monitoring [239]. Moreover, the therapeutic
potential of IncRNAs in COPD management holds promise for personalized treatment
approaches and disease intervention strategies.

6.1. Detection of LncRNA Biomarkers in Blood Samples

Blood-based biomarkers have emerged as indispensable tools for diagnosing and
monitoring COPD owing to their accessibility and minimally invasive nature. LncRNAs
detected in peripheral blood samples have demonstrated considerable promise as diag-
nostic and prognostic biomarkers for COPD [240]. Among these, NEAT1, MALAT1, and
HOTAIR have surfaced as notable candidates, showcasing dysregulated expression pat-
terns in COPD patients compared to healthy controls. Specifically, the circulating levels of
these IncRNAs exhibit variations correlated with disease severity, exacerbation risk, and
response to therapeutic interventions, underscoring their clinical relevance in the context
of COPD diagnosis and prognosis [241].
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In recent years, the advent of high-throughput sequencing technologies and sophisti-
cated bioinformatics analyses has accelerated the identification of novel IncRNA biomarkers
in blood samples of COPD patients [242]. By leveraging multi-omics data integration and
machine learning algorithms, researchers have endeavored to develop robust predictive
models for assessing COPD risk and monitoring disease progression. These endeavors
hold promise in enhancing the precision and efficacy of COPD management strategies.
However, it is imperative to conduct comprehensive validation studies in large patient
cohorts to ascertain the diagnostic accuracy and clinical utility of blood-based IncRNA
biomarkers in COPD management [243].

Furthermore, the landscape of blood-based biomarkers in COPD extends beyond
individual IncRNAs to encompass a spectrum of molecular entities, including miRNAs,
messenger RNAs, and proteins. For instance, miR-21 and miR-146a have emerged as
key regulators implicated in COPD pathogenesis, displaying dysregulated expression
patterns reflective of disease severity and exacerbation risk [244]. Likewise, the expression
profiles of certain protein biomarkers, such as C-reactive protein (CRP), interleukin-6 (IL-
6), and tumor necrosis factor-alpha (TNF-alpha), exhibit dynamic alterations associated
with COPD progression and exacerbation events. The integration of diverse molecular
biomarkers holds the potential to furnish clinicians with comprehensive insights into COPD
pathophysiology and patient-specific disease trajectories [245].

Moreover, the advent of precision medicine approaches underscores the importance
of leveraging blood-based biomarkers to tailor therapeutic interventions according to in-
dividual patient profiles. By elucidating the intricate molecular signatures underpinning
COPD pathogenesis, blood-based biomarkers pave the way for personalized and targeted
therapeutic strategies aimed at mitigating disease progression and improving patient out-
comes [246]. The exploration of IncRNA biomarkers in blood samples represents a pivotal
avenue in the quest for refined diagnostic and prognostic tools in COPD management.
Through concerted efforts in biomarker discovery, validation, and clinical translation, re-
searchers aspire to harness the full potential of blood-based biomarkers to usher in a new
era of precision medicine tailored to the intricate nuances of COPD pathophysiology.

6.2. Urinary LncRNA as a Diagnostic Tool for COPD

Urine-based biomarkers stand at the forefront of non-invasive and readily accessible
samples for diagnosing and monitoring COPD, a prevalent respiratory condition posing
significant public health challenges. LncRNAs, discerned within urinary exosomes and
cell-free fractions, have emerged as promising candidates for enhancing COPD diagnostic
precision [247]. Notably, the dysregulated expression profiles of urinary IncRNAs, in-
cluding UCA1, TUGI, and H19, have exhibited correlations with the severity of COPD
manifestations, declines in pulmonary function, and heightened risks of exacerbations
among afflicted individuals. Such associations underscore the potential utility of uri-
nary IncRNAs as indispensable diagnostic biomarkers, offering insights into the dynamic
interplay between molecular signatures and disease progression [248].

Delving deeper into the molecular landscape, the characterization of urinary IncRNA
profiles in COPD unveils intricate mechanistic underpinnings and unveils potential thera-
peutic targets. Mechanistic inquiries have shed light on the pivotal roles of urinary IncRNAs
in orchestrating inflammatory cascades, modulating oxidative stress responses, and or-
chestrating tissue remodeling processes within the pulmonary microenvironment. For
instance, investigations have delineated how dysregulated urinary IncRNAs, such as UCAL,
influence the activation of inflammatory signaling pathways, exacerbating pulmonary in-
flammation and perpetuating tissue damage characteristic of COPD pathogenesis [249].
Moreover, elucidating the contributions of urinary IncRNAs, like TUG1 and H19, to ox-
idative stress dynamics underscores their potential as modulators of redox homeostasis,
thereby influencing disease progression and exacerbation susceptibility [250].

Furthermore, the exploration of urinary IncRNA signatures unveils novel avenues for
personalized treatment strategies and targeted interventions in COPD management. By
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discerning aberrant expression patterns of urinary IncRNAs, clinicians can tailor therapeu-
tic modalities to address individualized disease phenotypes and molecular profiles [251].
For instance, therapeutic targeting of dysregulated urinary IncRNAs holds promise for
mitigating inflammatory responses, ameliorating oxidative stress burdens, and attenuat-
ing tissue remodeling processes within the pulmonary microenvironment. Integrating
insights from mechanistic studies with clinical observations paves the way for innovative
therapeutic approaches aimed at disrupting pathological pathways underpinning COPD
progression [252].

In essence, urinary IncRNAs represent invaluable diagnostic tools and therapeutic
targets in the multifaceted landscape of COPD. Their intricate roles in mediating inflamma-
tory cascades, modulating oxidative stress dynamics, and orchestrating tissue remodeling
processes underscore their significance in unraveling the molecular complexities of COPD
pathogenesis [253]. Characterizing the molecular signatures of urinary IncRNAs in COPD
provides insights into disease pathogenesis and potential therapeutic targets. Mechanistic
studies have elucidated the role of urinary IncRNAs in modulating inflammatory responses,
oxidative stress, and tissue remodeling processes in the lung microenvironment. Targeting
dysregulated urinary IncRNAs may offer novel strategies for personalized treatment ap-
proaches and disease intervention in COPD patients [254]. Harnessing the diagnostic and
therapeutic potential of urinary IncRNAs not only enhances our understanding of COPD
pathophysiology but also offers unprecedented opportunities for personalized disease
management and intervention strategies tailored to individual patient needs [255].

6.3. Pharmacological Actions of LncRNA Molecules as Potential Therapeutics for COPD

LncRNAs have emerged as promising targets for pharmacological intervention in
COPD, offering potential therapeutic strategies for mitigating disease progression and
improving patient outcomes. Several IncRNAs have been identified as key regulators of in-
flammatory responses, airway remodeling, exacerbation risk, vascular remodeling, and mu-
cous hypersecretion in COPD (Figure 5) [256]. Targeting dysregulated IncRNA molecules
holds promise for developing novel therapeutics with anti-inflammatory, anti-airway-
remodeling, anti-exacerbation, anti-vascular-remodeling, and anti-mucous-hypersecretion
properties [257].

Anti-inflammatory Actions: In COPD, chronic inflammation plays a central role in
disease pathogenesis, contributing to airway obstruction, tissue damage, and decline
in lung function [258]. Dysregulated expression of IncRNAs such as NEAT1, MEGS3,
H19, MALAT1, and GAS5 has been implicated in modulating inflammatory signaling
pathways and cytokine production in COPD patients. Targeting these IncRNAs with
pharmacological agents such as antisense oligonucleotides or small interfering RNAs may
attenuate inflammatory responses, reduce immune cell infiltration, and mitigate tissue
inflammation in COPD [259].

Anti-Airway-Remodeling Effects: Airway remodeling is a hallmark feature of COPD,
characterized by structural changes in the airway epithelium, smooth muscle hypertrophy,
and extracellular matrix deposition [260]. LncRNAs such as GAS5, HOTAIR, TUG1, and
FENDRR regulate genes involved in airway remodeling processes, including TGF-f3 sig-
naling, matrix metalloproteinases, and collagen synthesis. Pharmacological targeting of
these IncRNAs may inhibit airway remodeling, restore airway structure and function, and
improve lung function in COPD patients [261].

Anti-Exacerbation Properties: Exacerbations involve acute worsening COPD symptoms,
often triggered by respiratory infections, air pollution, or environmental factors [262].
Dysregulated expression of IncRNAs such as RP11-713B14.1, XIST, UCA1, and H19 has
been associated with exacerbation risk and disease progression in COPD patients. Targeting
these IncRNAs with pharmacological interventions may reduce exacerbation frequency,
attenuate symptom severity, and improve the quality of life of COPD patients [263].

Anti-Vascular-Remodeling Effects: Vascular remodeling contributes to pulmonary hy-
pertension, right heart failure, and cardiovascular complications in COPD patients [264].
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IncRNAs such as ANRIL, MEG3, HOTAIR, and MALAT1 regulate vascular smooth muscle
cell proliferation, endothelial dysfunction, and angiogenesis in COPD. Pharmacological
modulation of these IncRNAs may inhibit vascular remodeling, reduce pulmonary vascular
resistance, and improve pulmonary hemodynamics in COPD patients [265].

Anti-Mucous-Hypersecretion Actions: Mucous hypersecretion is a common feature of
COPD, contributing to airway obstruction, impaired mucociliary clearance, and recurrent
infections. IncRNAs such as TUG1, GAS5, MALAT1, and NEAT1 regulate mucin gene
expression, goblet cell hyperplasia, and mucous production in COPD. Pharmacological
targeting of these IncRNAs may reduce mucous hypersecretion, improve airway clearance,
and reduce the risk of respiratory infections in COPD patients [266].

Anti-inflammatory
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H19, MEG3 Anti-airway remodeling
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Anti-mucous hypersecretion
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TUGT1
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" 'IV-'IeaIthy COPD
Lung Lung

Figure 5. Representative diagram illustrating smoke signals: LncRNAs driving COPD pathophysiol-
ogy. Tobacco smoke exposure profoundly reshapes the landscape of IncRNAs, instigating a cascade
of events leading to exacerbated COPD pathologies. This alteration encompasses mitochondrial
dysfunction, chronic inflammation, mucus dysregulation, epigenetic modifications, and cellular
senescence. The figure, generated with the BioRender platform, incorporates information derived
from reference sources [267].

6.4. Potential Therapeutic Applications of LncRNA in COPD

Therapeutic modulation of IncRNA expression holds promise for COPD management,
offering novel approaches for disease intervention and personalized treatment strate-
gies. Targeting dysregulated IncRNAs involved in COPD pathogenesis, such as HOTAIR,
MALAT1, and GAS5, may attenuate airway inflammation, oxidative stress, and tissue
remodeling in COPD patients [268].

Various strategies have been explored for IncRNA-based therapeutics, including
antisense oligonucleotides, small interfering RNAs, and CRISPR-based genome editing.
These approaches enable targeted modulation of IncRNA expression and activity, restor-
ing cellular homeostasis and attenuating disease progression in COPD [269]. Moreover,
nanoparticle-mediated delivery systems offer efficient and targeted delivery of IncRNA
therapeutics to the lung microenvironment, minimizing off-target effects and enhancing
therapeutic efficacy [270].

Clinical translation of IncRNA-based therapeutics requires rigorous preclinical valida-
tion and safety assessments in animal models and human clinical trials. The optimization
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of delivery strategies, dosage regimens, and treatment protocols is essential for maximizing
therapeutic efficacy and minimizing potential adverse effects. Furthermore, elucidating
the molecular mechanisms underlying IncRNA-mediated therapeutic effects in COPD pro-
vides insights into disease pathogenesis and potential biomarkers for treatment response
monitoring [271].

7. Conclusions and Future Directions

The exploration of COPD-associated IncRNAs unveils a sophisticated regulatory net-
work deeply embedded in the pathogenesis and progression of the disease, with significant
implications for therapeutic interventions. Key IncRNAs such as NEAT1, TUG1, MALAT],
HOTAIR, and GAS5 demonstrate a crucial role in lung cancer progression and serve as
powerful prognostic and diagnostic biomarkers. Dysregulated expression profiles of these
IncRNAs are closely linked with COPD severity, providing valuable insights into disease
prognosis and treatment response. Longitudinal cohort studies have identified distinct
IncRNA signatures that correlate with exacerbation risk, lung function decline, and mor-
tality, thus laying the groundwork for personalized therapeutic regimens. These studies
highlight the potential of IncRNAs as reliable markers for predicting disease progression
and tailoring individualized treatment strategies. Moreover, the diagnostic and prognostic
capabilities of these IncRNAs underscore their potential as therapeutic targets for reduc-
ing airway inflammation, oxidative stress, and tissue remodeling in COPD. Translating
IncRNA-based interventions into clinical practice demands rigorous validation studies and
a deeper mechanistic understanding to optimize treatment strategies and refine biomarker
discovery. The intricate interplay between IncRNAs and COPD presents new opportunities
for precision medicine, promising improved patient outcomes and enhanced quality of
life in COPD management. Through continued research and clinical application, IncRNAs
hold the key to transforming COPD treatment paradigms, ensuring more effective and
personalized approaches for managing this complex disease.
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