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Abstract: Bacteria of the Thiothrix morphotype, comprising the genera Thiothrix, Thiolinea and
Thiofilum, are frequently encountered in domestic and industrial wastewater treatment systems,
but they are usually not clearly differentiated due to the marked similarity in their morphologies.
Methods ranging from light microscopy, FISH and PCR to modern high-throughput sequencing are
used to identify them. The development of these bacteria in wastewater treatment systems has both
advantages and disadvantages. On the one hand, the explosive growth of these bacteria can lead
to activated sludge bulking or clogging of the treatment system’s membranes, with a consequent
decrease in the water treatment efficiency. On the other hand, members of the Thiothrix morphotype
can improve the quality of granular sludge and increase the water treatment efficiency. This may be
due to their capacity for sulfide oxidation, denitrification combined with the oxidation of reduced
sulfur compounds, enhanced biological phosphate removal and possibly denitrifying phosphate
removal. The recently obtained pangenome of the genus Thiothrix allows the explanation, at the
genomic level, of the experimental results of various studies. Moreover, this review summarizes the
data on the factors affecting the proliferation of representatives of the Thiothrix morphotype.

Keywords: Thiothrix; Thiolinea; Thiofilum; wastewater

1. Introduction

Representatives of filamentous bacteria, similar in morphotype to Thiothrix, are attach-
ing filamentous organisms, many of which are capable of forming rosettes, accumulating
elemental sulfur inside cells and spreading by gonidia [1]. In running water containing
hydrogen sulfide, they form abundant whitish filamentous fouling, visible to the naked eye.
In the presence of reduced sulfur compounds, representatives of the Thiothrix morphotype
are known for their versatile metabolism, which gives them potential for lithoautotrophic
and lithoheterotrophic growth [2–5]. Most commonly, they can be found in sulfide springs,
deep-sea hydrotherms, irrigation systems and activated sludge from sewage treatment
plants [2–5].

Over the last two decades, the taxonomy of the genus Thiothrix has been revised
several times. In the guidelines for the identification of microorganisms that cause the
bulking of activated sludge, filamentous bacteria similar in morphotype to Thiothrix were
classified as Type 021N, Thiothrix I and Thiothrix II [6,7]. However, it is worth noting that,
even at the time of the publication of these manuals, such classification was shown to be
phylogenetically incorrect [8,9]. Subsequently, Boden and Scott [10] proposed that Thiothrix
disciformis and Thiothrix eikelboomii, previously included in Type 021N, should be classified
as the genus Thiolinea, while Thiothrix flexilis should be classified as the genus Thiofilum.
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Despite the fact that Thiolinea and Thiofilum were assigned to separate genera 6 years
ago, representatives of these genera are often still attributed to the genus Thiothrix in works
on biological wastewater treatment [11,12]. Moreover, even the more obsolete name Type
021N was used to refer to them for nearly two decades [13–18].

To eliminate such confusion in taxonomy, in the presented review, we combine data
on bacteria currently assigned to three genera, Thiothrix, Thiofilum and Thiolinea, based on
phylogenetic data, in contrast to their previous assignment to the genus Thiothrix only on
the basis of the morphotype (Figure 1).
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Figure 1. Phylogenetic tree of the family Thiotrichaceae based on the concatenated genomic sequences
of 120 conserved marker genes (maximum likelihood method). Clade I of the genus Thiothrix is
marked with a square bracket in the right part of the figure. For tree rooting, the genome of Beggiatoa
leptomitoformis D-402T (GCF_001305575.3) was used. Figure was modified from Ravin et al. [19] under
the terms of the Creative Commons Attribution 4.0 International License.

The importance of bacteria of the Thiothrix morphotype in applied studies is due to
the fact that they are often found in domestic [18,20–23] and industrial [24–26] wastewater
treatment systems. Biological treatment using complex microbial communities to degrade
pollutants into low-toxicity or non-toxic products is the most important method for wastew-
ater treatment [27]. Bacteria of Thiothrix morphotype are often found in such microbial
communities. These bacteria have been detected in wastewater treatment plants in the
pulp and paper [28–31] and textile industries [32], as well as in wastewater from bisphenol
A production [33]. In addition, bacteria of the Thiothrix morphotype actively proliferate
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in wastewater from food industries, including the dairy [34], fish canning [35] and potato
industries [36].

Bacteria of the Thiothrix morphotype are often found in wastewater from pharmaceuti-
cal plants. It was shown that Thiothrix was one of the dominant populations at the genus
level in a decomposition reactor for the wastewater treatment of lincomycin [37], diclofenac
and clofibrin acid [23]; spiramycin, oxytetracycline and streptomycin [38]; and tetracycline
and sulfamethoxazole [39,40].

The role of bacteria with a morphotype similar to Thiothrix in wastewater treatment
systems is controversial. On the one hand, a certain change in the environmental parameters
can cause their explosive growth, leading to activated sludge bulking and the clogging
of membranes, which significantly reduces the efficiency of treatment [26,29,41]. Bulking
can be related to the ability of Thiothrix-like organisms to form flocks with poor settling
characteristics [42], which raises operational problems in biological wastewater treatment
systems worldwide [18,25]. At the same time, a number of studies show that, under
properly selected conditions, representatives of the Thiothrix morphotype, on the contrary,
can help to improve the quality of granular sludge and increase the efficiency of wastewater
treatment [43,44].

In addition to affecting the characteristics of activated sludge, bacteria of the Thiothrix
morphotype are capable of performing a number of metabolic processes leading to the
removal of pollutants from wastewater. These include sulfide oxidation [45], denitrification
coupled with the oxidation of reduced sulfur compounds [23,46], the enhanced biological
removal of phosphorus [47] and possibly the denitrifying removal of phosphorus [48,49].

Although the role of Thiothrix, Thiofilum and Thiolinea in the operation of wastewater
treatment plants is well known and undisputed, no review has yet been published that
discusses the role of these particular bacteria in wastewater treatment systems, rather
than filamentous bacteria in general. The aim of this review is to summarize the current
information on the types of wastewater treatment plants in which representatives of
these three genera occur, the methods for their detection in wastewater and the metabolic
processes that they carry out in wastewater treatment, as well as the conditions affecting
the development of this group of bacteria. This review is the first to attempt to delineate
the available published data on members of the Thiothrix morphotype into three genera,
Thiothrix, Thiofilum and Thiolinea, according to recent advances in molecular phylogeny. It is
also the first review to discuss information on the metabolic processes occurring in members
of the genus Thiothrix in wastewater treatment plants in the context of its pangenomic data.

2. Types of Wastewater Treatment Plants Where Thiothrix Morphotype Can Occur

Microorganisms can be used in biological wastewater treatment in attached form or
in suspension form [50]. In the first case, the microorganisms attach to a rigid surface on
which they form a biofilm, such as in a rotating biological contactor (RBC); in the second
case, the microorganisms are in suspension, as in the conventional activated sludge (CAS)
process and in the membrane bioreactor (MBR) [51].

2.1. Activated Sludge

Activated sludge is a community of microorganisms contributing to the biological
treatment of wastewater. Although filamentous bacteria are usually present in activated
sludge in relatively low numbers, they can cause negative phenomena. Under certain condi-
tions, they proliferate to such an extent that they significantly affect the performance of the
wastewater treatment plant, causing sludge bulking and foaming [35]. Wastewater treat-
ment plants in the food [34–36] and pulp and paper industries [28,29] face similar problems.

Most filamentous bacteria in activated sludge belong to the Thiothrix morphotype [52].
An analysis of the bacterial populations of 29 industrial wastewater treatment plants using
16S rRNA amplicon sequencing showed that activated sludge bulking was associated with
the Thiothrix morphotype in 72% of cases [24].



Int. J. Mol. Sci. 2024, 25, 9093 4 of 24

Pure cultures belonging to the genus Thiothrix were repeatedly isolated from ac-
tivated sludge samples [53,54]. Some isolated strains were subsequently described as
representatives of new species and genera: Thiothrix eikelboomii (later reclassified as a
member of the genus Thiolinea [10]), Thiothrix unzii, Thiothrix fructosivorans [8], Thiothrix
disciformis [9] = Thiolinea disciformis [10] and Thiothrix flexilis [9] = Thiofilum flexile [10]. Based
on the genome obtained from the metagenome (MAG) of activated sludge, a new species,
Thiothrix winogradskyi, was described [55].

Besides pure cultures, new species of Thiothrix with Candidatus status were described
in activated sludge. In this way, ‘Candidatus Thiothrix moskovensis’ and ‘Ca. Thiothrix
singaporensis’ were described based on metagenome-assembled genomes (MAG) obtained
from laboratory-scale bioreactors with the enhanced biological removal of phosphorus [56].

2.2. Aerobic Granular Sludge

As a promising alternative to the wastewater treatment process involving activated
sludge, aerobic granular sludge (AGS) has received increasing attention in recent decades.
In contrast to flocculated activated sludge, AGS is a granular microbial aggregate with a
spatially layered structure (anaerobic/microaerobic/aerobic from inside to outside) that
promotes the growth of microorganisms with diverse functionalities in one small unit [57].

In treating textile wastewater, AGS was shown to be more effective than conventional
activated sludge with Thiothrix filaments disappearing from AGS after such treatment,
resulting in improved sludge settleability [32]. However, it should be noted that AGS
can potentially also face bulking problems due to the proliferation of bacteria similar in
morphotype to Thiothrix. At the same time, it was shown that in the presence of bacteria
of the Thiothrix morphotype (51.4 ± 8.3% of the total microbial population), stable aerobic
granular sludge can be formed, and the morphology of the granules is largely determined
by the operation of the reactor and, to a much lesser extent, by the morphologies of
individual cells [44]. Moreover, members of the Thiothrix morphotype can be among the
dominant bacteria in filamentous granular sludge (FGS), which is capable of maintaining
relatively stable carbon and phosphorus removal efficiency but is challenging in terms of
nitrogen removal [43].

An important factor affecting the granulation and sedimentability of AGS is the food-
to-mass ratio (F/M) [58]. As this ratio increases in the first stages of wastewater treatment,
the number of bacteria of the Thiothrix morphotype increases significantly, which decreases
the efficiency of AGS precipitation. However, the gel-like polysaccharides associated
with these bacteria effectively help to preserve the granular biomass, which gradually
leads to a decrease in the F/M and the restoration of AGS’ sedimentability [58]. The
C/N ratio also has an important effect on the characteristics of activated sludge and the
development of Thiothrix. A decrease in this ratio led to increased competition between
different microorganisms, including the dominant bacteria from the genus Defluviicoccus
and the Thiothrix morphotype, which reduced the efficiency of the system [59]. Nutrient
deficiency, especially nitrogen, also had a negative effect on AGS systems, causing sludge
bulking due to the proliferation of the Thiothrix morphotype [60].

Incorrectly selected conditions often lead to a significant increase in the size of the
granules due to an increase in the number of bacteria similar in morphotype to Thiothrix
and the disruption of the system [61].

2.3. Membrane Bioreactors

Membrane bioreactors (MBRs) are modern, high-intensity biological treatment fa-
cilities. In membrane bioreactors, the separation of activated sludge flocks from treated
wastewater is achieved by filtering the sludge mixture through an ultrafiltration or micro-
filtration membrane, after which microorganisms are removed from the membrane surface
by an aeration system [62].

Challenges in operating membrane bioreactors are related to frequent membrane
clogging, including the growth of filamentous bacteria [63]. Thiothrix eikelboomii (= Thiolinea
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eikelboomii) was reported to decrease the sludge sedimentability, increase the apparent
viscosity in aerobic environments and cause dense biofilm formation on the membrane
surface [12]. Membrane contamination due to an increase in the number of bacteria of the
Thiothrix morphotype is more active at low temperatures [41].

Several methods have been proposed to offset the negative effects of bacteria of the
Thiothrix morphotype in MBR operation. The overgrowth of Thiothrix-like organisms was
suppressed by using micellial granules to granulate activated sludge [64], by the use of high
sludge concentrations in the MBR [63] and by backwashing the membrane with NaClO [65].

2.4. Latest Inventions for Membrane Reactors

It should be especially noted that, for organic pollutant removal, which is difficult
when using traditional biodegradation methods, chemical methods with the application of
strong oxidizing agents, such as peroxymonosulfate, hydrogen peroxide, etc., have long
been used as an alternative. To enhance the action of oxidizing agents, catalysts based
on perovskite oxides are used. However, with the growth of industry in recent years, the
insufficiency of this variant of the method has been noted, which has stimulated a search
for new solutions to improve the efficiency of wastewater treatment.

For this purpose, the latest layered perovskite oxides of the Ruddlesden-Popper struc-
ture have recently been synthesized and shown to serve as an effective next-generation
catalyst for the activation of peroxymonosulfate, an oxidant used in the oxidative removal
of organic pollutants in modern wastewater treatment plants. Unlike conventional per-
ovskites, in Ruddlesden-Popper perovskites, the catalytic role in the decomposition of
the pollutant chemical compound is played not by free radical forms of oxygen but by
non-free singlet oxygen radicals. For this reason, the newest Ruddlesden-Popper perovskite
oxides have demonstrated exceptional efficiency in phenol removal (complete removal
from wastewater in 10 min) [66].

The development of new Ruddlesden-Popper perovskite oxides in 2023 showed that
they can serve as an effective catalytic component in next-generation composite membranes,
increasing the speed and safety of the organic wastewater treatment process. In contrast to
conventional perovskite oxides with the formula ABO3, the Ruddlesden-Popper perovskite
oxides of the A2BO4 type have improved catalytic properties.

In search of materials with optimal properties, Yang et al. [67] synthesized a La2CoO4-
δ catalyst with a Ruddlesden-Popper structure, in one of the best variants of which the
A-site was 50% replaced by strontium to obtain the LaSrCoO4-δ structure. The use of such
a catalyst allowed the complete oxidative decomposition of tetracycline hypochloride in
14 min. The obtained compound embedded in the matrix of a polyacrylonitrile ultrafil-
tration membrane gave a composite material of extraordinary efficiency in wastewater
treatment, the use of which resulted in the 94% degradation of tetracycline hypochloride in
only 3 min and a significant reduction in the wastewater’s toxicity.

2.5. Biofilms

A biofilm is a set of microorganisms located on the surface of wastewater or parts of
treatment facilities. One of the most common types of bioreactors that contain microorgan-
isms in the form of a biofilm is the rotating biological contactor (RBC).

In an RBC, a chain of round plastic discs rotates on a horizontal rod using a motor. This
rotation causes the mixing of wastewater volumes, the diffusion of compounds into the
biofilm, convection through the pores/medium of the biofilm and the subsequent exchange
of products with the reactor and the environment. Oxygen diffusion is obligatory for the
oxidation of organic substances. The rotation of the discs creates shear forces that inhibit
excess biofilm growth. Excess sludge is transferred to a settling tank [68].

Filamentous organisms can proliferate at the surface–biofilm interface in RBCs. The
presence of filaments of the Thiothrix morphotype in RBC biofilms has been shown many
times, although they are much less common in biofilms than in suspension form. They
were detected as part of an RBC biofilm in the simultaneous removal of nitrogen and
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phosphorus [21]. It was shown that the Thiothrix morphotype can be used as an indicator
of nitrous and nitric nitrogen’s presence in RBCs [69]. In addition, bacteria similar in
morphotype to Thiothrix were found in the biofilm of a non-aerated reactor for the treatment
of sulfide-containing wastewater [70].

3. Methods for Identification of Thiothrix in Wastewater Treatment Plants

The significant contribution of the Thiothrix morphotype bacteria to the operation
of wastewater treatment plants has long been known, leading to the development of
methods for their identification using light microscopy (Figure 2). The application of these
methods, along with detailed morphological characterization, led to the identification
of filamentous bacteria in wastewater treatment plants that were assigned to the genus
Thiothrix and described as Type 021N, Thiothrix I and Thiothrix II [6,7]. Therefore, these
names were retained in many subsequent articles written by non-taxonomists dealing with
microorganisms in wastewater treatment plants [13–18]. The original classification of these
bacteria outside of the genus Thiothrix was further confirmed by Boden and Scott [10],
who proposed placing Thiothrix flexilis in the genus Thiofilum and Thiothrix disciformis and
Thiothrix eikelboomii in the genus Thiolinea.
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Figure 2. Progress of methods for identification of representatives of Thiothrix morphotype from time
perspective: light microscopy morphotype identification [6,7]; DAPI staining to confirm bacterial
morphotype [71] and identify Poly-P inclusion [47]; FISH for identification of Thiothrix, Thiofilum and
Thiolinea genera and some Thiothrix species [31,72,73]; PCR using tilS and rpoB probes [19] and high-
throughput sequencing with tilS profiling [19] for Thiothrix species identification. The capabilities of
the FISH method and the PCR method when using probes for 16SRNA in both methods are current at
the time of writing the review and are indicated for the taxonomic groups of Thiothrix, Thiofilum and
Thiolinea revised in 2018 [10], with no consideration of the taxonomic status of these groups before
2018. * Not applicable for species identification of Thiothrix Clade I, the composition of which is listed
in Figure 1, at the date of the review’s preparation.

To monitor the population dynamics of Thiothrix in wastewater treatment plants,
species-specific fluorescence in situ hybridization (FISH) probes are often used, in addition
to light microscopy [13,18,26,36,74–77]. Current phylogenetic data suggest that some of
the probes used could also be suitable for representatives of the genera Thiolinea and
Thiofilum [18,75,77].

Since the phylogenetic heterogeneity of Thiothrix was long known, sets of different
probes were developed to identify all known species of the genus known at that time.
Their use showed that mixed populations of the Thiothrix morphotype are often found in
wastewater treatment plants, and bacteria now assigned to the genus Thiolinea can also be
found in these mixtures [31].
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Quantitative PCR has been used less frequently to study Thiothrix populations. For
Type 021N, primers were developed and used in combination with Sybr Green to quantify
these bacteria in laboratory tests [78]. Genus-specific primers were developed for Thiothrix
16S rRNA, which showed that, in the wastewater studied, the largest number of bacteria
similar in morphotype to Thiothrix belonged to the species Thiothrix eikelboomii (= Thiolinea
eikelboomii) [14]. Asvapathanagul et al. also showed that the ratio of Thiolinea eikelboomii to
the total number of bacteria (TH/TB) (%) was a better predictor of the secondary effluent
volume and quality than the Thiolinea eikelboomii abundance alone [14].

However, the rapid development of high-throughput sequencing technologies in
recent years has led to the increasingly frequent detection of Thiothrix by community pro-
filing against 16S rRNA genes [24,52,79,80]. Moreover, representatives of the genera Thio-
thrix [56,81] and Thiolinea [11] were identified in activated sludge by metagenomic analysis.

Although it is known that a mixture of several Thiothrix species can occur simultane-
ously in wastewater treatment plants, the identification of these species has so far been a
challenge. The reason for this is that the 16S rRNA phylogenetic marker most commonly
used in high-throughput sequencing offers an insufficient resolution to unambiguously as-
sign Thiothrix to a particular species. In this regard, to identify Thiothrix to the species level,
primers for other phylogenetic markers—tilS and rpoB—were constructed [19]. However,
they have not yet been used in the analysis of the microbial communities of wastewater
treatment plants, but they have shown good results in the analysis of microbial communities
from natural biotopes.

4. Metabolic Processes in Wastewater Treatment Involving Thiothrix and Prospects for
Thiothrix’s Further Application
4.1. Sulfide Removal

As prominent representatives of the group of sulfur-oxidizing bacteria, members of
the Thiothrix morphotype have the metabolic potential to remove toxic sulfide from wastew-
ater. The incoming raw sewage, which contains sulfide resulting from the degradation of
protein substrates, is the most probable source of Thiothrix found in activated sludge from
wastewater treatment plants. For example, the same Thiothrix phylotype was detected both
in influent raw sewage and in activated sludge from Moscow wastewater treatment plants,
and its percentage in the influent microbial community was much higher than in activated
sludge and treated water (0.79% vs. 0.05% vs. 0.17%); for the list of 16S rRNA gene reads,
see Table S1, SM in Ref. [82].

A well-developed system for sulfur metabolism underlies the broad capabilities of
representatives of the genus Thiothrix to participate in wastewater treatment from sulfur
compounds. Genome studies of all known Thiothrix species indicate that all of them contain
genes for dissimilatory sulfur metabolism (Figure 3a).

The pangenome of the genus Thiothrix comprises sqr (sqrF, sqrA) genes encoding
sulfide: quinone oxidoreductase, which is involved in the oxidation of hydrogen sulfide to
elemental sulfur; fccAB genes encoding sulfide-flavocytochrome-c dehydrogenase (FCSD);
soxAXBYZ genes encoding a branched SOX system for the oxidation of thiosulfate to
sulfur and sulfate; genes dsrABEFHNEMKLJONR encoding the rDSR complex that carries
out the oxidation of sulfur to sulfite; soeABC genes encoding quinone-dependent sulfite
dehydrogenase catalyzing the direct oxidation of sulfite to sulfate; genes sat encoding ATP-
sulfurylase of the dissimilatory type; and aprAB genes encoding APS reductase for indirect
sulfite oxidation [5]. A genome analysis of representatives of other Thiotrichaceae genera,
namely Thiolinea disciformis, Thiolinea eikelboomii and Thiofilum flexile, showed the presence
of all genes of dissimilatory sulfur metabolism with the exception of ATP-sulfurylase of the
dissimilatory type (sat) and APS-reductase (aprAB) for indirect sulfite oxidation, as well as
the lack of fccB genes of the FCSD complex in Thiofilum flexile [5].
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Figure 3. Sulfur metabolism in representatives of Thiothrix morphotype. (a) EVenn diagram presenting
sulfur metabolism genes found in the genomes of the genera Thiothrix, Thiophilum and Thiolinea.
Panel with Thiothrix genes is based on pangenome analysis involving 15 genomes of Thiothrix litoralis
AST, Thiothrix lacustris BLT, Thiothrix fructosivorans QT, ‘Ca. Thiothrix putei’, Thiothrix caldifontis G1T,
Thiothrix winogradskyi CT3T, ‘Ca. Thiocaldithrix sulfatifontis’, Thiothrix subterranea Ku-5T, Thiothrix sp.
STA_22, Thiothrix unzii A1T, ‘Ca. Thiothrix anitrata’ A52, ‘Ca. Thiothrix moscovensis’ RT, Thiothrix
sp. 207, Thiothrix nivea JP2T and ‘Ca. Thiothrix singaporensis’ SSD2 and on new 16th genome of
‘Ca. Thiothrix namsaraevi’. The genes in the other three panels are shown based on representative
species: Thiolinea disciformis DSM 14473T and ‘Thiolinea eikelboomii’ in the case of the genus Thiolinea;
Thiofilum flexile in the case of the genus Thiofilum. Figure was prepared using EVenn diagram
software (http://www.ehbio.com/test/venn/, accessed on 11 July 2024) [83] and considers data in
Refs. [4,5,84]. (b) Reactions of sulfur dissimilatory metabolism.

Thus, among the representatives of the Thiothrix morphotype, only representatives
of the genus Thiothrix have the most developed system of oxidative dissimilatory sulfur
metabolism (Figure 3b). This suggests that they are the most universal candidates for
systems of water treatment from sulfur-containing compounds.

Based on their morphology, microorganisms similar to Thiothrix sp. were identified in
the sludge beds of upflow anaerobic sludge blanket (UASB) reactors, where the ability of
these organisms to oxidize sulfide was demonstrated [45].

When the sulfide concentrations temporarily increased in a fluidized bed reactor used
to remove nitrates from a recirculating marine fish culture system, whitish tufts identified
as the Thiothrix morphotype rapidly developed [85]. In these systems, representatives of
the Thiothrix morphotype participated in sulfide oxidation using nitrate or oxygen as an
electron acceptor [46]. Bacteria similar in morphotype to Thiothrix were also found as part
of a composite microbial biofilm for the treatment of sulfide-containing wastewater [70] and
in a laboratory biodrainage filter treating high concentrations of hydrogen sulfide [74,86].

http://www.ehbio.com/test/venn/
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Moreover, in the latter case, among the nearly full-length 16S rRNA gene sequences of the
entire bacterial community, sequences related to Thiothrix lacustris accounted for 38% [86].

The ability of Thiothrix to oxidize hydrogen sulfide could explain that enrichment
by Thiothrix improved the removal of sulfamethoxazole (SMX) (sulfur-containing organic
matter) and mitigated SMX-induced stress to other microorganisms [40].

In addition to the biological removal of sulfide, the Thiothrix morphotype can be in-
volved in other metabolic processes that proceed during the biological treatment of wastew-
ater. Thiothrix was shown to be a significant part of the microbial community involved
in the processes of nitrogen and phosphorus removal (1.51%), nitrification–denitrification
(9.41%) and the aerobic removal of carbon (4.29%) [87].

4.2. Enhanced Biological Removal of Phosphorus

Phosphorus is a key element responsible for the eutrophication of the aquatic envi-
ronment, which leads to a shift in the equilibrium in the hydroecosystem, subsequently
resulting in the development of cyanobacteria, a sharp decrease in the concentration of
dissolved oxygen in water, the accumulation of biogenic toxins, the deterioration of water
quality, the death of fish and other aquatic organisms and the waterlogging of the water
body. In this regard, the removal of phosphorus from wastewater is an important task
in preventing the harmful effects of eutrophication in the ecological, economic and social
spheres. A biological approach could be among the methods to address this problem.
One of the most successful directions of biotechnology is the use of colorless sulfur bacteria
of the genus Thiothrix in “enhanced biological phosphorus removal” (EBPR) systems. Based
on the data of a pangenomic analysis, it can be assumed that the members of the genus
Thiothrix can behave as phosphorus-accumulating organisms with mixotrophic metabolism
during phosphorus removal and, at the same time, use the oxidation of the intracellular
sulfur pool as an additional energy source along with poly-β-hydroxy-alkanoates (PHA).
A large number of such systems are currently operating successfully around the world.
The idea of using biologically safe methods for phosphorus removal based on modified
activated sludge systems was implemented in the late 1950s when the “enhanced biological
phosphorus removal” (EBPR) system was developed [88]. In an EBPR treatment system,
phosphate-accumulating organisms (PAOs) accumulate increased amounts of polyphos-
phates in their cells and thus biologically remove phosphorus from wastewater [89].

A large number of enzyme proteins are known to be involved in the biological cy-
cle of phosphorus (Figure 4). In bacteria, the fully characterized enzymes that enable
the reversible accumulation of phosphorus in the form of polyphosphate (poly-P) are
polyphosphate kinases Ppk1 (coupled to ATP dephosphorylation) [90] and Ppk2 (coupled
to ATP/GTP dephosphorylation) [91], encoded by the ppk1 and ppk2 genes, respectively.
It is quite likely that, in addition to this enzyme, there are still unknown mechanisms
for poly-P synthesis, such as the Arp complex (arpABCDEFGH), which catalyzes poly-P
synthesis in archaea and was also shown to have distant homologs in bacteria. Bacterial
enzymes that regulate poly-P degradation include exopolyphosphatases Ppx, Epp, GppA
(ppx, epp and gppA); 50/30-nucleotidase SurE (surE); poly-AMP phosphotransferase PAP
(pap); NAD kinase NadK (nadK); alkaline phosphatases APases (e.g., phoX, phoD, phoA);
and polyphosphate-dependent glucokinase PpgK (ppgK). In addition to these enzymes,
Pi-transporter Pit, encoded by the pit gene (having low substrate affinity), and the ABC-type
Pi-transporter Pst, formed by four proteins encoded by the pstSCAB genes (having high
substrate affinity), are used to transport phosphate molecules into the cell [92]. Closely
related to the Pst complex are the two-component signaling proteins PhoR and PhoB (phoR
and phoB) and a cytoplasmic protein PhoU (phoU), which regulates Pi entry into the cell un-
der conditions of phosphate deficiency. According to the hypothetical scheme proposed by
Gardner et al. [93], the metal-binding protein PhoU performs a negative signaling function,
providing the bacterial cell with a mechanism to sense the level of Pi in the environment.
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Figure 4. Possible pathways of phosphorus metabolism in bacterial cells. For the depicted names of
the enzyme proteins, see the text. The figure was adapted from Roy et al. [92] and Gardner et al. [93]
under the terms of the Creative Commons Attribution 4.0 International License. Thiothrix enzymes
are shown based on the published data [4,11,47,49,56,84,94].

A successfully operating EBPR system requires that a mixed microbial consortium
(MMC) be exposed to cyclic anaerobic–aerobic conditions while simultaneously receiving
sufficient volatile fatty acids (VFAs) so as to stimulate the metabolism necessary for EBPR
activation. Due to this mode of operation, MMC is enriched in phosphorus-accumulating
organisms (PAOs).

The physiological group of PAOs comprises representatives of various lines, including
‘Ca. Accumulibacter’, Tetrasphaera (later ‘Ca. Phosphoribacter’ [95]), Microlunatus phovovorus,
Dechromonas, Thiothrix and others [96]. ‘Ca. Accumulibacter’ and ‘Ca. Phosphoribacter’ are
considered the main ones [97].

PAO metabolism by ‘Ca. Accumulibacter’ is considered classical. These bacteria,
under anaerobic conditions, (i) take up VFAs and store them in the form of the intracellular
polymer PHA, (ii) use glycogen as a source of reducing equivalents (carbon is also included
in PHA) and (iii) hydrolyze internal polyphosphate (poly-P) to form the essential ATP.
Under aerobic conditions, PAOs (i) utilize the PHA reserves to grow and replenish the
glycogen reserves and (ii) use the ATP generated by oxidative phosphorylation to take up
and convert phosphate to poly-P [98] (Figure 5a).

Unlike ‘Ca. Accumulibacter’, representatives of Tetrasphaera spp. do not possess the
ability to store PHA. However, like representatives of ‘Ca. Accumulibacter’, they synthesize
poly-P inside cells aerobically and use it anaerobically. It is assumed that amino acids and
glucose are substrates in the cycle of poly-P transformation in anaerobiosis. During the
reaction, these substrates are presumably converted into free amino acids and glycogen,
although the role of glycogen is unclear, since it is not found in the activated sludge of
Tetrasphaera spp. representatives [95] (Figure 5b).
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ter’ [96]) and (c) predicted functional potential members of the genus Thiothrix. The schemes in
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in the cell; PHA, poly-β-hydroxy-alkanoates; S0, elemental sulfur; VFAs, volatile fatty acids; PolyP,
polyphosphate; TCA, tricarboxylic acid cycle; ETC, electron transport chain.
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It was shown that members of the genera Thiothrix [47] and Thiolinea [11] can play a key
role in biological phosphorus removal. As shown under aerobic conditions in EBPR systems,
in an environment with low organic content but enriched in reduced sulfur compounds,
T. caldifontis could behave as an efficient phosphate-removing PAO with mixotrophic
metabolism. Phosphorus removal from the environment in the aerobic phase proceeds
with the oxidation of the intracellular sulfur pool to provide PAO with an additional source
of energy [47]. In the same EBPR system, under anaerobic conditions, this species can store
carbon in the form of PHA and generate the required energy via the hydrolysis of poly-P
stored in the aerobic phase. In the aerobic period, PHA was used as the source of carbon
and energy for the growth and synthesis of poly-P (Figure 5c). On the other hand, Thiothrix
sp. that received glutamate as the only source of nitrogen and carbon was able to store
poly-P, probably avoiding PHA synthesis [99].

It should be noted that the growth conditions in EBPR systems differ markedly from
those of batch cultivation and often provide preferences for new and rare species. Sev-
eral representatives of Thiothrix were described resulting from the assembly of MAGs
obtained from the activated sludge in EBPR systems [11,56,81]. One of the resulting MAGs
was closely related to the species Thiothrix disciformis (= Thiolinea disciformis) [10,11] and
two MAGs were described as new species with Candidatus status, namely ‘Ca. Thiothrix
moscovensis’ and ‘Ca. Thiothrix singaporensis’ [56].

An important factor determining the function of the representatives of the genus
Thiothrix as a PAO is the carbon source and the capacity for anaerobic respiration. Due to
a rare metabolic feature of ‘Ca. Thiothrix moscovensis’ and ‘Ca. Thiothrix singaporensis’,
namely the presence of FAD-dependent malate: quinone oxidoreductase (MQO) instead
of NAD-dependent malate dehydrogenase (MDH), these two species can effectively grow
and function as PAOs in EBPR under organotrophic conditions, using acetate as a substrate
(Figure 6) [56]. The same metabolic potential is inherent in all representatives of the genera
Thiothrix, Thiolinea and ‘Ca. Thiocaldithrix’ since their genomes contain the mqo gene
instead of the mdh gene [4,5]. Presumably, these members of Thiothrichaceae, except for
species lacking nitrate reductase genes, are better able to overcome the anaerobic phase
in the EBPR cycle in the presence of nitrate, allowing them to activate nitrate-mediated
respiration (Figure 6). This may be facilitated by the following factors, which, under certain
unfavorable conditions, can presumably create advantages for species with MQO instead
of MDH or (MDH+MQO), despite the fact that, formally, these two enzymes catalyze the
same reaction.

1. MQO is selectively activated 3.4–4-fold during microbial growth on acetate com-
pared to growth on glucose, whereas the corresponding figure for MDH is 1.8 [100,101].

2. In the case of MQO catalysis, but not MDH catalysis, there is no dependence of
the reaction progression malate → oxaloacetate on the NAD/NADH balance, because the
cofactor of MQO is the FAD/FADH pair, while NAD/NADH is involved in the MDH-
catalyzed reaction.

3. Moreover, in the case of MQO catalysis, there is no dependence of the reaction
on the malate/oxaloacetate balance because the reaction is exergonic (∆G◦′ = −18.9 and
−55.0 kJ/mol when the electron acceptor is MQ or UQ, respectively) and proceeds spon-
taneously. In contrast, the reaction with MDH is endergonic (∆G◦′ = +28.6 kJ/mol) and
does not proceed in the forward direction under normal conditions according to the laws
of chemistry.

4. It follows from (3) that the simultaneously use of MQO and MDH is disadvanta-
geous under conditions of an energy deficit and a lack of oxygen, because they lead to
a futile cycle, where oxaloacetate, reduced from malate by MQO, is converted to malate
again due to the reverse reaction catalyzed by MDH. The end result of such a reaction is
equivalent to the reaction of noncoupled NADH: quinone oxidoreductase type II (common
in Bacillus species and many other bacteria), i.e., the production of reduced quinone, but at
a higher cost than in the MQO-catalyzed reaction.
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5. One possible way to avoid this wastefulness and not waste an “expensive” reducing
agent on an unprofitable reaction (see (4)) might be to either block the available MDH or
replace MDH with MQO. Switching to MQO catalysis preserves oxaloacetate as an essential
substrate for citrate synthase in TCA, as well as for gluconeogenesis and the synthesis of
aspartate branch amino acids.

6. The outcome of switching individual microorganisms to MQO maintenance may
be the more reliable functioning of TCA under some unfavorable conditions, namely
anaerobiosis (respiration with less favorable oxidants compared to oxygen, e.g., nitrate),
under carbon-containing substrate limitations, and others.

The electron acceptor from MQO can be menaquinone, which has a more negative
redox potential (E′

0 = −0.075 V) compared to ubiquinone (E′
0 = +0.100 V) and is almost

ideally matched to the FAD/FADH pair (E′
0 = −0.060 V) (cofactor in MQO) to form a

unit in the electron transport chain. It is worth noting that, in contrast to strictly aerobic
and strictly anaerobic bacteria, both ubiquinones and menaquinones are synthesized in
membranes in facultatively anaerobic bacteria, which include representatives of Thiothrix.
As shown in E. coli, the synthesis of all types of menaquinones increases under anaerobic
conditions and exceeds the total amount of ubiquinone three-fold [102,103], which makes
menaquinone a more likely electron acceptor from MQO under anaerobic conditions.

Another notable change in the profile of biosynthesis products induced by anaerobiosis
in the six Thiothrix species studied is a 2.4–6.5-fold increase in the expression of the narG
gene [104,105] encoding the catalytic subunit of the dissimilatory nitrate reductase NarGHI
anchored in the cytoplasmic membrane. It has been shown that the induction of expression
by anaerobiosis is accompanied by an increase in the total activity of nitrate reductase in
the cells.

Experimental observations on different bacterial species possessing MQO demon-
strate good growth rates on acetate and organics at high MQO activity and a significant
decrease in growth in MQO deletion mutants in Corynebacterium glutamicum [106] and
Pseudomonas aeruginosa [107], slow growth on fermentable carbon sources and no growth
on non-fermentable carbon sources in Micobacterium stegmatis [108]. The deletion of mqo in
Mycobacterium tuberculosis leads to stress and impairs the survival of the bacterium [109]; in
Pseudomonas fluorescens, disruptions in the mqo gene led to the loss of the ability to colonize
on the root system of tomato [110].

All of the above facts point to an important energetic role of MQO in coupling with
nitrate respiration. Although the respiratory chain with Nar enzyme complex as a terminal
oxidase and nitrate as an electron acceptor are characterized by lower energetic efficiency
as compared to oxygen respiration, the energetic capacity of respiration involving nitrate is
comparable to that of the aerobic respiration process (nitrate respiration allows bacteria to
transform the energy of substrates into universal energy form with electric potential on the
membrane, comparable in magnitude to oxygen respiration). The change in free energy dur-
ing the oxidation of one molecule of glucose by molecular oxygen (∆G◦′ = −2870 kJ/mol)
is of the same order as the oxidation of the same substrate under anaerobic conditions
by nitrate reduced to nitrite (∆G◦′ = −1770 kJ/mol). As shown in a pangenomic study,
almost all members of the genus Thiothrix, with the exception of ‘Ca. Thiothrix anitrata’
A52 and ‘Ca. Thiothrix sulfatifontis’ KT, possess the capacity for anaerobic respiration
using nitrogen-containing compounds [94], which indicates the high potential of Thiothrix
representatives to persist in bioreactors in the anaerobic phase.
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Figure 6. The role of malate: quinone oxidoreductase (MQO) in Thiothrix metabolism as determined
from experimental and genomic data. MQ and MQH2—oxidized and reduced forms of menaquinone,
respectively; NarI, NarH and NarG—dissimilatory nitrate reductase (Nar) subunits with a cytoplas-
mically oriented active center; bL and bH—low-potential and high-potential cytochrome b in the
membrane-spanning NarI subunit; [3Fe-4S] and [4Fe-4S]—redox-active iron-sulfur clusters; arrows
within Nar subunits indicate the electron pathway between the redox groups. Insets: in the black
dashed line on the right side of the figure—the direction of electrical potential at the cytoplasmic
membrane, which is charged negatively at the cytoplasmic side and positively at the periplasmic
side during the process of nitrogen respiration; in the blue dashed line in the upper left part of the
figure—reactions occurring inside the cytoplasmic membrane. Figure is based on Mardanov et al. [56];
Trubitsyn et al. [105]; Guigliarelli et al. [111]; and Martinez-Espinosa et al. [106] under the terms of
the Creative Commons Attribution 4.0 International License.

According to Rey-Martínez et al., during the long-term operation of the EBPR system
with glutamate as the sole source of carbon and nitrogen, the content of members of the
genus Thiothrix could be 37%, with Thiothrix members able to participate in phosphorus
removal by accumulating poly-P [99]. However, another study showed that although
Thiothrix was one of the dominant PAOs at different stages of EBPR bioreactor operation, it
was more abundant with propionic acid as the carbon source than when glutamate was
used [112]. The use of glycine as a carbon source had an adverse effect on Thiothrix and
other PAOs in the EBPR system [96].

It should be noted that the explosive growth of members of the genus Thiothrix
leading to unfavorable sludge bulking can be observed in EBPR systems under changes in
cultivation conditions, such as stopping the use of the nitrification inhibitor allylthiourea,
which is used to stimulate the growth of Tetrasphaera-related PAOs [113].

The intensive study of Thiothrix metagenomes in the last decade has revealed the
significant potential of the species of this genus to address the challenge of phosphate
removal from the environment. In the two genomes of ‘Ca. Thiothrix moscovensis’ and
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‘Ca. Thiothrix singaporensis’ derived from laboratory EBPR, as well as in the genomes of
T. lacustris BLT, T. caldifontis G1T and T. nivea JP2T, the genes phoURB and pstSACB, encod-
ing the systems of signaling regulation and the transport of inorganic phosphate into the
cell, and the genes ppk1 and epp, whose products catalyze poly-P synthesis and degradation,
were identified [56]. Rubio-Rincón et al. documented the visual mass accumulation of
poly-P inclusion granules in the cells of T. caldifontis, corroborated by data on the presence
of gene ppk2 in its genome [47]. To date, we have detected the presence of multiple genes
ppk2 in the available genomes of the most identified species of the genus Thiothrix (in the
following, access to only one of several genes in each species is shown), namely T. unzii
A1T [QTR55213.1] [94], T. fructosivorans QT [QTX11709.1] [94], Thiothrix subterranea Ku-5T

[WML89006.1] [19], ‘Ca. Thiothrix putei’ [WGZ96527.1] [5], ‘Ca. Thiothrix singaporensis’
[QLQ34282.1] [114], T. lacustris BLT [WML90248.1] [19], T. nivea JP2T [EIJ34895.1], T. litoralis
AST [QTR45363.1] [94], ‘Ca. Thiothrix anitrata’ A52 [QTR51311.1] [94], ‘Ca. Thiocaldithrix
sulfatifontis’ [UOG93965.1] [55], T. winogradskyi CT3T [UJS26581.1] [55], ‘Ca. Thiothrix
sp. Deng01’ [WP_324693012.1] [115] and a number of unidentified Thiothrix species, as
well as the members of the other Thiotrichaceae genera, ‘Ca. Thiocaldithrix dubininis’
[WGZ92350.1] [5], Thiofilum flexile DSM 14,609 (formerly Thiothrix flexilis) [ARCL01000001.1]
and Thiolinea eikelboomii (formerly Thiothrix eikelboomii) [SKA88474.1]. According to Mat-
suura et al., Thiothrix disciformis (= Thiolinea disciformis) possesses genes for the major
systems of phosphate metabolism (ppk, ppx, pst and pit), which include two different phos-
phate transport systems, Pst and Pit, with high and low affinity for phosphate [11]. A
metagenomic analysis performed by the research group of Dong et al. also showed that the
identified representatives of the genus Thiothrix have the genes of phosphate transport, pit
and phnCDE and other genes of phosphate metabolism: phoURB, pst, ppk [49]. Most recently,
Chernitsyna et al. reported that the genes encoding the systems of Pi transport into the
cell (pstDCABS) and the signaling regulation of phosphate transport (phoURB), as well as
the systems of poly-P synthesis and degradation, namely polyphosphate kinase (ppk1) and
exopolyphosphatase (ppx), were found in the MAG-assembled genome of ‘Ca. Thiothrix
namsaraevi’, a new member of the genus Thiothrix from Lake Baikal [84]. Ravin et al. identi-
fied genes pstDCABS, phoURB and epp, as well as genes ppk1 and pap, for poly-P synthesis
and hydrolysis in three species of Thiothrix, T. subterranea sp. nov. Ku-5, T. litoralis sp. nov.
AS and ‘Ca. Thiothrix anitrata’ sp. nov. A52, obtained from other geographical locations in
Russia—a coal mine, the White Sea littoral and a sulfur spring in the Volgograd region [94].
According to a summarized pangenomic analysis, the core genome of 12 Thiothrix species
(T. winogradskyi CT3T, T. lacustris BLT, T. litoralis AST, T. subterranea Ku-5T, T. caldifontis
G1T, T. unzii A1T, T. nivea JP2T, T. fructosivorans QT, ‘Ca. Thiothrix moscovensis’ RT, ‘Ca.
Thiothrix anitrata’, ‘Ca. Thiothrix sulfatifontis’ KT, MAG of Thiothrix sp. 207) contains
genes for the main systems of phosphate metabolism, with the exception of only one of the
three genes of the cellular phosphate transport system, pstB, which may be absent in some
species [4]. As can be seen from the recent publications, almost all representatives of the
genus Thiothrix, with a few exceptions, have genes for the signal regulation of Pi import
into the cell, namely phoUR or phoURB, encoding a system of two or three corresponding
proteins PhoU, PhoR and PhoB, as well as genes of Pi transporters, pstDCABS, pit and
phnCDE; polyphosphate degradation and synthesis, ppk1 and ppk2; exopolyphosphatases,
epp and ppx; and poly-AMP phosphotransferase, pap (Figure 4).

4.3. Nitrogen Removal

In addition to phosphorus, nitrogen is one of the two major biogenic elements that
threaten to upset the equilibrium in water bodies under anthropogenic impacts. While
phosphorus and especially phosphates, which pose the greatest problem for water treat-
ment, are mainly responsible for ecological damage to natural inland water reservoirs,
nitrogenous compounds are more problematic for marine water reservoirs, although both
types of compounds are dangerous for any water body under uncontrolled inputs. Mem-
bers of the Thiothrix morphotype are prominent representatives of sulfur-oxidizing bacteria
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with metabolic potential to remove toxic nitrates from wastewater. For many species of
the genus Thiothrix, the ability to denitrify during mixotrophic growth in the presence
of reduced sulfur and organic compounds (lactate and acetate) has been experimentally
demonstrated [105]. No data are available on the ability of Thiothrix pure cultures to deni-
trify in the absence of reduced sulfur compounds. An analysis of the pangenome of the
genus Thiothrix showed the presence of denitrification genes in the variable part of the
pangenome. All members of the genus, with the exception of ‘Ca. Thiothrix anitrata’ and
‘Ca. Thiothrix sulfatifontis’ KT, have genes encoding at least one form of nitrate reductase,
which reduces nitrate to nitrite (Table 1). Most strains contain genes for nitrite reductase
(nirS), which reduces nitrite to nitric oxide, and nitric oxide reductase NorBC, which re-
duces nitric oxide to nitrous oxide. The nitrous oxide reductase NosZ genes were found in
only one of the strains involved in the pangenomic analysis [4].

Table 1. Distribution of nitrogen metabolism genes in Thiothrix genomes. Genes: narG, membrane-
bound nitrate reductase; napAB, periplasmic nitrate reductase; nasA, assimilatory nitrate reductase; nasB,
assimilatory nitrite reductase; nirS, dissimilatory nitrite reductase; nirBD, assimilatory nitrite reductase;
norBC, nitric oxide reductase; nosZ, nitric oxide reductase. Table was based on Ravin et al. [5] and
Chernitsyna et al. [84] under the terms of the Creative Commons Attribution 4.0 International License.

Strain
Dissimilatory Nitrate Reduction Assimilatory

Nitrate and Nitrite Reduction

NO3− → NO2− NO2− → NO NO → N2O N2O → N2 NO3− → NO2− NO2− → NH3

MAG Thiothrix sp. 207 narGHIJ,
napAB nirS norBC nosZ nasA, nasD nirBD

MAG Thiothrix sp. STA 22 narGHIJ nirS norBC nosZ nasA, nasD nirBD
T. litoralis AST narGHIJ nirS norBC - nasA, nasD nirBD
T. fructosivorans QT narGHIJ nirS norBC - nasA, nasD nirBD
T. caldifontis G1T narGHIJ nirS norBC - nasA, nasD nirBD
T. winogradskyi CT3T narGHIJ nirS norBC - nasA, nasD nirBD
T. unzii A1T narGHIJ nirS norBC - nasA, nasD nirBD
‘Ca. Thiothrix singaporensis’ SSD2 narGHIJ nirS norBC - nasA, nasD nirBD
‘Ca. Thiothrix moscovensis’ RT narGHIJ - norBC - nasA, nasD nirBD
‘Ca. Thiothrix putei’ GK-02 narGHIJ - norBC - - -
T. subterranea Ku-5T narGHIJ - - - nasA, nasD nirBD
T. lacustris BLT narGHIJ - - - nasA, nasD nirBD
‘Ca. Thiothrix sulfatifontis’ KT - - - - nasA, nasD nirBD
T. nivea JP2T napAB - - - nasA, nasD nirBD
‘Ca. Thiothrix anitrata’ A52 - - - - - -
‘Ca. Thiothrix namsaraevi’ narGHIJ - - - nasA nirBD

In case of uncontrolled inputs due to effluents from animal farms, agricultural factories,
industrial companies and the sewage systems of residential complexes, high concentrations
of nitrogenous compounds lead to the destructive eutrophication of water bodies and am-
monium toxicity to fish and other aquatic fauna as well as flora. Kosgey et al. presented
traditional schemes for the biological treatment of wastewater contaminated with nitrogenous
compounds [116]. These schemes are based on the use of specialized bacteria with different
types of nitrogen metabolism, which allows the sequential conversion of toxic ammonium
ions (NH4

+) to safe dinitrogen molecules (N2) through a chain consisting of nitrifier bacteria,
which oxidize ammonium (AOB) and nitrite (NOB), and denitrifier bacteria, which reduce
nitrate at the expense of organic carbon, which acts as an electron donor (Figure 7). In this
scheme, representatives of the Thiothrix morphotype can play a role in the last stage.

Representatives of the Thiothrix morphotype are often found in nitrification–denitrification
systems [32,117–120]. Their role in these systems can involve denitrification coupled with
the oxidation of reduced sulfur compounds. In this case, sulfides can be used as an electron
donor for the reduction of nitrates and nitrites [121]. There are reports that the Thiothrix
morphotype is capable of nitrate-mediated sulfide oxidation [46]. It was shown that bacteria
similar in morphotype to Thiothrix began to play the role of denitrifiers in the simultaneous
nitrification–denitrification system when the oxygen concentration decreased [122].



Int. J. Mol. Sci. 2024, 25, 9093 17 of 24

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 17 of 25 
 

 

with nitrogenous compounds [116]. These schemes are based on the use of specialized 

bacteria with different types of nitrogen metabolism, which allows the sequential con-

version of toxic ammonium ions (NH4+) to safe dinitrogen molecules (N2) through a chain 

consisting of nitrifier bacteria, which oxidize ammonium (AOB) and nitrite (NOB), and 

denitrifier bacteria, which reduce nitrate at the expense of organic carbon, which acts as 

an electron donor (Figure 7). In this scheme, representatives of the Thiothrix morphotype 

can play a role in the last stage. 

 

Figure 7. Nitrification–denitrification reactions. In the processes of the transformation of nitroge-

nous compounds leading to nitrogen removal from wastewater, representatives of the genus Thio-

thrix are able to perform the denitrification step. 

Representatives of the Thiothrix morphotype are often found in nitrifica-

tion–denitrification systems [32,117–120]. Their role in these systems can involve denitri-

fication coupled with the oxidation of reduced sulfur compounds. In this case, sulfides 

can be used as an electron donor for the reduction of nitrates and nitrites [121]. There are 

reports that the Thiothrix morphotype is capable of nitrate-mediated sulfide oxidation 

[46]. It was shown that bacteria similar in morphotype to Thiothrix began to play the role 

of denitrifiers in the simultaneous nitrification–denitrification system when the oxygen 

concentration decreased [122].  

Zhao et al. found a large number of bacteria of the Thiothrix morphotype in biofilm 

reactors with simultaneous nitrification–denitrification processes, where pomelo peel, 

which can biodegrade to form sulfide, served as a carrier [123]. This explains the ap-

pearance of dominant representatives of the Thiothrix morphotype in the system and the 

presence of denitrification associated with the oxidation of reduced sulfur compounds. 

4.4. Denitrifying Removal of Phosphorus 

Two methods of phosphorus removal by denitrifying have been described. One is 

based on the operation of both denitrification and phosphorus accumulation reactions in 

the same microorganism. Another variant is based on the separate running of these reac-

tions, where denitrification is carried out by one microorganism and phosphorus accu-

mulation by another [124]. Denitrifying organisms that accumulate phosphate can sim-

ultaneously remove nitrogen and phosphorus under rotational anaerobic and anox-

ic/aerobic conditions [125]. 

The role of bacteria of the Thiothrix morphotype in denitrifying phosphorus removal 

has been suggested in different studies. The presence of these bacteria in the denitrifying 

phosphorus removal system was mentioned, but their function as denitrifying or 

dephosphorizing bacteria was not considered [126]. Other studies indicate a dephospho-

rizing role for the bacteria of the Thiothrix morphotype in such systems. For example, Li 

et al. found that bacteria similar in morphotype to Thiothrix played a crucial role in the 

accumulation of precipitated phosphate in a reactor with simultaneous nitrifica-

tion–denitrification and phosphorus removal [127]. Moreover, Ai et al. stated that, in a 

Figure 7. Nitrification–denitrification reactions. In the processes of the transformation of nitrogenous
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able to perform the denitrification step.

Zhao et al. found a large number of bacteria of the Thiothrix morphotype in biofilm
reactors with simultaneous nitrification–denitrification processes, where pomelo peel,
which can biodegrade to form sulfide, served as a carrier [123]. This explains the appearance
of dominant representatives of the Thiothrix morphotype in the system and the presence of
denitrification associated with the oxidation of reduced sulfur compounds.

4.4. Denitrifying Removal of Phosphorus

Two methods of phosphorus removal by denitrifying have been described. One is
based on the operation of both denitrification and phosphorus accumulation reactions
in the same microorganism. Another variant is based on the separate running of these
reactions, where denitrification is carried out by one microorganism and phosphorus accu-
mulation by another [124]. Denitrifying organisms that accumulate phosphate can simulta-
neously remove nitrogen and phosphorus under rotational anaerobic and anoxic/aerobic
conditions [125].

The role of bacteria of the Thiothrix morphotype in denitrifying phosphorus removal
has been suggested in different studies. The presence of these bacteria in the denitrifying
phosphorus removal system was mentioned, but their function as denitrifying or dephos-
phorizing bacteria was not considered [126]. Other studies indicate a dephosphorizing role
for the bacteria of the Thiothrix morphotype in such systems. For example, Li et al. found
that bacteria similar in morphotype to Thiothrix played a crucial role in the accumulation
of precipitated phosphate in a reactor with simultaneous nitrification–denitrification and
phosphorus removal [127]. Moreover, Ai et al. stated that, in a wastewater treatment system
where denitrifying phosphorus removal served as the primary pathway of phosphorus
removal, the Thiothrix morphotype was associated with phosphorus removal [128].

In addition, bacteria similar in morphotype to Thiothix are believed to be capable of
denitrifying phosphorus removal [48]. An analysis of metagenomes from a biofilm reactor
in which denitrifying phosphorus removal was performed showed that bacteria similar
in morphotype to Thiothrix had genes for denitrification and pit genes for the phosphate
transporter [49]. Thus, representatives of the Thiothrix morphotype are potentially capable
of denitrifying phosphorus removal within a single organism.

5. Factors Affecting Thiothrix Proliferation

In wastewater treatment systems, due to the significant role of bacteria similar in
morphotype to Thiothrix, it is important to consider factors that can lead to their increased
growth and methods to control it.

Bacteria of the Thiothrix morphotype are able to dominate in activated sludge in
the presence of thiosulfate, which can be related to the ability of these bacteria to grow
mixotrophically using reduced sulfur compounds as an energy source [26]. Consistent
with this phenomenon, the core genome of the genus Thiothrix was found to contain
genes encoding sulfur metabolism complexes: the SQR and FCSD complexes, participating
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in the oxidation of sulfide to polysulfide/sulfur; the Sox complex (soxAXBYZ), which
participates in the branched pathway of thiosulfate oxidation to sulfur and sulfate; and
the rDsr system (dsrABCEFHEMPKJOL), which participates in the subsequent oxidation of
elemental sulfur [4].

It was shown that the presence of sulfide in wastewater treatment systems can evoke
the active growth of the Thiothrix morphotype [44,47,85]. High levels of dissolved oxygen
(DO) are detrimental to bacteria similar in morphotype to Thiothrix and inhibit their growth,
while, conversely, low DO values favor the growth of these bacteria [21]. This is due
to the fact that they belong to the group of colorless sulfur-oxidizing bacteria, which
are known to be catalase-negative and prefer growth in narrow microaerobic eco-niches
where fewer toxic reactive oxygen species are produced. At low DO levels and low
nitrate concentrations, bacteria of the Thiothrix morphotype gain a competitive advantage
over other microorganisms due to the ability to accumulate nitrates intracellularly, which
leads to the explosive growth of these bacteria and activated sludge bulking [129]. This
phenomenon is related to the ability of bacteria of the Thiothrix morphotype to utilize
nitrate as an alternative electron acceptor. The appearance of bisphenol A in wastewater
also leads to an increase in the abundance of the Thiothrix morphotype [33].

To suppress the growth of Thiothrix, the addition of polyaluminum chloride and
a decrease in VFAs were tested, but these approaches were ineffective in resolving the
problem conclusively [34]. Although a correlation was observed between the propionic
acid content and the Type 021N-mediated bulking of sludge, this relationship was, in reality,
an indirect effect of the inhibition of flocculating microorganisms, which gave filamentous
bacteria a competitive advantage in growth [29].

Several methods have been demonstrated to reduce the abundance of bacteria similar
in morphotype to Thiothrix in wastewater. These include the use of intermittent fasting [34],
moderate oxygen concentrations with low aerobic periods in the surrounding habitat [130]
and the addition of 1‰ hydrogen peroxide [80], the backwashing of membrane reactors
with NaClO in wastewater systems [65] and even exposure to a magnetic field [79].

Regarding the growth rate of bacteria currently assigned to the genus Thiolinea, it
was demonstrated to have a statistically significant correlation with the food/mass ratio
(daily activated sludge load, defined as the ratio of the daily amount of incoming organic
pollutants F to ash-free substance of activated sludge M (F:M)) and the ammonium ion
concentration in the primary effluent, as well as an inverse correlation with the dissolved
oxygen concentration in the microaerobic selector [14].

6. Conclusions

Thus, in wastewater treatment systems, bacteria of the Thiothrix morphotype are more
often found in activated sludge or in membrane bioreactors and much more rarely in
biofilms. Modifications to the operating parameters of biological treatment systems can
lead to the explosive growth of the Thiothrix morphotype and result in system disruption.
The proliferation of the Thiothrix morphotype is enhanced under low concentrations of
dissolved oxygen and in the presence of sulfide and bisphenol A and can be suppressed
by peroxide, hypochlorite or exposure to a magnetic field. Historically, representatives
of this morphotype were detected based on their morphology; later, FISH probes and
PCR primers were developed for their detection; and, now, high-throughput sequencing
methods are increasingly used for this purpose. Thiothrix-like bacteria have a flexible
metabolism, which allows them to perform a number of biological wastewater treatment
processes, such as sulfide oxidation, denitrification and enhanced biological phosphorus
removal. For bacteria belonging to the genus Thiothrix, a pangenome has been obtained,
which makes it possible to perform the genetic determination of these metabolic processes.
Obtaining pangenomes of the genera Thiofilum and Thiolinea is a task for further research
and could lead to a better understanding of the metabolism of these genera and to the
synthesis of data on the metabolism of the representatives of the Thiothrix morphotype
in wastewater treatment systems. Prospects for the further development of wastewater
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treatment with the participation of representatives of the Thiothrix morphotype include the
study of the possibility of using representatives of this group in the removal of phosphorus
compounds in EBPR, as well as in the treatment of hydrogen sulfide. Namely, due to
the knowledge of their metabolic potential, we wish to draw the attention of researchers
not only to the possibility of identifying the presence of representatives of the Thiothrix
morphotype in various wastewater treatment systems, etc., but also to the possibility of
the targeted introduction of these organisms in the process of phosphorus and hydrogen
sulfide removal.

Author Contributions: Conceptualization, M.Y.G. and N.V.R.; writing—original draft preparation,
M.V.G., M.S.M. and M.Y.G.; visualization, M.V.G., M.S.M. and M.Y.G.; writing—review and editing,
M.V.G., M.S.M., N.V.R. and M.Y.G.; supervision, M.Y.G.; project administration, N.V.R.; funding
acquisition, M.Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation as an extension of grant
number 20-14-00137 (https://rscf.ru/en/project/20-14-00137/, accessed on 15 May 2023 to M.Y.G.)
and the Ministry of Science and Higher Education of the Russian Federation (N.V.R., search for
Thiothrix phylotypes in sewage and activated sludge).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Larkin, J.M. Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix. Curr. Microbiol. 1980,

4, 155–158. [CrossRef]
2. Larkin, J.M.; Strohl, W.R. Beggiatoa, Thiothrix, and Thioploca. Annu. Rev. Microbiol. 1983, 37, 341–367. [CrossRef] [PubMed]
3. Unz, R.F.; Head, I.M.; Genus, I. Thiothrix Winogradsky 1888, 39AL. In Bergey’s Manual of Systematic Bacteriology: Part B: Gammapro-

teobacteria, 2nd ed.; Garrity, G., Brenner, D.J., Krieg, N.R., Staley, J.T.E., Eds.; Springer: Boston, MA, USA, 2005; Volume 2,
pp. 131–142.

4. Ravin, N.V.; Rudenko, T.S.; Smolyakov, D.D.; Beletsky, A.V.; Gureeva, M.V.; Samylina, O.S.; Grabovich, M.Y. History of the study
of the genus Thiothrix: From the first enrichment cultures to pangenomic analysis. Int. J. Mol. Sci. 2022, 23, 9531. [CrossRef]

5. Ravin, N.V.; Muntyan, M.S.; Smolyakov, D.D.; Rudenko, T.S.; Beletsky, A.V.; Mardanov, A.V.; Grabovich, M.Y. Metagenomics
revealed a new genus ‘Candidatus Thiocaldithrix dubininis’ gen. nov., sp. nov. and a new species ‘Candidatus Thiothrix putei’ sp.
nov. in the family Thiotrichaceae, some members of which have traits of both Na+- and H+-motive energetics. Int. J. Mol. Sci. 2023,
24, 14199. [CrossRef]

6. Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking and Other Solids Separation
Problems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003; 236p. [CrossRef]

7. Eikelboom, D.H. Process Control of Activated Sludge Plants by Microscopic Investigation; IWA Publishing: London, UK, 2000; 156p.
8. Howarth, R.; Unz, R.F.; Seviour, E.M.; Seviour, R.J.; Blackall, L.L.; Pickup, R.W.; Jones, J.G.; Yaguchi, J.; Head, I.M. Phylogenetic

relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment
plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii
sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 1817–1827. [CrossRef]

9. Aruga, S.; Kamagata, Y.; Kohno, T.; Hanada, S.; Nakamura, K.; Kanagawa, T. Characterization of filamentous Eikelboom type
021N bacteria and description of Thiothrix disciformis sp. nov. and Thiothrix flexilis sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52,
1309–1316. [CrossRef]

10. Boden, R.; Scott, K.M. Evaluation of the genus Thiothrix Winogradsky 1888 (Approved Lists 1980) emend. Aruga et al. 2002:
Reclassification of Thiothrix disciformis to Thiolinea disciformis gen. nov., comb. nov., and of Thiothrix flexilis to Thiofilum flexile gen.
nov., comb nov., with emended description of Thiothrix. Int. J. Syst. Evol. Microbiol. 2018, 68, 2226–2239. [CrossRef] [PubMed]

11. Matsuura, N.; Masakke, Y.; Karthikeyan, S.; Kanazawa, S.; Honda, R.; Yamamoto-Ikemoto, R.; Konstantinidis, K.T. Metagenomic
insights into the effect of sulfate on enhanced biological phosphorus removal. Appl. Microbiol. Biotechnol. 2021, 105, 2181–2193.
[CrossRef]

12. Wu, X.; Huang, J.; Lu, Z.; Chen, G.; Wang, J.; Liu, G. Thiothrix eikelboomii interferes oxygen transfer in activated sludge. Water Res.
2019, 151, 134–143. [CrossRef] [PubMed]

13. Guo, J.; Peng, Y.; Yang, X.; Wang, Z.; Zhu, A. Changes in the microbial community structure of filaments and floc formers in
response to various carbon sources and feeding patterns. Appl. Microbiol. Biotechnol. 2014, 98, 7633–7644. [CrossRef]

https://rscf.ru/en/project/20-14-00137/
https://doi.org/10.1007/BF02602820
https://doi.org/10.1146/annurev.mi.37.100183.002013
https://www.ncbi.nlm.nih.gov/pubmed/6357055
https://doi.org/10.3390/ijms23179531
https://doi.org/10.3390/ijms241814199
https://doi.org/10.1201/9780203503157
https://doi.org/10.1099/00207713-49-4-1817
https://doi.org/10.1099/00207713-52-4-1309
https://doi.org/10.1099/ijsem.0.002816
https://www.ncbi.nlm.nih.gov/pubmed/29851374
https://doi.org/10.1007/s00253-021-11113-4
https://doi.org/10.1016/j.watres.2018.12.019
https://www.ncbi.nlm.nih.gov/pubmed/30594082
https://doi.org/10.1007/s00253-014-5805-5


Int. J. Mol. Sci. 2024, 25, 9093 20 of 24

14. Asvapathanagul, P.; Olson, B.H.; Gedalanga, P.B.; Hashemi, A.; Huang, Z.; La, J. Identification and quantification of Thiothrix
eikelboomii using qPCR for early detection of bulking incidents in a full-scale water reclamation plant. Appl. Microbiol. Biotechnol.
2015, 99, 4045–4057. [CrossRef]

15. Guo, J.; Peng, Y.; Wang, Z.; Yuan, Z.; Yang, X.; Wang, S. Control filamentous bulking caused by chlorine-resistant Type 021N
bacteria through adding a biocide CTAB. Water Res. 2012, 46, 6531–6542. [CrossRef]

16. Kocerba-Soroka, W.; Fiałkowska, E.; Pajdak-Stós, A.; Klimek, B.; Kowalska, E.; Drzewicki, A.; Salvadó, H.; Fyda, J. The use of
rotifers for limiting filamentous bacteria Type 021N, a bacteria causing activated sludge bulking. Water Sci. Technol. 2013, 67,
1557–1563. [CrossRef] [PubMed]
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