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Abstract: Sugarcane smut, caused by the fungus Sporisorium scitamineum (Sydow), significantly affects
sugarcane crops worldwide. Infected plants develop whip-like structures known as sori. Significant
variations in these whip lengths are commonly observed, but the physiological and molecular
differences causing these morphological differences remain poorly documented. To address this, we
employed conventional microbe isolation, metagenomic, and metabolomic techniques to investigate
smut-infected sugarcane stems and whips of varying lengths. Metagenomics analysis revealed a
diverse fungal community in the sugarcane whips, with Sporisorium and Fusarium genera notably
present (>1%) in long whips. Isolation techniques confirmed these findings. Ultra-performance liquid
chromatography analysis (UHPLC-MS/MS) showed high levels of gibberellin hormones (GA3, GA1,
GA4, GA8, and GA7) in long whips, with GA4 and GA7 found exclusively in long whips and stems.
Among the prominent genera present within long whips, Fusarium was solely positively correlated
with these gibberellin (GA) hormones, with the exception of GA8, which was positively correlated
with Sporisorium. KEGG enrichment analysis linked these hormones to pathways like diterpenoid
biosynthesis and plant hormone signal transduction. These findings suggest that Fusarium may
influence GA production leading to whip elongation. Our study reveals fungal dynamics and
gibberellin responses in sugarcane smut whips. Future research will explore the related molecular
gibberellin synthesis mechanisms.

Keywords: metagenomics; metabolomics; fungal community; Sporisorium scitamineum; Candida;
Fusarium; differentially accumulated metabolites (DAMs)

1. Introduction

Sugarcane (Saccharum officinarum L.) is a globally significant agricultural ratooning
crop [1], responsible for 85% of the global sugar production and 40% of bio-energy produc-
tion [2–5]. Sugarcane is cultivated on approximately 27 million hectares across 100 coun-
tries [3,6] with southern China, including Guangxi, Yunnan, and Guangdong Provinces,
encompassing over 1.7 million hectares of sugarcane cultivation [7].

Sugarcane is susceptible to numerous pathogens during sprouting and ratooning,
including Sporisorium scitamineum (Sydow) (syn. Ustilago scitaminea (Syd.)) which causes
smut [8,9]. This fungus infects and reproduces within sugarcane’s meristematic tissues,
forming long, black whip-shaped sori containing melanized teliospores (≥1011 spores/cm2)
from the apical parts of infected stalks [8,9]. The symptoms become evident approximately
120 days after infection, leading to adverse effects such as reduced culm widths, abnormal
grass-like growth, and highly fibrous stalks with decreased sugar concentration [10,11].
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Reportedly, the impact of smut on meristem processes in sugarcane includes the
up-regulation of genes linked to whip formation, substituting regular flowering, such as
LNG (longifolia-like gene), VIN3 (vernalization insensitive 3 protein) homologs, COL6
(C2C2-CO- like transcription factor), FT (Flowering Locus T), AP1 (APETALA1), and
the production of active gibberellins [12]. In a study, head smut (Sporisorium reilianum
[Kuhn] Landon & Fullerton)-infected sorghum (Sorghum bicolor L.) plants showed reduced
height, increased tillering, and lower GA levels, indicating that smut infection disrupted
plants’ GA biosynthesis [13]. The same study also reported the quantification of GA1
and GA3 in the culture medium of S. reilianum using GC-MS-SIM [13]. Previous studies
also reported that S. reilianum infection altered hormones in susceptible maize varieties,
with reduced gibberellic acid (GA3) leading to dwarfing [14]. Plants, fungi, and bacteria
all possess significant gibberellin (GA) concentrations, with commercial GA production
relying on Fusarium fujikuroi (Nirenberg) due to its high yield [15]. Fusarium fujikuroi causes
“bakanae” disease in rice, and results in elongated seedlings with chlorotic stems and
leaves, leading to sterility and grain loss, and gibberellin production being a key factor in
the elongation of infected plants [16,17]. While gibberellins in plants regulate plant growth,
in species of Fusarium, such as F. fujikuroi, those are secondary metabolites presumed to
enhance pathogen virulence [18]. The GA3 hormone was observed to promote internode
lengthening and phyllody in sorghum plants, resembling a typical sign of sorghum head
smut [19]. Additionally, GA3 isolated from a fungal medium had been reported to stimulate
shoot elongation in sorghum [20]. Gibberellin-like substances produced by Colletotrichum
gloeosporioides (Penz.) resulted in leaf and pod deformation and promoted host pathogenesis
in sorghum [21]. Symbiotic endophytic fungi (Penicillium sp. and Phoma glomerata Corda.)
producing GAs (GA3, GA7, GA1, and GA4) were reported to induce shoot elongation and
increase chlorophyll content in cucumber (Cucumis sativus L.) plants exposed to abiotic
stress [22]. Given that Sporisorium causes dwarfing, increases tillering, and alters GA levels
in infected plants, it remains unclear whether Sporisorium alone is responsible for the
variation in whip morphology or if other microbial communities and physiological factors
contribute. Therefore, the roles of endophytic fungi and metabolites like gibberellins in
smut whip growth require further investigation.

Our study aims to identify endophytic fungi influencing gibberellin production and
smut-whip elongation in affected sugarcanes. Therefore, we conducted conventional
isolation, microbiome sequencing, and ultra-performance liquid chromatography (UHPLC-
MS/MS) analyses to: (i) characterize fungal diversity in smut-infected sugarcane whips
and stems; (ii) quantify gibberellin levels in infected sugarcane samples; and (iii) determine
the relationship between endophytic fungi and gibberellin production in whips, and its
potential impact on whip elongation.

2. Results

Smut infection in sugarcane leads to phyllody and reduced plant height. A key charac-
teristic of smut disease is the formation of whips, with significant variations in length, both
exceptionally long and short. These variations are frequently observed during field surveys,
suggesting underlying molecular or physiological changes driving these morphological
differences. Consequently, this study focused on the possible role of endophytic fungi
and gibberellins in causing smut-whip variation in the highly smut-susceptible sugarcane
cultivar ROC22. We selected sugarcane stems with long (>100 cm) and short (<50 cm) smut
whips, dried them in the shade, and separated them into four sample types: LW (long
whips), SW (short whips), LS (long stalks corresponding to long whips), and SS (short
stalks corresponding to short whips). Metagenomic and targeted metabolomic analyses
were performed on six biological replicates per sample. Endophytic fungi were isolated
using potato dextrose agar (PDA) as the growth medium, and fungal DNA was extracted
for ITS region amplification and sequencing. High-throughput sequencing of metagenomic
DNA was conducted on the Illumina HiSeq 2500 platform, and operational taxonomic units
(OTUs) were identified to assess microbial diversity. Additionally, the GA levels in the
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sugarcane samples were quantified using Ultra-performance liquid chromatography–mass
spectrometry (UHPLC-MS/MS).

2.1. Diversity of Fungal Communities Associated with Sugarcane Whip Lengths

A total of 256 operational taxonomic units (OTUs) were identified (Table S1), with
26 OTUs present in all samples (Figure 1A).
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Figure 1. Venn diagram and community bar plot illustrating fungal community richness in different
sugarcane samples. (A) Venn diagram of shared and unique OTUs among different stalk and whip
samples. (B) Fungal community abundance (%) at the family level. LS: long stem, SS: short stem, LW:
long whip, SW: short whip. (C) PCoA analysis at OTU level for smut-containing sugarcane shoot and
whip samples of different lengths. LS: long stem, SS: short stem, LW: long whip, SW: short whip.

Among these, 43 and 114 were unique to long (LS) and short (SS) stalk samples, respec-
tively. In contrast, the long (LW) and short (SW) whip samples had 0 and 4 unique OTUs,
respectively. These distinct OTUs provide valuable insights into the factors contributing to
variations in whip- and stalk lengths. Additionally, the analysis of fungal diversity at the
family level, represented in the community bar plot (Figure 1B), showed the predominant
families and their richness in the studied samples. The endophytic fungal communities in
four samples were precisely dominated by Ustilaginaceae (56.5%), Saccharomycetales Incertae
sedis (19.5%), Nectriaceae (3.8%), Saccharomycodaceae (2%), Rhynchogastremataceae (1.6%),
and Tremellaceae (1.1%) excluding unclassified families (Figure 1). Moreover, the relative
abundance of Ustilaginaceae was 48% higher in whip samples (LW, 50%; SW, 45%) compared
with stalk samples, while that of Saccharomycetales Incertae sedis was 21% lower (LW, 25%;
SW, 16%). These specific taxa potentially contribute to variations in whip and stem lengths.

Alpha diversity indices were calculated to assess fungal diversity across samples
(Table 1). Significant differences were observed between stem and whip samples. Short
samples (SS, SW) exhibited higher Shannon and Chao indices compared with long samples
(LS, LW), with SS having the highest values, except for the Simpson index (Table 1).
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Table 1. Alpha diversity indices of long and short smut-infected sugarcane stem and whip samples.

Sample\Estimators Chao Shannon Simpson

Long stem (LS) 58.95 1.66 0.34
Short stem (SS) 103.88 2.31 0.19

Long whip (LW) 38.05 0.25 0.90
Short whip (SW) 38.92 0.38 0.84

This indicated relatively minor differences in community richness between short and
long whips, while short and long stems showed greater disparity, with SS showing the
most varied diversity. Beta diversity, identified using PCoA analysis (R = 0.5957, p < 0.001),
provided insights into fungal community structure similarities and differences across
samples (Figure 1C). The PCoA plot accounted for 74.2% of the total variation, with PCo1
and PCo2 explaining 52.2% and 21.9%, respectively. Whip samples (LW, SW) were distinct
from stem samples (LS, SS), and long and short whips (LW, SW) were closer to each other,
indicating similar fungal community structures compared with the long and short stems
(LS, SS). This analysis highlights the variations in community structure between sugarcane
stem and whip samples (Figure 1C).

2.2. Dominant Fungal Genera Associated with Long Stem and Whip

In the long stem (LS) samples, the dominant genera (>3%) were Candida, Sporisorium,
and Fusarium. In the short stem (SS) samples, the dominant genera were Sporisorium,
Candida, Hanseniaspora, Fusarium, and Papiliotrema. Among the whip samples, the dominant
genera (>1%) were Sporisorium and Fusarium in long whips (LWs), and Sporisorium and
Candida in short whips (SWs) (Figure 2).
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indicated by red boundaries are shared among samples.
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Candida was the most prevalent genus (>3%) in both stem samples (LS; SS), with
an average abundance of 34.8%. In contrast, Sporisorium was prevalent in whip samples
(LW; SW), with an average abundance of 92.4% (Figure 2). Moreover, the abundance
of the genus Candida was 47.9% higher in long stems (LSs) compared with short stems
(SSs), while the abundance of the genus Fusarium, after Sporisorium (smut pathogen),
was 3.8% higher in long whips (LWs) compared with short whips (SWs) (Figure 2).
Despite the percentage abundance, at the OTU level, S. scitamineum was the highest-
ranked OTU cluster (>300,000 sequences), followed by Candida jarooni (Kurtzman & Rob-
nett) with >85,000 sequences, and Fusarium concentricum (Nirenberg & O’Donnell) with
>23,000 sequences across samples, excluding the unclassified species (Table S1). These
representative sequences accurately reflect the abundant species within each cluster with
over 97% nucleotide similarity. Therefore, these findings emphasize the significance of
these genera in the morphological diversity and physiological fluctuations in these stems
and whips.

These metagenomic results were further validated by conventionally isolated fungal
sequences (Table 2, Figures S1 and S2). Abundant isolates of genera including Sporisorium,
Fusarium, and Sarocladium were obtained from both long- and short-whip samples, with F.
verticillioides (Sacc.) distinctly isolated from long (LS; LW) samples (Table 2).

Table 2. Endophytic fungi isolated from smut-infected sugarcane stalk and whip samples of varying
lengths following PCR amplification and 99% nucleotide similarity results.

No. Isolated
Fungi Code

PCR Amplicon
Number

Type of
Sugarcane Identified Species Plant

Part

1 A 2 Long Mucor irregularis Stem
2 B 4 Long Fusarium proliferatum Stem
3 C 5 Long Fusarium pseudocircinatum whip
4 D 6 Long Fusarium sp. DBF13KW4b Stem
5 E 7 Long Daldinia eschscholtzii Stem
6 F 8 Long Epicoccum sorghinum Whip
7 G 9 Long Mucor irregularis Whip
8 H 10 Long Fusarium fujikuroi Whip
9 I 11 Long Fusarium sp. ASR-126 Whip
10 J 12 Long Fusarium verticillioides Whip
11 K 13 Short Fusarium sp. ASR-126 Whip
12 L 14 Short Fusarium fujikuroi Whip
13 M 15 Short Fusarium sp. ASR-126 Stem
14 N 16 Short Fusarium temperatum Stem
15 O 17 Short Fusarium fujikuroi Stem
16 P 18 Short Fusarium proliferatum Stem
17 Q 19 Short Sarocladium sp. BAB-5555 Stem
18 R 20 Short Sporisorium scitamineum Whip
19 S 21 Short Mucoromycotina sp. Stem
20 T 22 Short Fusarium chlamydosporum Whip
21 U 23 Positive Control Sporisorium scitamineum --

2.3. Regulation of Gibberellin and Its Association with Fungi and Whip Lengths

Nine gibberellin hormones were detected and actively regulated in the four tested
sample types (LS, SS, LW, SW), each revealing distinct quantitative changes (p ≤ 0.05) based
on the source (Table 3).

Compared with short samples, the concentrations of five DAMs (GA20, GA3, GA1,
GA4, GA7) were higher in the long samples. Notably, GA3 and GA1 were significantly
higher in long-stem and long-whip samples (LS, LW), with the highest levels observed in
long whips (Table 3). The GA20 content was highest in long stems (LS), while GA4 and
GA7 were exclusively present in long samples (LS, LW), with the highest concentration in
long whips (Table 3). To elucidate the physiological processes linked to these differentially
accumulated metabolites (DAMs), Kyoto Encyclopedia of Genes and Genomes (KEGG)
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annotation and pathway enrichment analysis were performed for the comparison groups
LS vs. SS and LW vs. SW. These analyses revealed that the differentially accumulated
GAs in both groups were predominantly enriched in four pathways, with diterpenoid
biosynthesis (ko00904) being the most prominent, followed by the biosynthesis of secondary
metabolites (ko01110). Additionally, plant hormone signal transduction (ko04075) was
more pronounced in LW vs. SW compared with LS vs. SS (Figure 3A,B).

Table 3. Gibberellin (GA) contents (ng/g) in different smut-infected sugarcane stalk and whip samples.

Metabolite Long Stem (LS) Short Stem (SS) Short Whip
(SW) Long Whip (LW)

GA20 0.81 ± 0.48 a 0.14 ± 0.07 a 0.03 ± 0.02 a 0.18 ± 0.10 a
GA1 2.58 ± 1.59 b 1.05 ± 0.14 b 0.72 ± 0.19 b 10.24 ± 6.96 a
GA3 10.10 ± 9.24 b 0.49 ± 0.69 c 0.65 ± 0.92 c 34.01 ± 46.38 a
GA8 0.00 0.19 ± 0.27 0.37 ± 0.37 b 1.77 ± 1.70 a

GA19 0.00 0.54 ± 0.77 1.51 ± 0.39 a 1.42 ± 1.02 a
GA4 0.003 ± 0.01 0.00 0.00 0.40 ± 0.50
GA7 0.10 ± 0.14 0.00 0.00 0.54 ± 0.70

Different letters indicate significant differences between different concentrations of the same sample (p ≤ 0.05).
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Among the detected DAMs, six were common to both comparison groups. GA1
and GA4 were annotated across all four pathways, whereas GA8 was exclusively linked
to diterpenoid biosynthesis. Only two DAMs, GA4 and GA1, were annotated to the
plant hormone signal transduction pathway (Figure 3C). Moreover, GA19 was found to
be non-significant in LW vs. SW and was downregulated in the LS vs. SS comparison
group. The regulatory trends of these DAMs are shown in Figure 4. Consequently, the
diterpenoid biosynthesis and plant hormone signal transduction pathways were further
examined. DAMs identified in both LS vs. SS and LW vs. SW comparisons revealed that
all six common GAs were associated with the diterpenoid pathway. GA8 and GA19 were
downregulated in long stems compared to short stems, and GA19 was non-significant in
long whips compared with short whips (Figure 4).
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desaturase; TF: Phytochrome-interacting factor 4; LS: Long stem; SS: Short stem; LW: Long whip;
SW: Short whip.

These results also suggest that these physiological variations may be influenced by
factors such as smut infection and the endophytic fungal community structure. The upreg-
ulation of gibberellin in long stems and whips during diterpenoid biosynthesis, as shown
in Figure 4B, led to stem growth and germination. This process could contribute to the elon-
gation of whip structures emerging from the smut-infected stem tips of sugarcane plants.

The heatmap analysis of GA concentrations with selected fungal genera revealed
significant correlations, supporting the previous results (Figure 5).

GA19 and GA8 were positively correlated with Sporisorium, the smut pathogen, and
significantly downregulated in long stems (LS vs. SS). These GAs were negatively correlated
with Candida and Sarocladium, abundant in long stem (LS) samples. Additionally, GA20 was
highest in long-stem samples, showing a positive correlation with Sarocladium, followed by
Candida and Fusarium, and a negative correlation with Sporisorium. Fusarium displayed a
distinct trend compared with other dominant genera, being the only genus significantly
positively correlated with GA1, GA7, GA3, and GA4 (Figure 5). These GAs were most
concentrated in long whips (LWs), followed by long stems. GA4 and GA7 were exclusively
present in long samples, with the highest levels in long whips. GA1 and GA4 were linked to
all mentioned pathways and specifically annotated to the plant hormone signal transduction
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pathway. These findings highlight the significant association between endophytic fungi
and gibberellin regulation and their impacts on plant physiology.
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Figure 5. Heatmap based on Spearman’s correlation in combination with cluster analysis among
selected fungal genera and GA concentrations across all samples. The sizes of the squares corresponds
to the magnitudes of the values, which are also displayed within each cell. (* = p < 0.05; ** = p < 0.01).

3. Discussion

The present study employed a combination of conventional isolation techniques and
microbial community analysis to examine the fungal population diversity and the regula-
tion of gibberellin (GA) concentrations in smut-infected sugarcanes with long and short
whips. The results indicated that long shoot and whip samples (LS, LW) exhibited remark-
ably greater concentrations of GA1, GA3, GA4, and GA7, with the greatest concentrations
detected in long whips (LW). Moreover, Fusarium was the only abundant genus found in
whip samples associated with these GAs (GA1, GA3, GA4, and GA7). Additionally, Candida
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was associated with GA20, both of which were prevalent in long shoots. Therefore, it can be
concluded that the presence of Fusarium in long whips was related to the production of GA1,
GA3, GA4, and GA7. GA1 and GA4, which were involved in all four annotated pathways,
and might have contributed to whip elongation through hormone signal transduction. GA4
and GA7 were not detected in short whip or stem samples.

Previous research has revealed that gibberellin promotes plant height in sugarcane
through stem elongation [23]. A separate study reported that Pseudomonas aeruginosa (Ges-
sard) B18-infected sugarcane plants producing IAA, GA3, ABA, and ETH coped with better
tolerance to smut pathogen stress [24]. The present study observed greater gibberellic acid
(GA3) production in long shoot and long whip samples (LS; LW). However, several studies
have revealed that various microbes interacting with plants also produce GAs, which do not
regulate host development, but promote infection by inhibiting immunity [25,26]. These
findings support our results regarding the higher gibberellin concentration in long-whip
samples. Through community abundance analysis, conventional isolation techniques, and
UPLC-MS/MS analysis, we investigated the fungal communities and gibberellin hormones
associated with smut whip length elongation in silico.

The present research employed community abundance analysis to identify significant
variations in the fungal communities between shoot and whip samples. These variations
can be attributed to abiotic factors, multiple taxa, and the host plant, potentially leading to
endophyte-mediated plant features in the long run [27,28]. The prominent fungal genera
identified in shoot samples (LS; SS) comprised Candida, Sporisorium, Fusarium, Hansenias-
pora, and Papiliotrema. Meanwhile, in whip samples (LW; SW), the dominant genera were
Sporisorium, Candida, and Fusarium (>1%). In whip samples, Fusarium emerged as the most
prominent genus after Sporisorium, exclusively in long whips, while Candida was more
prevalent in short whips. Notably, Fusarium species were detected in all samples except
for short whips, an absence that warrants further investigation in future research focused
on short whips. Yeast genera, i.e., Candida, Hanseniaspora, and Papiliotrema, accounted
for 41.84% of the total fungal diversity in shoot samples, which aligns with the previous
findings [29], with Candida being significantly abundant (57.94%) in long-stem (LS) samples.
Candida species are renowned for their capacity to promote plant development, degrade
organic contaminants, and exhibit significant aminocyclopropane-1-carboxylate deami-
nase (ACCD) activity, which acts as an ethylene suppressor and a growth promoter for
plants [30–33]. In addition to the community abundance analysis, cultivable endophytic
fungi were isolated from the samples using the conventional isolation technique and iden-
tified through ITS amplification. Consistent with the present study’s findings, several
Fusarium species, including F. fujikuroi, F. proliferatum, and F. verticillioides, have previously
been identified in smut-infected sugarcane whips [34–36]. F. concentricum, a member of
the F. fujikuroi species complex (FFPC), has been isolated from rice infected with bakanae
disease [37].

Gibberellins, particularly GA3, have been proven to stimulate cell division and elonga-
tion at the cellular level [38]. Moreover, the fungus Sporisorium infects plants by undergoing
mitotic division of its sori within the infected meristem region [39]. KEGG enrichment anal-
ysis identified six DAMs (GA20, GA8, GA3, GA1, GA4, and GA7) in both LS vs. SS and LW
vs. SW comparison analyses. All these DAMs, except for GA20 (highest in long stems), had
their highest concentrations in long whips and were linked to the diterpenoid biosynthesis
pathway. GA8 was exclusively annotated to this pathway and positively associated with
Sporisorium. Terpenoids are specialized metabolites essential for direct defense against bi-
otic and abiotic stresses. Similarly, many monoterpenes possess fungicidal and insecticidal
properties [40]. Therefore, the detection of these DAMs, with the highest concentrations in
long whips, along with their role in upregulated diterpenoid biosynthesis, suggests that,
after the smut pathogen infiltrated the apical meristem region, the plant’s internal defense
mechanisms were activated. This response likely involved pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI), which could subsequently be suppressed by
pathogen-induced effector-triggered susceptibility (ETS) [41].
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The higher abundance of the endophytic fungus Candida in both long and short shoots
(LSs; SSs) and its positive correlation with GA20 suggests that it could be involved in the
stimulation of stem growth in sugarcane samples, particularly in long shoots (LSs), which
exhibited the highest concentration of GA20. GA20 is a bioactive gibberellin (GA1, GA3)
precursor that promotes cell elongation and increases shoot height [42,43]. A previous study
demonstrated that Candida tropicalis HY produced plant growth regulators and stimulated
growth in rice seedlings [30]. Sporisorium, the causal agent of smut [8], was found in all
samples, with higher concentrations observed in whip samples (LW; SW). Previous studies
have revealed that Sporisorium spp. (S. reilianum) stimulates inflorescence and inhibits
apical dominance in maize by down-regulating the GA20-oxidase gene. This finding is
consistent with our results, suggesting that S. scitamineum is somewhat involved in the
down-regulation of GA20 in short whips (SW), having the lowest GA20 content, leading to
altered plant morphology [14].

Several Fusarium species are potentially hazardous as they can produce toxins that
affect pasture fodder and field agricultural products [44]. Fusarium species also produce a
wide range of bioactive secondary metabolites associated with their biosynthetic genes [45].
For nearly a century, the isolate F. fujikuroi MP-C, part of the Gibberella fujikuroi (Sawada)
species complex, has been recognized for the industrial-scale production of gibberellic
acid [15,46,47]. Moreover, significant GA production has been reported in strains F. prolifer-
atum (orchid-strain N1), F. proliferatum (KGL0401), and F. konzum MP-I (Zeller, Summerell
& J.F. Leslie) [46,48,49]. In this study, secondary metabolite biosynthesis was annotated
with five DAMs, among which four showed a significant correlation with Fusarium. After
Sporisorium, Fusarium was exclusively detected in long whips (LW), which also exhibited
the highest concentrations of GA3, GA1, GA4, and GA7, among which GA1 is available in
the developing parts of plants, including shoots, leaves, and flowers [50,51], while GA4 is a
highly growth-promoting hormone [52,53] that acts as a precursor of GA1, GA7, and GA3
production [54]. These findings suggest that Fusarium may influence GA regulation in long
whips, promoting terpene biosynthesis and upregulating plant hormone signaling path-
ways, which lead to whip elongation. It is also possible that other endophytes contribute to
this process.

Consequently, it can be inferred that the association of GAs (GA1, GA7, and GA4) with
Fusarium actively stimulated hormone signal transduction within the shoot meristem area,
leading to the elongation of sori and hence, longer whip lengths. These findings provide
valuable insights into the role of endophytic fungi in gibberellin hormone regulation and
their impact on smut-infected sugarcanes.

4. Materials and Methods
4.1. Sampling Site and Experiment Design

This experiment was conducted from 2021 to 2022, with samples collected from the
highly smut-susceptible sugarcane cultivar ROC22, planted at the Guangxi University Field
Station in Fusui (22◦38′06′′ N, 107◦54′15′′ E), China. Sugarcane stems displaying distinct
long and short whips were harvested and shade-dried, followed by meticulous separation
of whips from stems, yielding four sample types: LWs (long whips, >100 cm), SWs (short
whips, <50 cm), LSs (long stalks corresponding to long whips), and SSs (short stalks
corresponding to short whips) (Figure 6). Both metagenomic and targeted metabolomic
analyses were conducted using six biological replicates per sample. All samples were
stored at 4 ◦C until further use.
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Figure 6. Samples of smut-infected sugarcane stalks with whips of different lengths. (A) Collected
sample (intact); (B) Separated long and short whip samples; (C) Separated long and short stalks
of corresponding whip samples. Red blocks and arrows indicate the part utilized for conventional
fungal isolation from shoot samples. LW: Long whip; SW: Short whip; LS: Long stem; SS: Short stem.

4.2. Conventional Isolation of Endophytic Fungi

Potato dextrose agar (PDA; Sigma-Aldrich, St. Louis, MO, USA) was used as the
growth medium (Table S2). For fungal isolation from stalk samples, 2 mm stem disks were
disinfected with ethanol (30 s) and sterile water (30 s, twice), air-dried, and placed on PDA
plates. For whips, smut spores were collected and suspended in 0.01% Tween-20/ddH2O
(v/v, 1:100). A 100 µL suspension was spread on PDA plates [55,56]. Plates were incubated
at 28 ◦C and monitored daily for fungal growth. Distinct colonies were transferred to fresh
PDA plates, and single spore cultures were established [57]. The purity of the cultures was
validated by microscopic investigation (Figure S1).

4.3. DNA Isolation and ITS Region Amplification

Genomic DNA from isolated fungal samples was extracted using the Cetyltrimethyl
ammonium bromide (CTAB) method [58]. For metagenomic DNA (mDNA), plant sam-
ples were crushed in liquid nitrogen and processed with the QIAAmp® DNA Mini Kit
(Qiagen, Shanghai, China). DNA quality was measured with a NanoDrop 2000 (Thermo
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Fisher Scientific, Shanghai, China). The extracted DNA was used to amplify the ITS1-ITS2
gene region with universal primers ITS1F (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4R
(5′-TCCTCCGCTTATTGATATGC-3′). For metagenomic samples, barcoded ITS1F/ITS4R
primers were synthesized. PCR was performed using an ABI GeneAmp Model 9700 ther-
mocycler (details in Tables S3 and S4). Sporisorium scitamineum (S201301 and S201302) from
Fujian, China, was used as a positive control. Amplicons were subjected to electrophoresis
on 2% agarose gel.

4.4. ITS Sequencing of Isolated Fungi

Amplified genomic DNA products were sent to Shanghai Biotech (CN) for ITS se-
quencing. Sequences were identified using NCBI’s BLAST with a 99% similarity threshold.
From each set of identical samples, one strain was chosen based on optimal growth rate and
nucleotide identity. This method allowed for the selection of diverse strains and insights
into the most frequently isolated strains (Figures S1 and S2).

4.5. Illumina Sequencing for Metagenomic Analysis

mDNA PCR products were detected and quantified using the QuantiFluor-ST assay
(Promega, Beijing, China). DNA libraries were created with the Illumina TruSeq DNA
sample preparation kit and sequenced on the Illumina HiSeq 2500 platform, producing
270 bp paired-end reads (Gene Denovo Biotechnology Co., Ltd., Guangzhou, China). Raw
sequences were assembled into clean reads using Fast Length Adjustment of Short reads
(FLASH v1.2.11) [59] software filtering out reads < 20 bp, those with <20 quality in a
10 bp window, and those containing N bases. Paired-end reads with a 10 bp overlap and
a maximum mismatch ratio of 0.2 were merged and de novo assembly was conducted
using Uparse (version 7.0.1090 http://drive5.com/uparse/, assessed on 10 January 2024).
The most abundant sequence in each cluster was selected as the representative sequence.
Operational taxonomic units (OTUs) were assigned using QIIME (Quantitative Insights
into Microbial Ecology v.1.9.0) software with the UCLUST algorithm and the Greengene
database at a 97% similarity threshold. Sequences were mapped to representative se-
quences, yielding valid sequences for each OTU based on a minimum count of two and
8% prevalence. The OTU table was generated, and the relative abundance of different
taxa was calculated for each sample. All sequencing and OTU generation analyses were
performed using the Majorbio Cloud Platform (CN; https://cloud.majorbio.com/, assessed
on 2 February 2024).

4.6. Alpha and Beta Diversity Analyses

The Majorbio Cloud Platform (CN; https://cloud.majorbio.com/, assessed on
2 February 2024) was used for further analysis of detected OTUs. Alpha diversity (Chao,
Shannon, and Simpson indices) and beta diversity (principal coordinate analysis; PCoA)
were analyzed to investigate OTU richness and diversity. Chao, Shannon, and Simpson
indices were calculated using Mothur software (version v.1.30.2, https://mothur.org/wiki/
calculators/, assessed on 2 February 2024). Principal coordinate analysis (PCoA) with
the Anosim test and Euclidean algorithm was performed using R software (version 3.3.1,
R Foundation for Statistical Computing, Vienna, Austria) [60]. Venn diagrams of shared
OTUs, community richness bar plots, and pie plots were also generated using R software
(version 3.3.1) [60].

4.7. Metabolomic Analysis of Targeted Metabolites

MetWare Biotechnology Co., Ltd. (http://www.metware.cn/; Wuhan, China, assessed
on 6 February 2024) conducted the analysis employing their proprietary MS2 spectral
tag library (MWDB, Wuhan Meiwei Biotechnology Co., Ltd., Wuhan, China) and public
databases for metabolite information. The gibberellin (GAs) concentrations in sugarcane
samples (stem: LS, SS; whip: LW, SW) were quantified by UHPLC-MS/MS. Preparation:
50 g of ground sample was mixed with 10 µL of isotope-labeled internal standard (conc.

http://drive5.com/uparse/
https://cloud.majorbio.com/
https://cloud.majorbio.com/
https://mothur.org/wiki/calculators/
https://mothur.org/wiki/calculators/
http://www.metware.cn/
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100 ng/mL) and 500 µL of acetonitrile/water (ACN/H2O; 90:10), vortexed, and centrifuged
(4 ◦C, 12,000 r/min, 10 min). The collected supernatants were treated with 10 µL of
BPTAB and 10 µL of TEA, incubated (1 h, 90 ◦C), air-dried, redissolved in ACN/H2O
(100 µL; 90:10), filtered, and analyzed via UHPLC-MS/MS (UPLC, ExionLC™ AD, /https:
//sciex.com.cn/, assessed on 6 February 2024), and GA quantification was performed
using the AB Sciex QTRAP 6500 LC-MS/MS platform. Details of the UPLC and LC-MS/MS
apparatus are given in Table S5. Scheduled MRM was performed for gibberellins, quantified
via Multiquant 3.0.3. The mass spectrometer parameters were optimized with declustering
potentials (DPs) and collision energies (CEs). Analysis was controlled by Analyst 1.6.3. The
absolute Log2FC (fold change) values were calculated to identify significantly regulated
metabolites between groups.

4.8. KEGG Annotation and Enrichment Analysis

Metabolites with fold changes above 2.0 or below 0.5 (VIP ≥ 1) were identified as
differentially accumulated metabolites (DAMs). Identified metabolites were annotated
using the KEGG compound database (http://www.kegg.jp/kegg/compound/, assessed
on 21 February 2024), and differentially annotated metabolites (DAMs) were then mapped
to the KEGG Pathway database (http://www.kegg.jp/kegg/pathway.html/, assessed on
21 February 2024). Pathways mapped with significantly regulated metabolites were then
fed into MSEA (metabolite sets enrichment analysis), and their significance was determined
by the hypergeometric test’s p-values [61].

5. Conclusions

In conclusion, this study provides new insights into the fungal dynamics and gib-
berellin production associated with sugarcane smut. Our analyses revealed a diverse fungal
community within the whips of smut-infected sugarcanes, with Sporisorium and Fusarium
genera being prominent, especially in longer whips. Conventional isolation also identified
several Fusarium isolates from whip samples. UHPLC-MS/MS identified higher levels of
gibberellin hormones (GA1, GA4, GA7, and GA3) in these longer whips, with Fusarium
showing a strong positive correlation with these GAs. KEGG enrichment analysis further
linked these hormones to diterpenoid biosynthesis and plant hormone signal transduction
pathways. These results suggest that Fusarium may significantly contribute to the produc-
tion of GAs (GA1, GA4, GA7, and GA3) and the elongation of sugarcane whips. Other
detected endophytes may also contribute to this process. This study lays the groundwork
for future investigations into the molecular mechanisms underlying gibberellin synthesis
and its regulation in the context of sugarcane smut.
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59. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,

2957–2963. [CrossRef] [PubMed]
60. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria;

Available online: https://www.R-project.org/ (accessed on 14 January 2024).
61. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Res. 2000, 28, 29–34. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.fgb.2008.07.011
https://www.ncbi.nlm.nih.gov/pubmed/18694840
https://www.researchgate.net/publication/285860527
https://www.researchgate.net/publication/285860527
https://doi.org/10.1016/j.tplants.2018.02.005
https://doi.org/10.1046/j.1365-313X.1997.12010009.x
https://doi.org/10.1111/j.1365-3040.2006.01512.x
https://www.ncbi.nlm.nih.gov/pubmed/17080953
https://doi.org/10.1007/s00425-003-0999-2
https://doi.org/10.1007/s00253-004-1805-1
https://www.researchgate.net/publication/341114611
https://www.researchgate.net/publication/341114611
https://doi.org/10.1038/srep23994
https://www.ncbi.nlm.nih.gov/pubmed/27035751
https://doi.org/10.4315/0362-028X-73.6.1077
https://doi.org/10.1093/bioinformatics/btr507
https://www.ncbi.nlm.nih.gov/pubmed/21903629
https://www.R-project.org/
https://doi.org/10.1093/nar/27.1.29
https://www.ncbi.nlm.nih.gov/pubmed/9847135

	Introduction 
	Results 
	Diversity of Fungal Communities Associated with Sugarcane Whip Lengths 
	Dominant Fungal Genera Associated with Long Stem and Whip 
	Regulation of Gibberellin and Its Association with Fungi and Whip Lengths 

	Discussion 
	Materials and Methods 
	Sampling Site and Experiment Design 
	Conventional Isolation of Endophytic Fungi 
	DNA Isolation and ITS Region Amplification 
	ITS Sequencing of Isolated Fungi 
	Illumina Sequencing for Metagenomic Analysis 
	Alpha and Beta Diversity Analyses 
	Metabolomic Analysis of Targeted Metabolites 
	KEGG Annotation and Enrichment Analysis 

	Conclusions 
	References

