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Abstract: This paper examines the dosimetric uncertainty arising from the use of thermoplastic
masks in the treatment of head and neck cancer through radiotherapy. This study was conducted
through Monte Carlo simulations using the Monte Carlo N-Particle eXtended (MCNPX code), and the
theoretical results are compared with radiochromic films. Using material characterization techniques,
the compounds of the thermoplastic mask were identified, confirming that most of the material
corresponds to the polymer C;yH;404. The theoretical results show increases ranging from 42% to
57.4% in the surface absorbed dose for 6 and 15 MV photon beams, respectively, compared to the
absorbed dose without the mask. The experimental data corroborate these findings, showing dose
increases ranging from 18.4% to 52.1% compared to the expected surface absorbed dose without the
mask. These results highlight the need to consider the bolus effect induced by thermoplastic masks
during the precise and safe planning and application of radiotherapy treatment in order to ensure its
therapeutic efficacy and minimize the associated risks to patients.
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1. Introduction

Head and neck cancer has a significant incidence, representing 9.19% of reported cases
in 2020 according to the Global Cancer Observatory [1]. This high incidence underscores
the importance of optimizing treatment techniques such as radiotherapy, chemotherapy,
and surgical interventions [2].

In external radiotherapy, immobilizers, such as thermoplastic masks, are crucial for
maintaining treatment precision and avoiding damage to organs at risk (OARs) due to
involuntary patient movements [3].

Thermoplastic masks are polymers that become elastic when reaching temperatures
between 65 °C and 75 °C, allowing precise conformation to the patient’s anatomy for use
during radiotherapy sessions [3]. These masks are mainly made of polycaprolactone (PCL)
and may contain additional elements such as sulfur to reduce the vitrification temperature
and make the material more manageable at lower temperatures [4]. The density of these
masks can vary between 0.9 and 2 g-m~3 [5,6].

Studies have confirmed how the use of thermoplastic masks can increase the radiation
dose on the skin surface, raising the risk of burns and associated morbidity. Lee et al. [7]
used thermoluminescent dosimeters and found that the masks can significantly increase
the surface dose when the treatment is performed with 6 MV photons, with an increase of
8.7% to 31.5%. Halm et al. [8] concluded that cobalt therapy generates significant increases
and that 6 MeV photons increase the surface dose by 13.5% at 0.5 mm depth and 11.5% in
the first millimeter. Hadley et al. [9] observed that for 15 MV photons, the surface dose can
increase by between 6% and 22% and up to 36% with 6 MV photons, depending on factors
such as beam orientation, energy, and mask thickness. Soleymanifard et al. [10] found
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significant increases in surface dose with 6 MV photons, between 20% and 32%. These
authors also state that for photons of 15 MV, the enhancement can be ignored, a debatable
conclusion in the results presented by other authors.

The increase in surface absorbed dose due to materials overlapping the skin during
the radiotherapy session is known as the bolus effect. This effect is beneficial in skin
cancer treatments as it superficializes the dose, increasing its effectiveness and reducing
the exposure of organs at risk [11]. However, in the treatment of head and neck cancer, the
bolus effect is usually not estimated, which can lead to undesired side effects.

Given the potential impact of the bolus effect on dosimetry, this paper aims to deter-
mine the dosimetric uncertainty caused by the use of thermoplastic masks in head and
neck cancer treatments, thereby contributing to the optimization and safety of radiother-
apy procedures.

2. Results

Figure 1 shows the experimental setup of the phantom with and without mask. These
two configurations are reproduced by Monte Carlo simulations.

Figure 1. Panel (a) shows the phantom without a mask, with the radiochromic films located at the
points of interest. Panel (b) shows the phantom with a mask.

Figure 2 shows the Percentage Depth Dose (PDD) results in the first mm of depth for
energies of 6 and 15 MV. The green curve corresponds to the PDD without a mask, the blue
curve corresponds to condition #1, and the orange curve shows condition #2, as described
in Table 1.
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Figure 2. Monte Carlo simulations in MCNPX for studying the bolus effect with 6 and 15 MV energies.
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Table 1. Representative results of the main characteristics studied in the simulations reproducing
Figure 1. Condition #1 corresponds to thicknesses of 1 £ 0.1 mm (Head) and 2.6 mm =+ 0.1 mm (Chin).

Maximum Dose

Energy (MV) Condition Surface Dose (%) Position (-0.15 cm)
6 Without Mask 54.41 1.55
6 #1 58.5 1.55
6 #2 77.6 1.25
15 Without Mask 38.24 2.75
15 #1 43.5 2.75
15 #2 61.8 2.15

From the analysis of Figure 2, the following is evident: Condition #1 does not show
significant differences compared to the calculation without a mask. On the other hand,
the differences between the no-mask condition and condition #2 are notable for 6 and
15 MV energies.

Table 1 presents the most representative numerical values from the analysis of Figure 2,
allowing differences to be established between the three conditions studied in the sim-
ulations. The important values to analyze correspond to the position of the maximum
absorbed dose point and the PDD value on the surface, considering 1.5 mm depth as a
reference, which is the average skin thickness [12].

Analyzing Table 1 for the three cases studied, it was found that the minimum associ-
ated uncertainty, both for 6 MV and 15 MV, was ~4% for the no-mask case and condition
#1. On the other hand, the difference between the no-mask case and condition #2 was
approximately 23% for 6 MV and 22% for 15 MV.

Experimentally, the phantom was irradiated by a head and neck treatment plan using
direct fields with conventional fractionation of 200 cGy. The treatment plan was calculated
with the Analytical Anisotropic Algorithm (AAA), in order to perform a comparison
using Monte Carlo simulations in MCNPX. Using Equation (1), the absorbed dose of the
12 positions of the radiochromic films in the anthropomorphic phantom was calculated,
finding that in positions 1-6, the absorbed dose does not present a significant bolus effect.
This is due to the fact that the treatment plan chosen for this study did not have irradiation
fields that provided significant absorbed dose in the areas where these films were located.
On the other hand, the films located in positions 7-12 received significant absorbed doses
that allowed a detailed study of the absorbed dose. The results are recorded in Table 2
along with the respective errors associated with the polynomial fit.

Table 2. Experimental values of Blackening (%) and their respective absorbed dose values, found
through Equation (1), along with the error associated with the polynomial fit. Finally, the percentage
increase compared to the expected surface dose without a mask is presented for the films located in
positions 7-12.

# Blackening (%) Absorbed Dose (cGy) Increase (%)
M-7 87.9 118.7 + 6.1 336
S-7 82.8 888+ 5.7 :
M-8 88.1 120.1 £ 6.1 472
S-8 81.3 81.6 £5.8 :
M-9 80.1 762 +59 192
S-9 771 639 +6.2 :

M-10 88 1194 £ 6.1 301
S-10 83.4 918 £5.7 :
M-11 90.3 137.7 + 6.7

S-11 843 96.6 + 5.7 4254

M-12 91.7 146 £7.24
59

86.42 108.9 + 5. 34.1

AR
A
N}
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In Table 2, the increase in absorbed dose was calculated, where M represents the cases
with the mask and S, the cases without the mask, finding that in positions 8 and 11, the
highest associated bolus effect was observed. Moreover, the position with the lowest bolus
effect was position 9.

3. Discussion

In the case of 6 MV photons, the theoretical results of this investigation are consistent
with other studies, which find that the bolus effect generated by the thermoplastic mask
can increase the surface absorbed dose by between 9% and 36% [9] and between 8.7% and
31.5% [7]. These findings indicate that the results found here are consistent with what has
been published so far.

Regarding the 15 MV photon spectrum, the literature presents more important dif-
ferences in the repercussions of the bolus effect due to the use of the thermoplastic mask.
While some authors consider that there is a small degree of dosimetric uncertainty, even
suggesting the possibility of ignoring the bolus effect [4,10], other authors, on the contrary,
find increases in absorbed dose ranging from 6% to 22% [9], aligning more with the results
found in this study.

Published research on this topic warns that the bolus effect generated by the thermo-
plastic mask is more pronounced for lower energies. Our results show a slight difference in
the increase in surface absorbed dose for 6 MV energy compared to 15 MV energy. However,
we found a notable result: the PDDs with 15 MeV energy experienced a greater displace-
ment. This is evidenced by comparing the displacements of the maximum absorbed dose
points in both cases: for 15 MV, it is displaced by 6 mm, and for 6 MV, by 3 mm.

Experimentally, for 6 MV photons, the bolus effect shows an increase of ~19.2%,
while Monte Carlo calculations show an increase of less than 7.5%. This difference is
associated with the fact that the radiochromic films used for the measurements were placed
in different positions of the phantom: experimentally, in the anterior part of the cheek
and with the simulations, in the upper part of the head. In contrast, the theoretical and
experimental results for the chin position are consistent in terms of the increase in absorbed
dose: ~42% in both cases. However, this anatomical position cannot be considered the
one with the highest bolus effect, as was theoretically expected. The results are consistent
with the chosen treatment plan, where the highest absorbed dose corresponded to the left
lateral position, and the position of the highest experimental bolus effect was very close to
the target to be irradiated. Beyond this, it becomes evident that the stretching conditions
of the mask in the chin position make it one of the anatomical positions with the highest
bolus effect.

4. Materials and Methods

This work comprises a theoretical study and an experimental corroboration as follows.

4.1. Monte Carlo Calculations

Simulations were performed using the MCNPX version 2.6 code [13]. The source term
used corresponds to the spectra shown in Figure 3.
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Figure 3. Spectra of 6 and 15 MV from Varian IX linear accelerator [14].

The geometric characteristics of the mask are shown in Figure 1b. This corresponds to
a volume that varies according to Table 3. Structurally, it is filled with ICRU material [15].
This filling is performed because the mask, when in contact with the patient, allows part
of the skin to penetrate the holes during molding, especially with the patient’s face. This
recreates a realistic geometry.

Table 3. Parameters used for constructing the thermoplastic mask geometry in the simulation,

detailing two conditions for the highest and lowest expected bolus effects, chin and top of the
head, respectively.

Condition #1 (Head) #2 (Chin)
Thickness (mm) 1+0.1 26+0.1
Hole occupation (%) 748 +£1 21.8+25
Holes/cm? 1+0.15 9+1
Radius Hole (mm) 4.88 £0.2 0.87 £ 0.2

Three masks used by patients in head and neck cancer treatments were considered.
Two positions were identified where the highest and lowest bolus effects were expected:
the chin and top of the head, respectively. Thickness measurements, the number of holes
per square centimeter, hole radius, and percentage of hole occupation in the mask’s surface
area were obtained in these positions (refer to Table 3), allowing for a faithful reproduction
of the mask geometry in the simulation.

Initially, the radiation beam tuning process was carried out, which consisted of calcu-
lating the Tissue Phantom Ratio (TPR) at the depths of 20 and 10 cm (TPR 20/10) for the
theoretical PDD, which was compared with the experimental PDD. Values of 0.564 and
0.558 were obtained for 6 MV, and 0.631 and 0.637 for 15 MV, respectively. Figure 4 shows
the tunings for the two radiation beams.
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Figure 4. Tunings of 6 and 15 MV radiation beams.

4.2. Elemental Composition and Density of the Thermoplastic Mask

Klarity® U-Frame-type masks were used [16], whose elemental composition was
identified using Scanning Electron Microscopy (SEM) CARL ZEISS Model RA-ZEI-001,
Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Fluorescence (XRF) techniques.
The analysis results show that the material of the mask corresponds to the base polymer
C10H1604, which effectively corresponds to Polycaprolactone (PCL). This material presents
important characteristics with a glass transition temperature of about 60 degrees Celsius
and low toxicity, which makes it ideal for biomedical applications with immobilization
objectives, allowing adaptation to irregular morphologies. This conclusion was based on
several factors: the SEM technique found that the carbon/oxygen ratio was 5:2, and the
FTIR technique identified several polymers with similar spectra, discarding those that did
not meet this ratio. Furthermore, the XRF study evidenced the presence of sulfur in the
material, suggesting its possible inclusion.

After identifying the presence of sulfur, it was included in the tuning to corroborate
possible changes in the PDD, using the weight fractions shown in Table 4. Figure 5 shows
the tuning with and without sulfur, demonstrating that the presence of sulfur does not
significantly alter the PDD.
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Table 4. Weight composition of the materials comprising the mask.

Element C H (@) S
Without sulfur 0.5996 0.0805 0.3199 0
With sulfur 0.5168 0.0693 0.2756 0.1383

—Without sulfur

100 - (\ 6 MV With sulfur

90 -
80
70 -
60
50
40 4

304

204

PDD [%]

100 - With sulfur
15 MV — Without sulfur

0 5 10 15 20 25 30
Depth [cm]

Figure 5. PDD calculation with and without S for 6 and 15 MeV energies.

To calculate the mask density, the volume occupied in water was measured, obtaining
a value of 105.4 cm?, with a weight of 118.7 g, resulting in a density of 1.12 g-cm 3.
Comparing with the Computed Tomography (CT) scan performed on the mask, it was
found to have —315 Hounsfield Units (HU), indicating a density lower than 1 g/cm?. This,
although it may seem a contradiction, has an explanation: the mask changes its density
when molded over the patient. This was observed when it sank in water after its first use.
This finding is supported by studies indicating that the mask’s density can vary between
0.9 and 2 g'cm’3 [5].

4.3. Geometry Construction

The calculation geometry was constructed as a phantom of ICRU material with the di-
mensions 50-50-50 cm3 composed of 10.1% H, 11.1% C, 2.6% N, and 76.2% O [15]. Figure 6a
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Air

Mask

ICRU

schematically shows the full geometry used. On the central axis of the phantom, calculation
voxels of 0.9 cm? are distributed on the surface, increasing in volume with increasing depth.
At an SSD of 100 cm, the phantom is impacted with the photon spectra of 6 and 15 MV
shown in Figure 3. The mask simulation on the phantom is shown in Figure 6b, considering
the thicknesses and filling diameters of the different holes according to Table 3.

Figure 6. Two-dimensional diagrams of the geometry used in the simulations. (a) General diagram
in the XZ plane where the isotropic source in red can be observed, shielded by a lead sphere with
a pyramidal opening reflecting a 10 x 10 cm? field on the phantom surface at a source to surface
distance (SSD) of 100 cm. This geometry is repeated for calculations with and without a mask,
conditions #1 and #2 described in Table 3. (b) XY plane of the voxel distribution in the phantom,
corresponding to fine voxelization on the surface and coarser voxelization after the first 3 mm.
(c) Hole distribution for condition #1 detailed in Table 3.

4.4. Blackening Scale Created for Reading Radiochromic Films

A scale was constructed for reading by irradiating the 12 radiochromic films one
by one, located at a depth of 5 cm within a solid water phantom, with absorbed doses
ranging from 20 to 240 cGy. These data are shown in Table 5, where the absorbed dose
(D), measured with radiochromic films, and the Blackening level (B) after irradiation are
displayed. Subsequently, using the Mephysto software, version 3.4 [17], a model was
created to transform the percentage of Blackening of the films into absorbed dose. The
correlation of the polynomial fit was R? = 0.99, with an average uncertainty of 1.03%.
Figure 7 shows the resulting fit for reading the radiochromic films.

Table 5. Absorbed dose and Blackening for each of the 12 radiochromic films.

# 1

2 3 4 5 6 7 8 9 10 11 12

D (cGy) 20
Blackening (%) 63.5

40 60 80 100 120 140 160 180 200 220 240
70.8 74.7 80.3 84.7 89.3 91.8 92.8 94.3 95.3 96.4 99.6

The particular equation found corresponds to
B=2"°D%—1.673.D%+04377-D + 55.146 (1)

where B is the percentage of Blackening (%) and D is the absorbed dose (cGy).
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Figure 7. Polynomial fit used for reading the radiochromic films.

4.5. Experimental Setup

Twelve radiochromic films were placed at strategic points on an anthropomorphic
head phantom, as shown in Figure 8. The phantom system, mask, and radiochromic films
were irradiated using a 6 MV photon treatment plan on a Clinac IX in two stages: with a
mask and without a mask.

a)

Figure 8. Experimental setup. (a) Positions of the 12 radiochromic films on the anthropomorphic
phantom. (b) Experimental setup indicating reference radiochromic films 5, 9, and 12 for reading.

5. Conclusions

It was observed, both experimentally and theoretically, that the chin is one of the
anatomical positions where a significant bolus effect can be expected for this particular
treatment. On the other hand, theoretically, the bolus effect on the top of the head is smaller
and can be ignored.

Theoretically, it was found that for 6 MV, the surface absorbed dose increases by
between 4.1% and 23.2%, while the point of maximum absorbed dose shifts towards the
surface by 0.3 £ 0.15 cm.

For 15 MV, the surface absorbed dose increases by between 4.26% and 22.56%, while
the point of maximum absorbed dose shifts towards the surface by 0.6 £ 0.15 cm. These
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results confirm that for both 6 MV and 15 MV, the bolus effect can significantly increase the
surface absorbed dose and should be considered in dosimetric planning systems.
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