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Abstract: A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur
compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic
carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the
straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields
above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were
obtained and characterized by spectroscopic methods.
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1. Introduction

The knowledge about organosulfur compounds (OSCs) is of great importance because
of a large number of their applications in medicine [1–3], pharmaceutics [4–8], polymer [9],
and food industries [10]. Thus, the exploration of their chemistry and the search for
new classes of materials containing sulfur atoms are often discussed by scientists all over
the world.

Among all the organic sulfur derivatives, of particular interest are thioesters and
sulfa-Michael addition (SMA) products, which can serve as building blocks in various
processes [11–14]. They exhibit potential catalytic activity in cascade reactions [15], display
antiproliferative properties [16], or act as SARS-CoV-2MPRO inhibitors [17]. Despite the
great practical importance of materials of this type, most of the prominent methods for
their synthesis present some serious drawbacks. For example, thioesters can be obtained
by the nucleophilic substitution of the carbonyl group of acyl chlorides, carboxylic acids, or
acid anhydrides with thiols [18] or reactions with aldehydes used as starting materials [19].
However, these reactions are possible to perform only with the use of transition metal
complexes of copper and iron, oxidants, and at high temperatures [20–22]. Alternatively,
thioesters can be obtained in the presence of transition metal complexes as catalysts in the
thiocarbonylation of alkenes and alkynes, although, in most cases, these processes require
harsh conditions, like high temperatures and/or elevated pressures [23,24]. SMA reactions
remain less explored, mainly because of the high nucleophilicity of thiols causing difficulties
in controlling the stereoselectivity [25]. They are generally performed at low temperatures,
but unfortunately, the reactions require the use of a catalyst at high concentrations [26–29].
Such conditions are not considered ecologically friendly, hence organocatalytic reactions
based on non-toxic NHCs are rising to prominence because of their successful application
in the synthesis of both thioesters [30] and sulfenyl-substituted aldehydes [31–35]. The
experiments also conducted in our group have proved that NHCs are powerful tools in
the synthesis of organosulfur compounds from unsaturated scaffoldings with electron-
withdrawing moieties. The research performed with enals led to obtaining new groups of
sulfur compounds, e.g., silsesquioxane derivatives [36] and symmetric and unsymmetric
bis(thioesters) [37]. Inspired by our previous work and bearing in mind the continuous
demand for organosulfur moieties as well as the limited number of eco-friendly procedures
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for their synthesis, we turned our attention to ynals, which can be used as versatile synthons
for the synthesis of various heterocycles (e.g., indolizines) [38]. They are the substrates
that are more demanding for functionalization than α,β-unsaturated aldehydes because
they comprise two reactive groups suitable for modification. Thus, in the reaction between
ynals and mercaptans, besides regio- and stereoselectivity, chemoselectivity must also be
controlled (Scheme 1).
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To the best of our knowledge, there are no literature reports on the modifications
of ynals with thiols. It is thus of great importance to design new catalytic systems that
would permit the fully selective formation of expected products for a wide range of starting
mercaptans and aldehydes containing C≡C bonds, as it would reveal a new strategy to
obtain structurally diverse organosulfur compounds, including chiral alcohols.

Herein, we describe an effective synthetic pathway for obtaining a new class of
organosulfur materials via reactions of ynals with thiols and dithiol in the presence of bulky
NHC carbene. We focused our attention on designing an eco-friendly system enabling the
introduction of one or more, the same or different, sulfur groups into the aldehyde structure.
Finally, we synthesized, isolated, and characterized thirty-six carbonyl compounds not yet
described in the literature.

2. Results and Discussion
2.1. Design and Optimization of the Reaction System

In the first stage of the study, a number of tests was carried out in order to find the
optimal conditions of 1-octynal’s (1a) functionalization. Benzyl mercaptan (2a) was used
as the reaction partner, because of its low price and high commercial availability. The
tests were performed in the presence of bulky NHC salt–IPr*OMe·HCl (NHC-1) and their
course was monitored by GC-MS analyses. The results presented in Table 1 reveal that
the outcomes of the hydrothiolation process depends largely on the reaction media and
temperatures. Among all the solvents tested, acetone was found to be the best one in terms
of both activity and selectivity to the P1 product (Table 1, Entries 8–11 and 15), which
is especially important from an ecological perspective as acetone is classified as a green
solvent [39]. An effective transformation of reagents was also observed when the process
was carried out in MTBE or toluene, but then a mixture of two products was obtained
(Table 1, Entries 4 and 7). The other solvents (DCE, DCM, and n-hexane) turned out to be
ineffective in the tested model reaction (Table 1, Entries 1–3). Moreover, it was observed that
the reaction efficiency depended also on the amount of solvent used. When the process was
performed in solvent-free conditions, 40% of thioesterification product (P1’) was detected
(Table 1, Entry 16). The same problem was observed for the tests conducted at temperatures
above RT (Table 1, Entries 6–9). Catalytic screening demonstrated that catalyst loading
affects the efficiency of the process, because a lowering of its concentration to 2.5 mol%
leads to a reduction in the yield, despite a significant extension of the reaction time (Table 1,
Entry 11). Carrying out the reaction without the additions of NHC-1 (Table 1, Entry 13)
or potassium hexamethyldisilazane (KHMDS) (Table 1, Entry 14) is impossible, which
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confirms that the catalyst and the base are indispensable for effective reactions. It was also
found that the atmosphere in which the process was carried out had a significant impact
on the efficiency of the reaction tested. This process must be performed under dry argon
conditions. Otherwise, the main product of the reaction practically does not form (Table 1,
Entry 12). We did not observe significant differences between the process carried out in the
presence of carbene generated in situ and the reaction catalyzed by freshly isolated free
carbene (Table 1, Entry 10 vs. Entry 15). Finally, the conditions of entry 10 were optimal as
they allowed a quantitative conversion using relatively low catalyst loading.

Table 1. Optimization of the reaction conditions.
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16 - RT 5 5 80 60:40
Reaction conditions: argon, [1a]:[2a] = 1:1, NHC-1 = IPr*OMe·HCl, [NHC-1]:[KHMDS] = 1:1; [a] reaction conducted
in air; [b] reaction conducted without NHC-1; [c] reaction conducted without KHMDS; [d] free carbene was added;
[e] determined by GC-MS analysis; [f] determined by 1H NMR spectroscopic analysis.

2.2. Scope of the Reaction

The positive outcome obtained for the model reaction has encouraged us to determine
the scope of the reaction. In the first series of experiments, we tested the reactivity of
commercially available alkyl (1a), aryl (1b), and silyl (1c) propargyl aldehydes toward
selected benzyl (2a) and aryl (2b–e) thiols as well as dithiol (3a) (Figure 1).
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Scheme 2. Functionalization of propargyl aldehydes (1a–c) with thiols (2a–e) (experimental condi-
tions: acetone, RT, (1a–c):(2a–e) = 1:1, NHC-1 = IPr*OMe·HCl, [NHC-1] = 5 mol%, and [KHMDS] = 5
mol%, argon). Isolated yields and reaction times are presented under the structures.

The proposed method can be successfully applied for the tested reagents, because all
the products were obtained with excellent isolated yields (>89%) in very mild conditions
and with full atom economy. When using 2-naphthalenethiol (2e), a slight increase in the
reaction time was necessary to obtain the expected materials in quantitative yields. In each
reaction, we observed the selective formation of the expected hydrothiolation product,
whose geometry around the double bond was further confirmed by 2D NMR analyses
(see ESI for details). Interestingly, the hydrothiolation of 3-(trimethylsilyl)-2-propynal (1c),
irrespective of the thiol used, proceeded with the cleavage of the trimethylsilyl group (TMS).
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This result is particularly important in the context of the use of the obtained materials
(P11–P15), which are convenient reagents for further modifications.

Based on the literature and our previous research concerning NHC-catalyzed thioester
synthesis from α,β-unsaturated aldehydes with thiols [36], we proposed the mechanism
depicted in Scheme 3.
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Products P1–P10 are formed as a result of NHC-catalyzed sulfa-Michael addition
according to the proton transfer mechanism [31,40,41], which commences with the gen-
eration of free carbene (NHC) as a result of the reaction of its precursor (NHC-1) with
KHMDS. NHC acts a Brønsted base, which deprotonates the acidic thiol molecule to form
an NHC-thioxy intermediate (B.1). Because of the presence of the electron-withdrawing
aldehyde group, the acetylenic moiety is activated and constitutes a perfect substrate for
immediate conjugate addition [42] with the obtained NHC-thioxy intermediate [43] (B.2).
The way in which ynal is coordinated strongly dependents on the steric properties of
the organocatalyst. Because of the bulky NHC ligand, the thiol is pushed above the flat
N-heterocycle upon the hydrogen bond formation between sulfur and hydrogen atoms.
It permits the approach of the Michael acceptor from the top, with the steric group at
the β carbon atom oriented away from the large aryl substituents attached to the NHC
ligand [33,44]. Due to the presence of an oxygen atom, the formed intermediate can re-
main in equilibrium with allenic enolate [45] (B.3). Such a species is highly reactive and,
immediately, E-products and regenerated free NHC are formed. As mentioned above, the
use of aldehyde 1c as a substrate led to unexpected results because, upon its modification,
desilylation was observed. Unfortunately, at this moment, we are unable to clearly explain
at what stage of the process the elimination of the TMS group occurs. However, we believe
that theoretical research will help resolve this issue in the near future.

Encouraged by the high activity of NHC-1 in the hydrothiolation of ynals (1a–c) with
thiols (2a–e) used at an equimolar ratio, we examined the reactions with a two-fold excess
of mercaptans. Thus, we treated 1 equiv. of aldehyde (1a–c) and 2 equiv. of thiol (2a–e)
with NHC carbene generated from precursor NHC-1, and the reaction mixture was stirred
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at RT until the full conversion of ynal was detected by GC-MS analysis. All results are
summarized in Scheme 4.
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Scheme 4. Bis-functionalization of propargyl aldehydes (1a–c) with thiols (2a–e) (experimental conditions:
acetone, RT, (1a–c):(2a–e) = 1:2, NHC-1 = IPr*OMe·HCl, [NHC-1] = 10 mol%, and [KHMDS] = 10 mol%,
argon). Isolated yields and reaction times are presented under the structures.

The performed tests revealed that, in the above conditions, the processes selectively
produced bis-sulfenylated compounds in high isolated yields. No meaningful differences
in the efficiency and selectivity of the process for the applied reagents were observed,
except for 2-naphthalenethiol (2e). For this sterically crowded thiol, a longer time was indis-
pensable to achieve a satisfactory result. Similarly, as for the reaction with the reagents at
equimolar amounts, upon the functionalization of aldehyde 1c, desilylation was observed.

All the products (P1–P30) were purified by column chromatography on silica gel using
n-hexane or a 2:1 v/v mixture of n-hexane and DCM as eluents. Moreover, we were able
to obtain crystals of the mono-sulfenylated products of 4-methoxythiophenol (2d) with
phenylpropargyl aldehyde (1b) and 3-(trimethylsilyl)-2-propynal (1c) by dissolving P9
and P14 in n-hexane/DCM and the slow evaporation of the solvent. In a similar way,
we obtained the crystals of two bis-sulfenylated products P22 and P24. The molecular
structures were determined by X-ray structural analyses and confirmed the formation of
the expected materials (Figure 2) (see ESI for details).

Similarly to the assumed mechanism of monosubstituted product formation, we
proposed a mechanism of bis-functionalized product formation based on the available
literature (Scheme 5).
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Scheme 5. Proposed mechanism of bis-functionalized product formation.

The first part of the mechanism runs in exactly the same way as that in Scheme 3,
leading to the creation of a monosulfenylated product. Then, the thioesterification process
occurs. The free carbene reacts with α,β-unsaturated aldehyde to produce intermediate B.1,
which then undergoes proton transfer, producing a Breslow intermediate (B.2) [46–48]. The
resulting intermediate remains in equilibrium with homoenolate (B.3) [49], which takes
part in direct proton transfer from the hydroxyl group to the γ carbon [50,51]. Finally, the
intermediate (B.4) reacts with thiol leading to catalyst regeneration.

In the next step, we checked the possibility of the formation of triple functionalized
products. In the optimized reaction systems, the tests were performed with the use of
a three-fold excess of thiols (2d–e) relative to 3-(trimethylsilyl)-2-propynal (1c). In both
reactions, quantitative conversions of reagents were achieved within 24 h. The structures of
products were determined by GC-MS and NMR analyses and are presented in Scheme 6.
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first, followed by the addition of the second thiol equivalent to the newly formed carbon–
carbon double bond, and finally, the thioesterification process occurs, according to the 
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(2d) was added, and the catalytic system was left overnight. As presented in Scheme 8, we 
observed the selective formation of bis-functionalized product P33 containing two 
different thiol moieties in high isolated yields. 

Scheme 6. Triple functionalization of 1c with selected thiols (2d–e) (experimental conditions: acetone,
RT, (1c):(2d–e) = 1:3, NHC-1 = IPr*OMe·HCl, [NHC-1] = 10 mol%, and [KHMDS] = 10 mol%, argon).
Isolated yields and reaction times are presented under the structure of each product.

The formation of (tris)sulfenylated products, although confirmed by spectroscopic
NMR analyses, was rather unexpected, so we decided to run some additional experimental
tests in order to obtain some insights into the reaction route (Scheme 7).
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Scheme 7. Functionalization of P29 and P30 with thiols (2d, 2e) (experimental conditions: acetone,
RT, (P):(2) = 1:1, NHC-1 = IPr*OMe·HCl, [NHC-1] = 10 mol%, and [KHMDS] = 10 mol%, argon).

The results show that it is impossible to obtain such products by the gradual addition
of 3 equiv. of thiol or as a result of the reaction of isolated (bis)sulfenylated product with
1 equiv. of thiol. Products P31 and P32 can be synthesized only by the implementation
of a threefold excess of thiol, which leads to the conclusion that the concentration of thiol
must have an impact on the reaction mechanism. In our opinion, in the case of a higher
concentration of thiol in the reaction system, a monosulfenylated product is formed at first,
followed by the addition of the second thiol equivalent to the newly formed carbon–carbon
double bond, and finally, the thioesterification process occurs, according to the mechanism
based on the Breslow intermediate, as described above.

The successful coupling between unsaturated ynals (1a–c) with two- and three-fold
excess amounts of thiols (2a–e) to yield multi-sulfenylated derivatives (P16–P32) prompted
us to carry out two successive reactions with separate mercaptan products to check the
feasibility of a one-pot protocol, leading to a novel class of unsymmetrically functionalized
materials containing two sulfur atoms. Hence, we generated a free carbene in situ in
the reaction environment, as a result of the deprotonation of a salt, NHC-1, and added
equimolar amounts of 1a and 2a. The reaction mixture was stirred at RT until the full
conversion of reagents was detected by GC-MS analysis. Then, the second type of thiol
(2d) was added, and the catalytic system was left overnight. As presented in Scheme 8, we
observed the selective formation of bis-functionalized product P33 containing two different
thiol moieties in high isolated yields.
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conditions: acetone, RT, (1a):(2a):(2d) = 1:1:1, NHC-1 = IPr*OMe·HCl, [NHC-1] = 10 mol%, and
[KHMDS] = 10 mol%, argon). Isolated yield is presented under the structure of P33.

Analogously, we carried out the functionalization of 1b and 1c with 2c and 2d
(Scheme 9). Highly gratifyingly, quantitative conversions were achieved within a rea-
sonable period of time, irrespective of the nature of the aldehyde substituent. The hy-
drothiolation of 3-(trimethylsilyl)-2-propynal (1c) proceeded with the elimination of the
trimethylsilyl group. Products P34 and P35 were obtained with the isolated yields of 90%
and 91%, respectively, which confirm the universality of the proposed procedure.
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Finally, we turned our attention to the functionalization of ynals with dithiol. For this
purpose, we performed the equimolar reaction between 1a and 1,2-ethanedithiol (3a) in the
presence of 5 mol% of NHC-1 (Scheme 10). The reaction was highly selective, because we
observed the exclusive formation of the cyclic product P36. The obtained compound can
constitute a building block for the synthesis of, e.g., enamines, hemiacetals, or acetals.
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(1a):(3a) = 1:1, NHC-1 = IPr*OMe·HCl, [NHC-1] = 5 mol%, and [KHMDS] = 5 mol%, argon). Isolated
yield is presented under the structure of P36.

2.3. The Preparative Scale for the Synthesis of Product P1

To demonstrate the synthetic utility of the designed protocol, a gramscale hydrothiola-
tion of 1a with 2a was performed (Scheme 11). The result obtained makes it clear that the
proposed methodology has significant application potential.
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Scheme 11. Scaled-up synthesis of P1.

In this study, thirty-six products were obtained, isolated, and characterized by spec-
troscopic methods (see ESI for details). These materials are air-stable, which makes them
very attractive for further applications. The presented derivatives are new compounds that
have never been published before.

3. Materials and Methods
3.1. General Methods and Chemicals

Unless otherwise indicated, all operations were carried out under a dry argon atmo-
sphere, using standard Schlenk techniques. 1H NMR and 13C NMR spectra were recorded
in CDCl3 on a Varian 400 operating at 402.6 and 101.2 MHz, respectively. HMBC and
HSQC spectra were recorded on a Bruker Avance DRX 600 (Bruker, Billerica, MA, USA),
operating at a frequency of 600.13 MHz (1H). Chemical shifts are reported in ppm with
reference to the residual solvent peaks in 1H and 13C NMR. 19F NMR spectra were ob-
tained using a Bruker AscendTM 400 NANOBAY, operating at 376 MHz. IR spectra were
recorded on a Bruker IFS 66v/S spectrophotometer, and the scan range was 4000–400 cm−1.
GC-MS analyses were performed on a Varian Saturn 2100T equipped with a DB-1 capillary
column (30 m length, 0.25 mm internal diameter) and an ion trap detector. Thin-layer
chromatography (TLC) was conducted on plates coated with a 250 µm thick silica gel layer
and column chromatography was performed on silica gel 60 (70–230 mesh). ESI-MS spectra
were obtained using a Synapt Gs-S HDMS (Waters, Milford, MA, USA) mass spectrometer
with an electrospray ion source and quadrupole time-of-flight analyzer with resolving
power (FWMH 38000). Acetonitrile was used as the sample solvent. The capillary voltage
was set to 4.5 kV, sampling was set 40, and the source temperature was equal to 120 ◦C. The
most abundant ions in the ESI-MS spectra were the sodiated and potassiated ions of the
desired products.

All reagents, except the NHC carbene precursor, were purchased from commercial
sources and used as received. NHC salt was prepared according to the literature proce-
dure [52]. All the solvents, except THF, were dried over CaH2 prior to use and stored over
4 Å molecular sieves under argon. Dichloromethane was additionally passed through an
alumina column and degassed by repeated freeze–pump–thaw cycles. THF was dried over
sodium benzophenone ketyl and freshly distilled prior to use.

3.2. General Procedure for Catalytic Tests
3.2.1. Mono- and Multifunctionalization of Aldehydes with (Di)thiols

An oven-dried 5 mL glass reactor equipped with a magnetic stirring bar was charged
under argon with the NHC carbene precursor NHC-1 (3.44 mg, 3.51 × 10−6 mol), KHMDS
(0.70 mg, 3.51 × 10−6 mol), and acetone (1 mL). The reaction mixture was stirred at
RT and, after 30 min, aldehyde 1a–c (1 equiv., 7.01 × 10−5 mol), thiol 2a–e (1 equiv.,
7.01 × 10−5 mol, 2 equiv., 1.40 × 10−4 mol or 3 equiv., 2.10 × 10−4 mol), or dithiol 3a
(1 equiv., 7.01 × 10−5 mol) and an internal standard (decane or dodecane, 20 µL) were
added under argon. The reaction mixture was heated at RT and its course was monitored
by GC-MS.

3.2.2. Bis-Functionalization of Aldehydes with Two Various Thiols

An oven-dried 5 mL glass reactor equipped with a magnetic stirring bar was charged
under argon with the NHC carbene precursor NHC-1 (3.44 mg, 3.51 × 10−6 mol), KHMDS
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(0.70 mg, 3.51 × 10−6 mol), and acetone (1 mL). The reaction mixture was stirred at RT and,
after 30 min, aldehyde 1a–c (1 equiv., 7.01 × 10−5 mol), thiol 2a–e (1 equiv., 7.01 × 10−5 mol)
and internal standard (decane or dodecane, 20 µL) were added under argon. The reaction
mixture was heated at RT and, after 10 h, second thiol 2a–e (1 equiv., 7.01 × 10−5 mol) was
added under argon. The reaction mixture was heated at RT and its course was monitored
by GC-MS.

3.3. General Procedure for the Synthesis of Products P1–P32 and P36

A 10 mL high-pressure Schlenk vessel equipped with a magnetic stirring bar and
connected to the gas and vacuum line was charged with the NHC carbene precursor NHC-
1 (17.19 mg, 1.75 × 10−5 mol—5 mol% or 34.38 mg, and 3.5 × 10−5 mol—10 mol%), KHMDS
(3.50 mg, 1.75 × 10−5 mol—5 mol% or 7.00 mg, and 3.5 × 10−5 mol—10 mol%), and acetone
(2 mL) under argon. After 30 min of vigorous stirring the solution at RT, aldehyde 1a–c
(3.51 × 10−4 mol) and thiol 2a–e (3.51 × 10−4 mol, 7.01 × 10−4 mol, or 1.05 × 10−3 mol) or
dithiol 3a (3.51 × 10−4 mol) were added. The reaction mixture was stirred at RT for 5–24 h.
The solvent was then evaporated under vacuum and the residue was purified by column
chromatography on silica gel using n-hexane or a 2:1 v/v mixture of n-hexane and DCM as
eluents. The evaporation of the solvents afforded analytically pure compounds.

3.4. General Procedure for the Synthesis of Products P33–P35

A 10 mL high-pressure Schlenk vessel equipped with a magnetic stirring bar and
connected to the gas and vacuum line was charged with the NHC carbene precursor NHC-
1 (34.38 mg, 3.5 × 10−5 mol), KHMDS (7.00 mg, 3.5 × 10−5 mol), and acetone (2 mL). The
reaction mixture was stirred at RT and, after 1 h, aldehyde 1a–c (50 µL, 3.51 × 10−4 mol)
and thiol 2a or 2d (3.51 × 10−4 mol) were added. The reaction mixture was stirred at RT for
5–8 h. Next, a second thiol, 2d or 2c (3.51 × 10−4 mol), was added. The reaction mixture
was stirred at RT for 14–16 h. All the products were purified by column chromatography
on silica gel using n-hexane or a 2:1 v/v mixture of n-hexane and DCM as eluents. The
evaporation of the solvents afforded analytically pure compounds.

3.5. Synthesis of Product P1 on a Preparative Scale

A 10 mL high-pressure Schlenk vessel equipped with a magnetic stirring bar and
connected to a gas and vacuum line was charged under argon with dry acetone (3 mL),
NHC-1 (172.06 mg, 1.75 × 10−4 mol) and KHMDS (35.01 mg, 1.75 × 10−4 mol). The reaction
mixture was stirred at RT for 1 h. After this time, octynal 1a (500 µL, 3.51 × 10−3 mol)
and benzyl mercaptan 2a (410.90 µL, 3.51 × 10−3 mol) were added. The reaction mixture
was stirred at RT for 24 h. Then, the solvent was then evaporated under vacuum and the
residue was purified by column chromatography (silica gel 60/2:1 v/v mixture of n-hexane
and DCM). The evaporation of the solvents produced an analytically pure product (yellow
oil, 0.74 g, 86%).

4. Conclusions

To sum up, a new practical method for the synthesis of mono- and multifunctional
organosulfur carbonyl compounds, based on the processes of hydrothiolation or hydroth-
iolation/thioesterification of ynals with thiols and catalyzed by bulky NHC carbene, was
designed and optimized. By controlling the amounts of reagents, we have shown that, at
first, the triple bond C≡C is activated, which leads to the formation of SMA adducts. It is
succeeded by the nucleophilic substitution of the carbonyl atom with the hydrogenation of
the C=C bond, leading to the creation of thioesters. The proposed method of synthesis also
permits the introduction of two different sulfur groups into the ynals’ structure and leads
to cyclic products as a result of the reaction of propargyl aldehydes with dithiols. For all
combinations of reagents tested, the reactions proceeded effectively, with high chemoselec-
tivity, leading to the exclusive formation of the expected materials. In the study presented,
thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic meth-
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ods. Taking into account the combination of desirable features, such as high atom economy
(the lack of by-products, equimolar ratios of substrates, ease of product isolation, and pu-
rification), operational simplicity (one-step process), high chemo-selectivity, mild reaction
conditions (metal-free catalyst, green solvent, and room temperature), and commercial
availability of the reagents, this reaction system is attractive for the synthesis of a new
class of organosulfur materials with potential for practical applications, which perfectly
cooperate with the rules of green chemistry [53]. Moreover, in light of the recent Nobel
Prize for chemistry, the proposed method shows the nucleophilic addition to activated
alkynes is congruent with Click Chemistry criteria [54].
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