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Abstract: The murine model is invaluable for studying intricate interactions among gut microbes;
hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially
in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an
opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially
China. This study explored the role of the gut microbiota during Kp infection using mouse model;
including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water;
respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting
the cells from active growth to survival mode. Our study examined notable differences in microbiome
composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant
genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were
predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in
all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance
analysis identified that these candidate taxa potentially influence disease progression and pathogen
virulence. Functional prediction analysis showed that most bacterial groups were functionally
involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic
cluster formation. These findings challenge the conventional understanding and highlight the need
for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome–
immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies.

Keywords: gut; microbiome; cross kingdom; rpoS; infection

1. Introduction

The gut microbiota substantially impacts the gut in sustaining the host health. Infec-
tious interruptions to the balanced gut microbiome have been associated with inflammatory,
metabolic, and autoimmune diseases and can even lead to cancer, mental illness, and de-
velopmental disorders [1,2]. In recent years, numerous studies have been conducted to
investigate which factors impact the gut microbiota, such as antibiotics, diet, health, nu-
trition, and age [3]. Klebsiella pneumoniae is resistant to nearly all known antibiotics used
for treatment and therefore poses the most significant and severe risks to human health.
Drug-resistant strains of K. pneumoniae are associated with extremely high lethality rates,
where bloodstream and other multiple infections often result in mortality rates of 50% [4].
In this regard, it is a significant challenge to determine an effective clinical treatment. A
clinical study found that 22.8% of K. pneumoniae isolates were related to invasive infec-
tions [5], potentially indicating the upcoming crisis and challenges in clinical infection
therapeutics [6]. As a result, this emphasizes the significance of elucidating the precise
relationships and mechanisms of virulence factors and antimicrobial resistance in virulent
pathogenic Klebsiella isolates.

Research on gut microbiomes is dominated by murine models due to their low costs,
higher rate of reproduction, relativity close resemblance to the human gut system, and
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ease of experimental manipulation. The disturbance in the microbiome due to pathogen
intervention requires investigating the possible cause and relationships between dysbiosis
and disease outcomes. Cross-study comparisons can be complicated due to various factors
that affect the diversity of the mouse gut microbiome, especially when the alterations in
the rpoS gene are infrequent [7,8].

RpoS is a crucial stress response regulator, serving as an alternate sigma factor of RNA
polymerase, primarily present in Gammaproteobacteria [9,10]. In various pathogens, RpoS is
reported to play a crucial role in cell survival under stressful conditions, such as oxidative
stress and exposure to acids [11–13]. However, its function in the pathogenesis and impact
on virulence may vary, even within the same species [11–14]. Under harsh conditions, RpoS
modifies the comprehensive gene expression of bacteria, causing the cells to shift from an
active growth state to the survival stage [15]. Additionally, it has also been demonstrated
to promote bacterial colonization in the gut. For instance, RpoS is necessary for various
pathogenic bacterial species to effectively colonize the intestine, such as Salmonella enterica
serovar Typhimurium, Vibrio cholerae, and the highly pathogenic Escherichia. coli [16,17].
To explore bacterial challenges, we investigated the role of RpoS in gut colonization in
mice. The results showed that the absence of RpoS reduces Klebsiella’s capacity to colonize
the mouse gut, while this pattern was not followed in wild-type Kp strains (Kp138, KpE4,
and KpC4).

This study was designed to compare the impact of the RpoS-mutant and wild-type
(WT) effects on microbiome variability within the framework of a disease progression in a
mouse model. We investigated how comparative effects influence the variability in the gut
microbiome of albino laboratory mice, and we found notable differences in the microbiome
composition based on the mutation. The microbiome variations in the wild-type (WT)
and Mutant-treated mice were not identical. However, differential abundance analysis
identified several operational taxonomic units and conserved candidate taxa that could be
involved in developing progression or reducing illness.

Our research aimed to explore the microbial diversity of healthy and diseased mice,
examining the differences in the relative abundance, phylogenetic diversity, and species
richness of the microbial communities in symptomatic mice inoculated with the Klebsiella
pathogen. Our findings indicated that infecting mice with K. pneumoniae significantly
altered the healthy gut microbiota and that induced gut illness resulted in evident changes
in certain bacterial species. Understanding bacterial colonization can help scientists study
how bacteria interact with the gut and develop new strategies to prevent harmful bacteria
from colonizing or causing infection.

2. Results
2.1. Most Dominant Taxa in Mice in the Presence of Wild-Type and Mutant of K. pneumoniae

The bacterial microbiome from the gut of healthy, mutant, and wild-type K. pneumoniae-
treated mice was sequenced. The QIIME cutadapt tool was used for pair-end reads. The
excision sequence was selected through the primer fragment, and the mismatched primers
were removed. The QIIME DADA2 denoised function for paired-end data was used for
quality control by the DADA2 algorithm, and the following steps of de-dimerization,
denoising splicing, and chimerization removal were performed. The box plot results are
shown in Figure 1. The one-way analysis of variance (ANOVA) results showed significantly
different (p < 0.001) alpha diversity indices across all strains of K. pneumoniae, i.e., healthy,
wild, and mutant. Alpha diversity analysis was carried out to examine the evenness and
richness within a single microbial ecosystem of species.

Seven samples of healthy and diseased mice with three replications were used to check
alpha diversity. The results showed that alpha diversity indexes of OTU level with Chao,
Shannon, Simpson, observed species, Faith, Pielou, and Goods coverage or gut samples of
healthy mice showed higher values compared to diseased mice. In brief, the alpha diversity
of healthy mice samples significantly differs from that of diseased mice. The Shannon (4.68),
Simpson (0.05), Faith (704.77), and Chao (717.33) indices of healthy mice show significant
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differences from those of diseased mice. The rarefaction curves of all samples nearly hit
the saturation peak (Figure 2A), showing that the sequenced findings adequately reflect
the variety present in the samples. The quantity of new unknown amplicon sequence
variations (ASVs) did not rise as the sequence depth increased. The SPN and SPD were
equal and homogeneous, but the SNPN and SOPD exhibited a considerable variance in
abundances across OTUs and poor homogeneity.
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Figure 1. Alpha diversity analysis of the treatments. In this context, coordinates represent the
categories used for grouping, while the ordinate denotes the index values of alpha diversity. The
numbers below the diversity index labels indicate the p-values derived from Kruskal–Wallis test.
CK: control. S1: WT Kp138. S2: ∆Kp138. S3: WT KpC4. S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4.
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Figure 2. Sparse curve and rank abundance curve. (A) Sample sparsity curves show the degree of
leveling on the x-axis and the median value of the alpha diversity index, which is calculated ten
times and plotted as a box plot on the y-axis. CK: control. S1: WT Kp138. S2: ∆Kp138. S3: WT
KpC4. S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4. (B) The sample abundance rank curve plots ASV
serial numbers by their abundance on the x-axis. At the same time, the y-axis depicts the abundance
values of ASVs within the sample or group after the Log2 transformation. CK: control. S1: WT Kp138.
S2: ∆Kp138. S3: WT KpC4. S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4.
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2.2. Dominant Microbiota in the Healthy Mice

The abundance of bacterial community at the phylum level in the gut microbiome
was observed in healthy control albino mice. After one week of the experiment, Firmi-
cutes showed the maximum comparative abundance of 97.43%, followed by Proteobac-
teria (1.52%). However, maximum values were observed at the class level for Bacilli,
Gammaproteobacteria, and Clostridia (96.97%, 0.36%, and 0.46%). Furthermore, at the order
level, maximum comparative abundance was observed for Lactobacillales (96.59%), while
Enterobacteriales were absent in abundance. Lactobacillaceae (70.04%) and the absence of
Enterobacteriaceae were observed, whereas Streptococcaceae was only found (26.23%) at the
family level. Lactobacillus (70.02%) and Klebsiella were absent, while Streptococcus was only
26.14% in the control at the genus level. However, at the species level, the maximum relative
abundance of Lactobacillus reuteri in the control (17.33%) was observed (Figure 3A–F).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Sparse curve and rank abundance curve. (A) Sample sparsity curves show the degree of 
leveling on the x-axis and the median value of the alpha diversity index, which is calculated ten 
times and plotted as a box plot on the y-axis. CK: control. S1: WT Kp138. S2: ∆Kp138. S3: WT KpC4. 
S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4. (B) The sample abundance rank curve plots ASV serial 
numbers by their abundance on the x-axis. At the same time, the y-axis depicts the abundance 
values of ASVs within the sample or group after the Log2 transformation. CK: control. S1: WT 
Kp138. S2: ∆Kp138. S3: WT KpC4. S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4. 

2.2. Dominant Microbiota in the Healthy Mice 
The abundance of bacterial community at the phylum level in the gut microbiome 

was observed in healthy control albino mice. After one week of the experiment, Firmic-
utes showed the maximum comparative abundance of 97.43%, followed by Proteobacte-
ria (1.52%). However, maximum values were observed at the class level for Bacilli, Gam-
maproteobacteria, and Clostridia (96.97%, 0.36%, and 0.46%). Furthermore, at the order 
level, maximum comparative abundance was observed for Lactobacillales (96.59%), while 
Enterobacteriales were absent in abundance. Lactobacillaceae (70.04%) and the absence of 
Enterobacteriaceae were observed, whereas Streptococcaceae was only found (26.23%) at the 
family level. Lactobacillus (70.02%) and Klebsiella were absent, while Streptococcus was only 
26.14% in the control at the genus level. However, at the species level, the maximum rel-
ative abundance of Lactobacillus reuteri in the control (17.33%) was observed (Figure 3A–
F). 

 
Figure 3. Relative abundance of bacterial communities (A) Distribution of microbial community 
abundances at the phylum level in all samples of K. pneumoniae-infected mice gut. (B) Abundance 
proportions of microbial communities at the class level across all samples. (C) Proportional abun-
dances of bacterial communities at the order level across all samples. (D) The family-level propor-
tional abundances of microbial communities across all samples. (E) Proportions of microbial 

Figure 3. Relative abundance of bacterial communities (A) Distribution of microbial community
abundances at the phylum level in all samples of K. pneumoniae-infected mice gut. (B) Abundance pro-
portions of microbial communities at the class level across all samples. (C) Proportional abundances
of bacterial communities at the order level across all samples. (D) The family-level proportional
abundances of microbial communities across all samples. (E) Proportions of microbial community
abundances at the genus level in all samples. (F) The proportions of microbial communities at the
species level across all samples. CK: Control. S1: WT Kp138. S2: ∆Kp138. S3: WT KpC4. S4: ∆KpC4.
S5: WT KpE4. S6: ∆KpE4.

2.3. Presence of Dominant Microbiota in WT Kp-Treated Mice

After one week of the application, maximum comparative abundance was observed
for Firmicutes (95.46%), followed by Proteobacteria (4.13%) with WT K. pneumoniae KpC4
application. Similarly, WT KpE4 accounted for 59.81% of Firmicutes and 35.39% of Pro-
teobacteria, and for Kp138, it was 32.41% and 66.83%, respectively. It was also observed
that Bacteroidetes and Actinobacteria were found in WT KpE4, accounting for 2.20% and
2.17%, respectively. At the class level, Bacilli, Gammaproteobacteria, and Clostridia were
observed in WT KpC4 (91.98%, 3.61%, and 3.48%, respectively), WT KpE4 (56.46%, 30.13%,
and 1.51%, respectively), WT Kp138 (30.22%, 66.10%, and 1.67%, respectively). Gammapro-
tobacteria abundance was found to be the highest in WT Kp138 (66.10%), whereas the
lowest abundance was recorded for actinobacteria and Betaprotobacteria in WT KpE4 (2.13%
and 2.69%, respectively). At the order level, a maximum abundance of Lactobacillales and
Enterobacteriales order was observed in WT KpC4 (91.90% and 3.34%, respectively), WT
KpE4 (53.31% and 27.31%, respectively), and WT Kp138 (29.95% and 65.55%, respectively).
At the family level, maximum comparative abundance was recorded for Lactobacillaceae in
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WT KpC4 (91.47%), whereas the minimum was observed in WT KpE4 (22.11%). Similarly,
the Enterobacteriaceae family was observed in WT Kp138 in the range of 65.55%. Further-
more, Streptococcaceae was exclusively detected in WT KpE4 (29.84%) and the control group.
At the genus level, Lactobacillus abundance was 91.45% in WT KpC4, while a minimum
of 22.11% was found in WT KpE4. The maximum relative abundance of Klebsiella was
observed in the WT138 (55.25%) group. However, the species level showed a maximum
relative abundance of Lactobacillus reuteri in WT KpC4 (22.89%) and a minimum in WT
KpE4 (2.01%). Meanwhile, the relative abundance of Lactococcus garvieae was found in a
range of 28.53% only in WT KpE4, as illustrated in Figure 3A–F.

2.4. Role of Microbiota in the Mutant Treated Mice

The relative abundance of the microbial community composition at the phyla level in
the gut microbiome was observed in albino mice infected by mutant strains of K. pneumo-
niae (∆Kp138, ∆KpE4, and ∆KpC4). The maximum comparative abundance of Firmicutes
and Proteobacteria phylum was observed with the application of mutant-type ∆KpC4
(85.91% and 13.02), ∆KpE4 (66.72% and 30.81%), and ∆Kp138 (88.23% and 8.28%), re-
spectively. It was also observed that the maximum Bacteroidetes phylum was present in
∆Kp138 (2.44%). At the class level, the gut microbiome showed a maximum comparative
abundance of Bacilli, Gammaproteobacteria, and Clostridia in ∆KpC4 (62.52%, 11.00%, and
23.20%, respectively). Similarly, Bacilli, Gammaproteobacteria, and Clostridia were present
in ∆KpE4- (42.28%, 28.67%, and 23.95%) and ∆Kp138 (74.25%, 2.39%, and 13.69%)-treated
mice. It was also observed that the maximum Alphaproteobacteria class was present in
∆Kp138 (5.19%). At the order level, the relative abundance of Lactobacillales and Enterobac-
teriales was observed in ∆KpC4 (62.06% and 10.15%, respectively), ∆KpE4 (35.26% and
27.63%, respectively), and ∆Kp138 (73.17% and 1.88%, respectively). Clostridiales abun-
dance was the maximum in ∆KpE4 (23.95%), whereas Turicibacterales abundance was 6.72%
exclusively in ∆KpE4. Similarly, Rickettsiales was only present in ∆Kp138 (4.75%). At the
family level, the application of ∆Kp138 resulted in the lowest taxa of Enterobacteriaceae
(1.88%). Additionally, Turicibacteraceae was mainly found in ∆KpE4, comprising 6.72% of
the total observed taxa. At the genus level, a maximum abundance of Klebsiella (1.26%) was
found in ∆Kp138. However, the species level showed a maximum relative abundance of
Clostridium perfringens in ∆KpC4 (21.46%), as shown in Figure 3A–F. The Spearman’s rank
correlation between Lactobacillus and Klebsiella was positive, suggesting a strong association
between these genera. Nodes represent the ASV/OTU in the sample, and the node size is
proportional to its abundance (in Log2 (CPM/n)), while the module with the most nodes
in the top 10 nodes is identified by different colors (Figure 4A). The 20 most predominant
with the highest correlations bacterial networks are shown in (Figure 4B). The first column
is the name of the taxon, and the second to the last column is the relative abundance of
the corresponding taxa in each sample of the grouping scheme. The samples are grouped
according to the Euclidean distance between their species compositions.

2.5. Microbial Communities’ Comparisons in Healthy, Wild and Mutant Mice

The WT-treated mice guts exhibited a greater microbial abundance of Klebsiella than
those of the mutant and healthy mice guts. Very few variations among the bacterial
communities of all treated mice were observed. The top abundant genera were Lactobacillus,
Klebsiella, and other bacteria (Figure 3). The gut microbiome of albino mice affected by K.
pneumoniae displayed notable changes in microbial community composition at the phyla
level. Firmicutes and Proteobacteria were most abundant, particularly in WT KpC4 (95.46%
and 4.13%) compared to ∆KpC4 (85.91% and 13.02%). Bacteroidetes predominated in ∆Kp138
(2.44%), while in WT KpE4, Bacteroidetes and Actinobacteria were present at 2.20% and 2.17%,
respectively. At the class level, Bacilli, Gammaproteobacteria, and Clostridia were prominent.
WT KpC4 exhibited the highest levels (91.98%, 3.61%, and 3.48%) compared to mutants.
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Alphaproteobacteria was notably elevated in ∆Kp138 (5.19%), while Actinobacteria and
Betaproteobacteria were prominent in WT KpE4 at 2.13% and 2.69%, respectively. Analysis at
the order level revealed a high abundance of Lactobacillales and Enterobacteriales, particularly
in WT KpC4 (91.90% and 3.34%). WT KpE4 displayed dominance of Clostridiales, especially
in mutants (23.95%), while Turicibacterales were exclusive to ∆KpE4 (6.72%), and Rick-
ettsiales only present in ∆Kp138 (4.75%). Family-level analysis highlighted Lactobacillaceae
predominance in WTC4 (91.47%) and minimal presence in WT KpE4 (22.11%).

Enterobacteriaceae were notably abundant in WT Kp138 (65.55%) compared to mutant
treatments. Streptococcaceae were found in control and WT KpE4 (26.23% and 29.84%,
respectively), while Turicibacteraceae were exclusive to ∆KpE4 (6.72%). At the genus level,
Lactobacillus was highly abundant in WT KpC4 (91.45%) and the least in WT KpE4 (22.11%).
Klebsiella was predominant in WT Kp138 (55.25%) compared to mutants. Streptococcus was
only present in the control group. Further analysis at the species level revealed Lactobacillus
reuteri dominance in WT KpC4 (22.89%), and Lactococcus garvieae was exclusively present
in WT KpE4 (28.53%) (Figure 3A–F).

A community composition study was conducted across the samples to identify more
species groups and their comparisons using heat maps, with the 20 most abundant genera
chosen (Figure 4B). The categorization hierarchy tree depicts the hierarchical connections
between all taxa in the sample population, ranging from phylum to genus. The node size
is proportional to the average relative abundance of the taxa. The top 20 taxa by relative
abundance are also designated by letters in the picture, with the shadow color matching
the color of the relevant node. Samples were first grouped based on their components’
similarity and then sorted horizontally and vertically by the clustering findings. Similarly,
the classification unit was grouped according to the degree of similarity spread across
different samples and placed vertically based on the cluster findings.
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We used principal coordinate analysis (PCoA) based on the Bray–Curtis distance and
weighted UniFrac distance to analyze the community similarity among samples. The PCoA
scatter plot highlights the two characteristics of sample coordinates that accounted for
the most significant differences, with contribution impacts of 67.4 and 11%, respectively,
depending on the Bray–Curtis distance. This indicated that the gut bacterial community is
different in WT compared to mutant and healthy mice (Figure 5B).
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A Venn diagram was utilized to identify common and distinct OTUs across diverse
variables, such as sample type. This graphic illustration depicted the overlap of operational
taxonomic units (ASVs) between the WT and rpoS mutant bacteria in mice (Figure 5A). In
the figure, each color block represents a group, the overlapping area between the color
blocks indicates the ASV/OTU shared by the corresponding groups, and the number of
each block indicates the number of ASV/OTU contained in the block. Specifically, 21 shared
ASVs were observed, comprising the bacteria in the mice’s gut. According to the Venn
diagram, out of 2239 OTUs, total mice samples showed SCK (101), S1 (144), S2 (341),
S3 (106), S4 (224), S5 (701), and S6 (622) OTU levels.

2.6. Functional Predictions of Bacterial Taxa in Healthy, Wild, and Mutant-Treated Mice

Clustering was used to distinguish between high- and low-abundance taxa, with color
gradients representing the similarity in community composition throughout the samples.
The results from hierarchical clustering showed that Lactobacillus and Protobacteria were
the most abundant taxa at the genus level in the mice gut (Figure 6A). Compared to the
respective mutants, wild strains (WT Kp138 and WT KpC4) exhibited a higher abundance
of these bacteria when compared to the control group. Mutant ∆KpE4 also exhibited a sig-
nificant presence of Protobacteria, whereas Clostridium was predominant in mutant ∆KpC4.
Hence, Clostridium has emerged as the second most abundant bacteria after Klebsiella.

To examine the significant and notable differences in biomarkers among microbial
communities and to distinguish genera across groups, linear discriminant analysis effect
size (LEfSe) was used as a standard (LDA) value > 2 (Figure 6B). The control or healthy
group exhibited the most remarkable bacterial taxonomic diversity (LDA > 2), featuring
three genera primarily from Lactobacillus and Firmicutes (Bacilli). The WT KpC4 group
had the second-highest diversity, featuring two genera primarily from Lactobacillaceae and
Lactobacillus. The WT KpE4 group showed the lowest diversity (LDA > 2), with only one
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genus (Lactococcus). LEfSe was also utilized to elucidate significant biomarker differences
across the samples.
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Figure 6. ASV/OTU Venn diagram and LEfSe analysis. (A) Venn diagram of bacterial community
ASVs in the gut of mice infected with Klebsiella. CK: control. S1: WT Kp138. S2: ∆Kp138. S3: WT
KpC4. S4: ∆KpC4. S5: WT KpE4. S6: ∆KpE4. (B) Bacterial communities were identified with a linear
discriminant examination (LDA) score exceeding 2 across all gut samples. The taxonomic branching
plots depict hierarchical relationships of the main taxa within a sample community, arranged from
phylum to genus level (from inner to outer circle). Sizes of nodes reflect the average relative microbial
abundance of each taxon. Hollow nodes indicate taxa without significant differences between groups,
while colored nodes (e.g., green and red) denote taxa showing significant differences between groups.
Letters identify taxa with significant differences from each other.

To shed light on microorganisms roles in the gut of experimental mice groups and to
distinguish genera across groups, PPICRUSt2 (system genetic investigation of communities
by reconstruction of unobserved states) was utilized for predicting the metabolic activity
of the microbial community on the KEGG. (https://www.kegg.jp/) and MetaCyc (https:
//metac.yc.org/) databases. Differential metabolic pathways across the groups were
screened based on logFC and adj p values, and the species makeup of metabolic pathways
was examined (Figure 7A). Most bacterial taxa were functionally linked to precursor
metabolite, degradation/utilization/assimilation, biosynthesis, energy production, and the
establishment of metabolic clusters.

Within the biosynthesis category, nucleoside and nucleotide synthesis were most abun-
dant (35,815.31%). Other biosynthetic categories include amino acid (26,836.14%); lipid
and fatty acid (19,413%); carbohydrate (9201.28%); cell structure (10,743.36%); secondary
metabolite (4990.92%); aromatic compound (2260.35%); other compound (621.22%); and the
biosynthesis of amine and polyamine (1043.42%), aminoacyl-tRNA charging (995.83%), and
metabolic regulator biosynthesis (426.17%). Within the degradation/utilization/assimilation
category, the most abundant process was found in the degradation of carbohydrates
(8605.62%). This was followed by carboxylate degradation (7705.94%), nucleoside and nu-
cleotide (6077.32%), aromatic compounds (5411.78%), secondary metabolite (5334.73%), and
amino acid (2436.08%) degradation; C1 compound assimilation and utilization (2116.49%);
inorganic nutrient metabolism (1985.95%); amine and polyamine (1360.67%), polymeric
compound (1587.09%), alcohol degradation (1199.8%), and fatty acid and lipid degradation
(827.98%) (Figure 7B).

https://www.kegg.jp/
https://metac.yc.org/
https://metac.yc.org/
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second column is the second-level pathway/classification, and the third column is the functional
pathway/classification.

3. Discussion

Culturing and traditional isolation techniques have yielded limited insights into
Klebsiella infection in the mice gut. In this study, we described the microbial community in
healthy, wild, and mutant Kp-treated mice. We used Illumina sequencing to describe the
changes in microbial communities during infection under different bacterial strains and
host immune response against disease. Firmicutes were the top abundant bacterial phylum
in the gut of healthy, wild, and Mutant-treated mice except for clinical wild strain Kp138.

The results align with the earlier research on the microbiota in the liver [18]. The rpoS
mutation in the present study significantly impacted the bacterial diversity index in mice.
According to Chao1, Simpson, observed-species, and Shannon values, the virulence of dis-
tinct Klebsiella strains was accompanied by variations in the microbial community richness.
The gut microbiota is crucial for preserving human health, and new research indicates a link
between intestinal microbial dysbiosis and long-term illnesses, including chronic hepatitis
and diabetes [19–21]. Furthermore, the gut microbiota is thought to be an extended host
defense mechanism that strengthens the body defenses against pathogen invasion and
disease. The mechanism controlling the dynamic interactions between pathogenic bacteria
and microbiota is yet fragmented. Nevertheless, in the current investigation, we explained
how healthy mice’s natural microbiota was affected by the opportunistic pathogen K. pneu-
moniae and its variants. Our results suggest that the K. pneumoniae WT Kp138, WT KpE4,
and WT KpC4 isolates can significantly alter the microbiota composition in healthy mice,
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leading to gut abnormalities. Through comparative analysis of the microbiota compositions
between healthy and infected mice, we also found evidence that the alterations in particular
bacterial species in the gut correlate with infection.

We discovered that inoculation with K. pneumoniae by oral gavage (Kp138, KpE4,
KpC4, and their respective mutants) altered the composition of gut microbiota in both mice
groups that were infected with wild-type and mutant, respectively, compared to the healthy
mouse group. Still, a direct comparison of the gut microbiota of WT and Mutant-treated
mice revealed particular changes linked to the gut infection. Most notably, the gut infection
was linked to a significant reduction in the Lactobacillus spp., an abundance that is a crucial
part of the gut microbiota and a member of the Lactobacillales within the Bacilli class of
Firmicutes [22]. Numerous investigations have further shown the vital role of Lactobacillus
in host health. Some strains, such as Lactobacillus rhamnosus, have been isolated and used as
probiotics [23,24]. We speculate that the significant decline in Lactobacillus abundance may
be closely associated with a gut infection caused by Klebsiella due to the critical function
that Lactobacillus plays. It has been shown that enteropathogenic bacteria, such as Salmonella
typhimurium and enterotoxigenic Escherichia coli, are less virulent when pro-biotic Lactobacilli
are present [25–27]. In our study, wild-type K. pneumoniae-treated mice exhibited higher
disease infection and were accompanied by a decreased abundance of Lactobacillus.

Conversely, mice treated with the mutant K. pneumoniae did not develop severe Kleb-
siella infection or show a reduction in Lactobacillus. Healthy mice gut possessed a higher
abundance of Lactobacillus and a small fraction of Protobacteria, which proved that Klebsiella
is present harmlessly in the mice gut and plants as an endophyte https://medicalxpress.
com/news/2024-03-klebsiella-pneumoniae-opportunistic-pathogen-harmless.html [28].
When K. pneumoniae isolates produce a gut infection, Lactobacillus may also be a decisive
factor in disease outcome. However, aside from Lactobacillus, K. pneumoniae isolates-induced
changes in microbiota composition may play a role in the pathogenicity of Kp infection.

The study offers novel insights into the microbial community structure, providing
a detailed exploration of bacterial diversity and abundance in the gut during Klebsiella
infection. It lays a theoretical foundation for developing innovative disease management
strategies. Using Illumina-based sequencing, our research signifies the initial characteriza-
tion of bacterial diversity, abundance, and functional predictions in the gut microbiota of
healthy, wild-type and mutant Kp-treated mice. Significant variations in alpha diversity
indices were recorded across all mouse groups under investigation. Further experiments
are warranted to elucidate the specific functions of different bacteria in the gut microbiome.
In summary, our research shows that a K. pneumoniae gut infection causes alterations in the
gut microbiota in healthy mice and, most notably, a decrease in Lactobacillus. This suggests
that alteration in microbiota compositions is an essential pathogenic mechanism underlying
gut infection.

4. Materials and Methods
4.1. Ethical Statement

The Animal Care and Use Committee of Yunnan Agricultural University (GB14925–2010),
Kunming, China, approved all of the animal experiments.

4.2. Mice Collection

Kunming mice (Mus musculus albus), aged 6 to 8 weeks and weighing 20 ± 2 g, were
acquired from Kunming Medical University, Kunming, China. The management of the mice
was conducted in strict adherence to the guidelines outlined in the “Experimental Animal
Environment and Facilities” (National Standard GB 14925-2010) and Yunnan Provincial
Regulations on the Administration of Laboratory Animals (No. 59). The experiment
was carried out after a 3–4 days acclimation period following the mice purchase. The
mice were provided with food and water and were placed individually in aerated cages
upon their transfer to the Biosafety Level 2 laboratory, where the infectious experiments
were conducted.

https://medicalxpress.com/news/2024-03-klebsiella-pneumoniae-opportunistic-pathogen-harmless.html
https://medicalxpress.com/news/2024-03-klebsiella-pneumoniae-opportunistic-pathogen-harmless.html
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4.3. Experimental Setup

This study was conducted at the State Key Laboratory for Conservation and Utilization
of Bioresources in Yunnan, Kunming, China. Three wild-type (WT) strains of K. pneumoniae
(Kp138 from humans, KpC4 from maize, and KpE4 from ditch water environment) were
isolated and stored at −80 ◦C in the “State Key Laboratory for Conservation & Utilization
of Bioresources in Yunnan Agricultural University, Kunming, China.

Mutants of all three strains were constructed using the allelic-exchange method, where
homologous recombination integrated the suicide plasmid psr47S containing a 1.5-kbp frag-
ment of the rpoS gene into the chromosomal rpoS gene of K. pneumoniae through conjugation.
This results in a single-crossover mutant with antibiotic resistance. A counter-selection
process using sucrose eliminates the vector’s selective markers, forming unmarked double-
crossover mutants. This two-step process produces seamless mutations with precision to a
single DNA base pair [29]. Before the experiment, 100 µL samples from every six bacterial
strains were taken from the preserved sample at −80 ◦C and cultivated in LB broth at
37 ◦C with 180 rpm for 24 h. A spectrophotometer was used to monitor the cell growth,
and suspension of six bacteria strains was adjusted to a concentration of 1 × 108 CFU/mL,
which was then cultured in 5 mL of Luria Bertani (LB) medium. A total of 21 mice were
used in this experiment, and seven treatments, including a control, were applied. Three
mice were used for each treatment (n = 3). Mice were dissected on day 13 post-infection [30].

4.4. Gut-Colonization Model

In the first step of the experiment, the mice were administered a 100 µL dose of (K.
pneumoniae) wild-type and mutant inoculum via oral gavage slowly to avoid choking. To
detect the signs of distress, animals were routinely checked for their weight and other
visible signs. The mice infected with the pathogen exhibited different moderate to severe
symptoms of distress, such as hunched body posture, separation from the group, inactivity,
fur piloerection, asthma, and weight loss, which were recorded during the experiment. The
mice guts were carefully incised and examined visually to assess any damage.

4.5. Microbiome Analysis in the Presence of Wild-Type and Mutant Strain

The incised gut was carefully collected, washed with ddH2O twice, kept in sterile
zipper bags, and stored at −80 ◦C. The OMEGA Soil DNA Kit (M5635-02) from Omega
Bio-Tek (Norcross, GA, USA) was used to extract genomic DNA from all samples according
to the manufacturer’s instructions. The extracted DNA samples were kept at −20 ◦C until
further procedure. The concentration and purity of the extracted DNA were determined
using a NanoDrop NC2000 spectrophotometer from Thermo Fisher Scientific (Waltham,
MA, USA), and the DNA’s quality was evaluated using agarose gel electrophoresis. The
libraries were produced in batches, measured, and sequenced on an Illumina Platform
using a 500 bp read length (2 × 250 bp). Amplicon identification and quantification
evaluations were analyzed using R packages (v3.2.0). Initially, sequence quality was
assessed using FASTQC software (v.0.11.9) (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/ accessed on 19 July 2023). Subsequently, DADA2 [31] was employed
to generate amplicon sequence variants (ASVs). Briefly, sequences underwent visual
inspection before applying filtering and trimming functions, followed by error modeling
for denoising and merging the reads using default parameters.

4.6. 16S rRNA Gene Amplicon Sequencing

The V3-V4 region of the bacterial 16S rRNA genes was amplified by PCR using the
forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and reverse primer 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). The primers were modified with sample-specific 7 bp
barcodes to facilitate multiplex sequencing. The PCR mixture consisted of 5 µL of buffer,
2 µL of dNTPs (2.5 mM), 0.25 µL of Fast pfu DNA Polymerase (5 U/µL), 1 µL each of
forward and reverse primers (10 µM), 14.75 µL of ddH2O, and 1 µL of DNA template. The
thermal cycling technique was performed with a 5 min denaturation at 98 ◦C, followed

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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by 25 cycles of denaturation for 30 s, annealing at 53 ◦C for 30 s, and extension at 72 ◦C
for 45 s. The amplification was determined by a final extension step of 5 min at 72 ◦C.
The PCR amplicons were purified using Vazyme VAHTSTM DNA Clean Beads (Vazyme,
Nanjing, China) and quantified with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). Following individual measurements, the amplicons were pooled in
equimolar amounts. Pair-end sequencing with a read length of 2 × 250 bp was performed
using the Illumina NovaSeq technology and the NovaSeq 6000 SP Reagent Kit (500 cycles)
at Shanghai Personal Biotechnology Co., Ltd, Shanghai, China.

4.7. Sequence Analysis

Microbiome bioinformatics analyses were carried out using QIIME2 2022.11 [32],
with minor alterations based on the official tutorials at https://docs.qiime2.org/2022.11/
tutorials/. In brief, the raw sequence data underwent demultiplexing using the Demux
plugin, followed by primer trimming using the Cutadapt plugin [33]. Sequences were
then quality filtered, combined, denoised, and chimeras eliminated using the DADA2
plugin [31]. Amplicon sequence variations (ASVs) that were nonsingletons were aligned
using MAFFT [34] and used to create a phylogenetic tree using FastTree2 [35].

4.8. Taxonomic Composition Analysis

The classify-sklearn naive Bayes taxonomy classifier within the feature-classifier plu-
gin [36] was used to classify ASVs, employing the database provided by [37]. We analyzed
the 10–20 most abundant taxa from each group using comprehensive data.

4.9. Alpha and Beta Diversity Index Analysis

Alpha-diversity metrics Chao1 [38], Shannon [39,40], Observed species, Faith’s PD [41],
Simpson [42], Good’s coverage [43] and Pielou’s evenness [44], and beta diversity met-
rics (weighted UniFrac [45], Jaccard distance, Bray–Curtis dissimilarity, and unweighted
UniFrac[46]), were calculated using the diversity plugin. Samples were rarefied to an equal
number of sequences per sample.

QIIME2 and the R package (v3.2.0) were mainly used to analyze sequence information.
QIIME2 generated ASV-level alpha diversity metrics such as the Chao1 richness estimator,
Shannon diversity index, observed species, Faith’s PD, Pielou’s evenness, Simpson index,
and Good’s coverage. These metrics were represented using box plots. In addition, sorted
abundance curves at the ASV level were used to cR pRompare the evenness and richness
of the samples. Beta diversity analysis investigated fundamental differences in bacterial
communities within samples using Jaccard distance metrics [47], UniFrac distance met-
rics [45,46], and Bray–Curtis dissimilarity metrics [48]. These metrics were shown using
principal coordinate analysis (PCoA) and hierarchical clustering with the unweighted pair-
group approach with arithmetic means (UPGMA) [49]. In addition, principal component
analysis (PCA) was performed using genus-level compositional profiles.

4.10. Analysis of Differentiation among Groupings at Each Taxonomic Level

PERMANOVA (permutational multivariate analysis of variance) [50], Permdisp [51],
and ANOSIM (analysis of similarities) [52,53] were used with QIIME2 to determine the
importance of variations in microbial community framework between groups. A Venn
diagram was created utilizing the R package “VennDiagram” to depict shared and unique
ASVs among samples or groups based on ASV occurrence, regardless of relative abun-
dance [54]. In addition, LEfSe (linear discriminant analysis effect size) was used with
default parameters to find differentially abundant taxa across groups [55].

4.11. Construction of Association Network and Prediction of Microbial Metabolic Functions

A co-occurrence association network analysis was conducted using SparCC analysis,
with a pseudo-count value set to 106. Utilizing random matrix theory-based approaches
implemented in the R package RMThreshold, a correlation coefficient threshold of 70 was

https://docs.qiime2.org/2022.11/tutorials/
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established. Employing the correlation coefficients, we built a co-occurrence network with
nodes representing ASVs and edges representing correlations between these ASVs. The
network was displayed using the R tools graph. Microbial function predictions were per-
formed using PICRUSt2 (Phylogenetic Investigation of Communities by Re-construction
of Unobserved States) [56], which used data from the MetaCyc (https://metacyc.org/)
and KEGG (https://www.kegg.jp/) databases. Based on the projected results, different
metabolic pathways across groups were discovered using adjusted p values, species compo-
sition analysis of metabolic pathways, and log fold changes (logFC) to predict the principal
coordinate analysis (PCoA) at the operational level of the operational unit.

Author Contributions: Conceptualization, M.Z.I.; data curation, Y.H.; formal analysis, P.H. (Pengfei
He), P.H. (Pengbo He), and S.M.; investigation, P.H. (Pengfei He) and Y.W.; methodology, P.H. (Pengfei
He) and P.H. (Pengbo He); project administration, Y.W. and Y.H.; resources, M.Z.I., P.H. (Pengbo He)
and Y.H.; software, M.Z.I., P.H. (Pengfei He), P.H. (Pengbo He), Y.W. and S.M.; supervision, Y.H.;
validation, M.Z.I.; visualization, Y.W.; writing—original draft, M.Z.I. and S.M.; writing—review and
editing, S.M. and Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financially supported by the National Key R&D Program of China
(2023YFD1401500) and the Maize Production System of Yunnan, China (2024KJTX002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw sequence data obtained in this study were deposited in the
Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) under
accession number PRJNA1114401. All authors approved the disclosure of data because this study did
not involve human subjects.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Ward, N.L.; Pieretti, A.; Dowd, S.E.; Cox, S.B.; Goldstein, A.M. Intestinal aganglionosis is associated with early and sustained

disruption of the colonic microbiome. Neurogastroenterol. Motil. 2012, 24, 874-e400. [CrossRef]
2. Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella

and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013, 8, e68322. [CrossRef] [PubMed]
3. Pascoe, E.L.; Hauffe, H.C.; Marchesi, J.R.; E Perkins, S. Network analysis of gut microbiota literature: An overview of the research

landscape in non-human animal studies. ISME J. 2017, 11, 2644–2651. [CrossRef]
4. Liu, Y.; Huang, L.; Cai, J.; Zhu, H.; Li, J.; Yu, Y.; Xu, Y.; Shi, G.; Feng, Y. Clinical characteristics of respiratory tract infection

caused by Klebsiella pneumoniae in immunocompromised patients: A retrospective cohort study. Front. Cell. Infect. Microbiol. 2023,
13, 1137664. [CrossRef] [PubMed]

5. Guo, Y.; Wang, S.; Zhan, L.; Jin, Y.; Duan, J.; Hao, Z.; Lv, J.; Qi, X.; Chen, L.; Kreiswirth, B.N.; et al. Microbiological and clinical
characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China. Front. Cell. Infect.
Microbiol. 2017, 7, 24. [CrossRef] [PubMed]

6. Lee, C.-R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Antimicrobial resistance of hypervirulent
Klebsiella pneumoniae: Epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front. Cell. Infect.
Microbiol. 2017, 7, 483. [CrossRef]

7. Alexander, A.D.; Orcutt, R.P.; Henry, J.C.; Baker, J.; Bissahoyo, A.C.; Threadgill, D.W. Quantitative PCR assays for mouse enteric
flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm. Genome 2006, 17,
1093–1104. [CrossRef]

8. Bendtsen, K.M.B.; Krych, L.; Sørensen, D.B.; Pang, W.; Nielsen, D.S.; Josefsen, K.; Hansen, L.H.; Sørensen, S.J.; Hansen, A.K. Gut
microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE 2012, 7, e46231.
[CrossRef]

9. Dong, T.; Joyce, C.; Schellhorn, H.E. The role of RpoS in bacterial adaptation. In Bacterial Physiology: A Molecular Approach;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 313–337.

10. Hengge-Aronis, R.J.M. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA
polymerase. Microbiol. Mol. Biol. Rev. 2002, 66, 373–395. [CrossRef]

11. Fang, F.C.; Libby, S.J.; A Buchmeier, N.; Loewen, P.C.; Switala, J.; Harwood, J.; Guiney, D.G. The alternative sigma factor katF
(rpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 1992, 89, 11978–11982. [CrossRef]

https://metacyc.org/
https://www.kegg.jp/
https://doi.org/10.1111/j.1365-2982.2012.01937.x
https://doi.org/10.1371/journal.pone.0068322
https://www.ncbi.nlm.nih.gov/pubmed/23844187
https://doi.org/10.1038/ismej.2017.133
https://doi.org/10.3389/fcimb.2023.1137664
https://www.ncbi.nlm.nih.gov/pubmed/37662019
https://doi.org/10.3389/fcimb.2017.00024
https://www.ncbi.nlm.nih.gov/pubmed/28203549
https://doi.org/10.3389/fcimb.2017.00483
https://doi.org/10.1007/s00335-006-0063-1
https://doi.org/10.1371/journal.pone.0046231
https://doi.org/10.1128/MMBR.66.3.373-395.2002
https://doi.org/10.1073/pnas.89.24.11978


Int. J. Mol. Sci. 2024, 25, 9222 14 of 15

12. Yildiz, F.H.; Schoolnik, G.K. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 1998, 180, 773–784.
[CrossRef] [PubMed]

13. Suh, S.-J.; Silo-Suh, L.; Woods, D.E.; Hassett, D.J.; West, S.E.H.; Ohman, D.E. Effect of rpoS mutation on the stress response and
expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 1999, 181, 3890–3897. [CrossRef]

14. Wang, Y.; Kim, K.S. Effect of rpoS mutations on stress-resistance and invasion of brain microvascular endothelial cells in Escherichia
coli K1. FEMS Microbiol. Lett. 2000, 182, 241–247. [CrossRef] [PubMed]

15. Battesti, A.; Majdalani, N.; Gottesman, S. The rpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 2011,
65, 189–213. [CrossRef]

16. Dong, T.; Schellhorn, H.E. Role of RpoS in virulence of pathogens. Infect. Immun. 2010, 78, 887–897. [CrossRef]
17. Price, S.B.; Cheng, C.-M.; Kaspar, C.W.; Wright, J.C.; DeGraves, F.J.; Penfound, T.A.; Castanie-Cornet, M.-P.; Foster, J.W. Role of

rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Appl. Environ. Microbiol. 2000, 66, 632–637. [CrossRef]
18. Hmelo, L.R.; Borlee, B.R.; Almblad, H.; E Love, M.; E Randall, T.; Tseng, B.S.; Lin, C.; Irie, Y.; Storek, K.M.; Yang, J.J.; et al.

Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 2015, 10, 1820–1841.
[CrossRef]

19. Dong, T.; Coombes, B.K.; Schellhorn, H.E. Role of RpoS in the virulence of Citrobacter rodentium. Infect. Immun. 2009, 77, 501–507.
[CrossRef] [PubMed]

20. Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

21. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 2018, 6, e27295v2.
[CrossRef]

22. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [CrossRef]
23. Katoh, K.; Misawa, K.; Kuma, K.i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast

Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [CrossRef]
24. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix.

Mol. Biol. Evol. 2009, 26, 1641–1650. [CrossRef] [PubMed]
25. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing

taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90.
[CrossRef] [PubMed]

26. Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.;
Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277.
[CrossRef]

27. Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270.
28. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
29. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [CrossRef]
30. Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [CrossRef]
31. Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [CrossRef]
32. Good, I.J. The population frequencies of species and the estimation of population parameters. Biometrika 1953, 40, 237–264.

[CrossRef]
33. Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [CrossRef]
34. Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative β diversity measures lead to different insights

into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [CrossRef] [PubMed]
35. Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.

2005, 71, 8228–8235. [CrossRef] [PubMed]
36. Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–270.
37. Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349.

[CrossRef]
38. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [CrossRef]
39. McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy

analysis. Ecology 2001, 82, 290–297. [CrossRef]
40. Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693.

[CrossRef]
41. Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [CrossRef]
42. Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol.

Evol. 2012, 3, 89–101. [CrossRef]
43. Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC

Microbiol. 2009, 9, 259. [CrossRef] [PubMed]
44. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery

and explanation. Genome Biol. 2011, 12, R60. [CrossRef]

https://doi.org/10.1128/JB.180.4.773-784.1998
https://www.ncbi.nlm.nih.gov/pubmed/9473029
https://doi.org/10.1128/JB.181.13.3890-3897.1999
https://doi.org/10.1111/j.1574-6968.2000.tb08902.x
https://www.ncbi.nlm.nih.gov/pubmed/10620673
https://doi.org/10.1146/annurev-micro-090110-102946
https://doi.org/10.1128/IAI.00882-09
https://doi.org/10.1128/AEM.66.2.632-637.2000
https://doi.org/10.1038/nprot.2015.115
https://doi.org/10.1128/IAI.00850-08
https://www.ncbi.nlm.nih.gov/pubmed/18981255
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/molbev/msp077
https://www.ncbi.nlm.nih.gov/pubmed/19377059
https://doi.org/10.1186/s40168-018-0470-z
https://www.ncbi.nlm.nih.gov/pubmed/29773078
https://doi.org/10.1111/mec.12481
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/584091.584093
https://doi.org/10.1016/0006-3207(92)91201-3
https://doi.org/10.1038/163688a0
https://doi.org/10.1093/biomet/40.3-4.237
https://doi.org/10.1016/0022-5193(66)90013-0
https://doi.org/10.1128/AEM.01996-06
https://www.ncbi.nlm.nih.gov/pubmed/17220268
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://www.ncbi.nlm.nih.gov/pubmed/16332807
https://doi.org/10.2307/1942268
https://doi.org/10.1111/j.1574-6941.2007.00375.x
https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
https://doi.org/10.1111/j.1461-0248.2006.00926.x
https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
https://doi.org/10.1111/j.2041-210X.2011.00127.x
https://doi.org/10.1186/1471-2180-9-259
https://www.ncbi.nlm.nih.gov/pubmed/20003481
https://doi.org/10.1186/gb-2011-12-6-r60


Int. J. Mol. Sci. 2024, 25, 9222 15 of 15

45. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.J.B. PICRUSt2:
An improved and extensible approach for metagenome inference. bioRxiv 2019. [CrossRef]

46. Chen, N.; Ling, Z.-X.; Jin, T.-T.; Li, M.; Zhao, S.; Zheng, L.-S.; Xi, X.; Wang, L.-L.; Chen, Y.-Y.; Shen, Y.-L.; et al. Altered profiles of
gut microbiota in Klebsiella pneumoniae-induced pyogenic liver abscess. Curr. Microbiol. 2018, 75, 952–959. [CrossRef]

47. Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016, 375, 2369–2379. [CrossRef]
48. Roderburg, C.; Luedde, T. The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular

carcinoma. Gut Microbes 2014, 5, 441–445. [CrossRef]
49. Sabatino, A.; Regolisti, G.; Cosola, C.; Gesualdo, L.; Fiaccadori, E. Intestinal microbiota in type 2 diabetes and chronic kidney

disease. Curr. Diabetes Rep. 2017, 17, 16. [CrossRef] [PubMed]
50. Claesson, M.J.; van Sinderen, D.; O’Toole, P.W. Lactobacillus phylogenomics–towards a reclassification of the genus. Int. J. Syst.

Evol. Microbiol. 2008, 58, 2945–2954. [CrossRef]
51. Salminen, M.K.; Tynkkynen, S.; Rautelin, H.; Saxelin, M.; Vaara, M.; Ruutu, P.; Sarna, S.; Valtonen, V.; Järvinen, A. Lactobacillus

bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin. Infect. Dis. 2002, 35, 1155–1160.
[CrossRef]

52. Sullivan, Å.; Erik Nord, C. Probiotic lactobacilli and bacteraemia in Stockholm. Scand. J. Infect. Dis. 2006, 38, 327–331. [CrossRef]
[PubMed]

53. Bernet-Camard, M.F.; Liévin, V.; Brassart, D.; Neeser, J.R.; Servin, A.L.; Hudault, S. The human Lactobacillus acidophilus strain
LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl. Environ. Microbiol. 1997, 63, 2747–2753.
[CrossRef] [PubMed]

54. Gopal, P.K.; Prasad, J.; Smart, J.; Gill, H.S. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis
DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 2001, 67, 207–216.
[CrossRef]

55. Hudault, S.; Liévin, V.; Bernet-Camard, M.F.; Servin, A.L. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei
(strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol. 1997, 63, 513–518. [CrossRef] [PubMed]

56. Reyna-Flores, F.; Barrios-Camacho, H.; Dantán-González, E.; Ramírez-Trujillo, J.A.; Lozano Aguirre Beltrán, L.F.; Rodríguez-
Medina, N.; Garza-Ramos, U.; Suárez-Rodríguez, R. Draft genome sequences of endophytic isolates of Klebsiella variicola and
Klebsiella pneumoniae obtained from the same sugarcane plant. Genome Announc. 2018, 6, e00147-18. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1101/672295
https://doi.org/10.1007/s00284-018-1471-7
https://doi.org/10.1056/NEJMra1600266
https://doi.org/10.4161/gmic.29599
https://doi.org/10.1007/s11892-017-0841-z
https://www.ncbi.nlm.nih.gov/pubmed/28271466
https://doi.org/10.1099/ijs.0.65848-0
https://doi.org/10.1086/342912
https://doi.org/10.1080/00365540500449826
https://www.ncbi.nlm.nih.gov/pubmed/16709533
https://doi.org/10.1128/aem.63.7.2747-2753.1997
https://www.ncbi.nlm.nih.gov/pubmed/9212421
https://doi.org/10.1016/S0168-1605(01)00440-8
https://doi.org/10.1128/aem.63.2.513-518.1997
https://www.ncbi.nlm.nih.gov/pubmed/9023930
https://doi.org/10.1128/genomeA.00147-18

	Introduction 
	Results 
	Most Dominant Taxa in Mice in the Presence of Wild-Type and Mutant of K. pneumoniae 
	Dominant Microbiota in the Healthy Mice 
	Presence of Dominant Microbiota in WT Kp-Treated Mice 
	Role of Microbiota in the Mutant Treated Mice 
	Microbial Communities’ Comparisons in Healthy, Wild and Mutant Mice 
	Functional Predictions of Bacterial Taxa in Healthy, Wild, and Mutant-Treated Mice 

	Discussion 
	Materials and Methods 
	Ethical Statement 
	Mice Collection 
	Experimental Setup 
	Gut-Colonization Model 
	Microbiome Analysis in the Presence of Wild-Type and Mutant Strain 
	16S rRNA Gene Amplicon Sequencing 
	Sequence Analysis 
	Taxonomic Composition Analysis 
	Alpha and Beta Diversity Index Analysis 
	Analysis of Differentiation among Groupings at Each Taxonomic Level 
	Construction of Association Network and Prediction of Microbial Metabolic Functions 

	References

