The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk
Abstract
:1. Introduction
2. Long Noncoding RNAs
3. High-Density Lipoproteins, Reverse Cholesterol Transport and Cardiovascular Risk
4. LncRNAs Affecting Lipoproteins, Lipid Metabolism, and Atherosclerosis Risk
4.1. LncRNA with Beneficial Effects
4.1.1. NFIA Antisense RNA 1
- Summary:
- Name/organism: RP5-833A20.1/ NFIA antisense RNA 1/NFIA-AS1; Homo sapiens
- Databases &Code: Ensembl ENSG00000237853; HGNC: 40402; NCBI Gene: 645030
- Chromosomal location& size: 1p31.3: 61,248,945–61,253,510 reverse strand; 4 exons, is associated with 1718 variant alleles
- Interaction with other molecules: hsa-miR-382-5p
- Biological consequence of such interaction: Increases circulation of HDL-C, reduces levels of LDL-C, and VLDL-C
4.1.2. Liver-Expressed LXR-Induced Sequence
- Summary:
- Name/organism: LeXis/CT70 (cancer/testis associated transcript 70); Homo sapiens
- Databases &Code: Ensembl ENSG00000230013; HGNC:37195
- Chromosomal location& size: 9q31.1
- Interaction with other molecules: Raly
- Biological consequence of such interaction: Modulates expression of cholesterol biosynthetic genes
4.1.3. Macrophage-Expressed LXR-Induced Sequence
- Summary:
- Name/organism: MeXis/AI427809/LOC381524; Homo sapiens
- Databases &Code: Ensembl ENSMUSG00000086712.3
- Chromosomal location& size: Chromosome 4: 53,261,356–53,270,232 reverse strand.
- 4 transcripts (splice variants), 3 orthologues and is associated with 4 phenotypes
- Interaction with other molecules: Raly, DDX17
- Biological consequence of such interaction: Macrophage expressed LXRa (NR1H3)-dependent amplifier of Abca1 transcription lncRNA
4.1.4. LncRNA RP1-13D10.2
- Summary:
- Name/organism: RP1-13D10.2;
- Interaction with other molecules: LXR, SREBF2
- Biological consequence of such interaction: Regulates LDLR gene expression in a sterol-responsive and SNP genotype–dependent manner in vitro
4.1.5. LncLSTR
- Summary:
- Name/organism: LncLSTR (lncRNA liver-specific triglyceride regulator);
- Chromosomal location& size: Syntenic to human chromosome 1q25
- Interaction with other molecules: TDP-43
- Biological consequence of such interaction: Modulates bile acid composition to regulate APOC2 expression, via FXR,85 and to control serum triglyceride levels
4.1.6. Cholesterol-Induced Regulator of Metabolism RNA
- Summary:
- Name/organism: CHROME, PRKRA-AS1; Homo sapiens
- Databases &Code: Ensemble: ENSG00000223960.9; HGNC:54059
- Chromosomal location& size: 2q31.2: 178,413,635–178,440,243 forward strand; 35 transcripts (splice variants)
- Interaction with other molecules: miR-27b, miR-33a, miR-33b, and miR-128
- Biological consequence of such interaction: Promotes cholesterol secretion and HDL synthesis via suppressing the activity of specific miRNAs
4.1.7. Lipid-Droplet Transporter
- Summary:
- Name/organism: LIPTER/LINC00881; Homo sapiens
- Databases &Code: Ensemble: ENSG00000241135.8; HGNC: 48567; NCBI Gene: 100498859
- Chromosomal location& size: 3q25.31: 157,089,634–157,135,557 forward strand; 11 transcripts
- Interaction with other molecules: Phosphatidic acid, phosphatidylin-ositol 4-phosphate MYH10 motor protein
- Biological consequence of such interaction: Facilitates the connection between LDs and the cytoskeleton for intracellular transport
4.1.8. Regulator of Hyperlipidaemia Long Noncoding RNA
- Summary:
- Name/organism: lncRHPL; Mus musculus (house mouse)
- Databases &Code: NIH Gene ID: 105244982
- Chromosomal location& size: Chromosome 8
- Interaction with other molecules: hnRNPU, BMAL1
- Biological consequence of such interaction: Modulates hepatic VLDL secretion.
4.1.9. LncNONMUG027912
- Summary:
- Name/organism: LncNONMMUG027912/lnc027912
- Interaction with other molecules: AMPKα/mTOR signalling axis
- Biological consequence of such interaction: Upregulates p-AMPKα, reduces p-mTOR levels, suppresses nuclear expression of SREBP1C, and hinders the expression of lipid synthesis genes
4.1.10. Maternally Expressed 3
- Summary:
- Name/organism: MEG3/GTL2/LINC00023/NCRNA00023/ONCO-LNCRNA-83;
- Databases &Code: ENSG00000214548.18; HGNC (14575); NCBI Gene (55384); OMIM® (605636); Open Targets Plat-form (ENSG00000214548)
- Chromosomal location& size: Chromosome 14: 100,779,410–100,861,031 forward strand;
- 50 transcripts and is associated with 6 phenotypes
- Interaction with other molecules: miR-21
- Biological consequence of such interaction: Modulates hepatic lipogenesis
4.1.11. Cyclin-Dependent Kinase Inhibitor 2B Antisense RNA 1
- Summary:
- Name/organism: ANRIL/CDKN2B-AS1/RP11-145E5.4/NCRNA00089/p15AS/PCAT12; Homo sapiens
- Databases &Code: HGNC: 34341; Ensembl: ENSG00000240498; NCBI Gene: 100048912; OMIM®: 613149
- Chromosomal location& size: located within the CDKN2B-CDKN2A gene cluster at chromosome 9p21.3: 21,994,139–22,128,103 forward strand; 28 transcripts
- Interaction with other molecules: polycomb repressive complex-1 (PRC1) and -2 (PRC2),
- Biological consequence of such interaction: Epigenetic silencing of other genes in this cluster.
4.1.12. HOXC Cluster Antisense RNA 1
- Summary:
- Name/organism: HOXC-AS1/NONHSAG011268.2/HSALNG0091321; Homo sapiens
- Databases &Code: HGNC: 43749; NCBI Gene: 100874363; Ensembl: ENSG00000250451
- Chromosomal location& size: 12q13.13; Ch 12: 53,999,022–54,000,010 reverse strand; 2 transcripts
- Biological consequence of such interaction: Inhibition of intracellular lipid accumulation
4.2. LncRNA with Adverse Effects
4.2.1. AC068234.2–202 and AP001033.3–201
- Summary:
- Name/organism: AC068234.2–202; Homo sapiens
- Databases &Code: AC068234.2
- Chromosomal location& size: Ch17:47,303,474–47,323,613 reverse strand; transcript with 3 exons, associated with 4518 variant alleles
- Interaction with other molecules: TBXA2R
- Biological consequence of such interaction: Possibly contribute to the trans-regulation of the protein-coding gene thromboxane A2 receptor (TBXA2R)
- Name/organism: AP001033.3–201; Homo sapiens
- Databases &Code: AP001033.3
- Chromosomal location& size: Ch18: 9,310,522–9,334,445 reverse strand; transcript with 3 exons and 5282 reported variant alleles
- Interaction with other molecules: antisense to ITGB3
- Biological consequence of such interaction: Acts a cis-regulator of the protein-coding gene integrin subunit beta 3 (ITGB3)
4.2.2. LncRNA ENST00000602558.1
- Summary:
- Name/organism: ENST00000602558.1; Homo sapiens
- Databases &Code: Ensembl: ENST00000602558.1
- Chromosomal location& size: Chromosome 12: 123,971,457-123,971,714 reverse strand;
- Exons: 1, Coding exons: 0, Transcript length: 258 bps; sense intronic to CCDC92
- Interaction with other molecules: p65
- Biological consequence of such interaction: Downregulates ABCG1 mRNA
4.2.3. Long Intergenic Non-Protein Coding RNA 1228
- Summary:
- Name/organism: LINCRNA-DYNLRB2-2/LINC01228;
- Databases &Code: Ensembl: ENST00000567966.1
- Chromosomal location& size: Chromosome 16: 79,798,050–79,827,150 reverse strand; Size: 623 bp
- Interaction with other molecules: GPR119
- Biological consequence of such interaction: Facilitates cholesterol efflux and diminishes neutral lipid accumulation
4.2.4. Taurine Upregulated Gene 1
- Summary:
- Name/organism: TUG1/FLJ20618/LINC00080/NCRNA00080; Homo sapiens
- Databases &Code: Ensembl: ENSG00000253352.10
- Chromosomal location& size: 22q12.2: 30,969,245–30,979,395 forward strand; 20 transcripts (splice variants) and 9 orthologues
- Interaction with other molecules: miR-92a, miR-133a
- Biological consequence of such interaction: Suppression of FGF1activation
4.2.5. Myocardial Infarction-Associated Transcript
- Summary:
- Name/organism: MIAT/RNCR2/GOMAFU/C22orf35/LINC00066/NCRNA00066/lncRNA-MIAT; Homo sapiens
- Databases &Code: HGNC: 33425; NCBI Gene: 440823; Ensembl: ENSG00000225783; OMIM®: 611082
- Chromosomal location& size: 22q12.1: 26,646,411–26,676,475 forward strand; 30 transcripts (splice variants) and is associated with 1 phenotype
- Interaction with other molecules: PI3K/Akt signalling pathway
- Biological consequence of such interaction: May constitute a component of the nuclear matrix; enhances angiogenesis and increases the expression of inflammatory factors
4.2.6. LncRNA RP11-728F11
- Summary:
- Name/organism: LncRNA RP11-728F11;
- Interaction with other molecules: EWSR1 (Ewings sarcoma RNA binding protein-1)
- Biological consequence of such interaction: Induction of cholesterol uptake in monocytes-derived macrophages and proinflammatory cytokine production
4.2.7. lncRNA ENST00000416361
- Summary:
- Name/organism: ENST00000416361; Homo sapiens
- Databases &Code: Ensembl: ENST00000416361
- Chromosomal location& size: 2102 bp
- Interaction with other molecules: SREBP
- Biological consequence of such interaction: Affects the occurrence and development of CAD
4.2.8. LncRNA RAPIA
- Summary:
- Name/organism: RAPIA;
- Chromosomal location& size: 10,252 nucleotides
- Interaction with other molecules: miR-183-5p-ItgB1 (integrin β1)
- Biological consequence of such interaction: Coordination of proliferation and apoptosis of macrophages
4.2.9. Nuclear Paraspeckle Assembly Transcript 1
- Summary:
- Name/organism: NEAT1/LINC00084/MENEPSILON/BETA/NCRNA00084/TNCRNA/TP53LC15/VINC; Homo sapiens
- Databases &Code: HGNC: 30815; NCBI Gene: 283131; Ensembl: ENSG00000245532; OMIM®: 612769
- Chromosomal location& size: 11q13.1; 11: 65,422,774–65,445,540 forward strand; 9 transcripts
- Interaction with other molecules: miR-342-3p
- Biological consequence of such interaction: Regulation of lipid droplet aggregation; affect TG metabolism
4.2.10. Nipsnap Homolog 3B
- Summary:
- Name/organism: NIPSNAP3B/FP944/LOC286367/FLJ11275, SNAP1
- Databases &Code: HGNC: 23641, NCBI Gene: 55335; Ensembl: ENSG00000165028; OMIM®: 608872; UniProtKB/Swiss-Prot: Q9BS92
- Chromosomal location& size: 9q31.1; Ch9: 104,764,129–104,777,764 forward strand; 3 transcripts (splice variants), 160 orthologues and 3 paralogues
- Biological consequence of such interaction: Putative role in vesicular trafficking; promotion of intracellular lipid accumulation
4.2.11. Long Noncoding RNA Regulator of Akt Signalling Associated with HCC and RCC
- Summary:
- Name/organism: LNCARSR/ lnc-TALC
- Databases &Code: HGNC: 53864; NCBI Gene: 102723932; Ensembl: ENSG00000233086
- Chromosomal location& size: 9q21.31; Ch 9: 79,505,804–79,567,802 reverse strand; 10 transcripts (splice variants)
- Interaction with other molecules: SREBP-2
- Biological consequence of such interaction: Promotion of the expression of HMG-CoA reductase (HMGCR), enhancement of hepatic de novo cholesterol synthesis rate
4.2.12. LDLR Antisense RNA 1
- Summary:
- Name/organism: BM450697/LDLR-AS1
- Human
- Databases &Code: HGNC: 54407, NCBI Gene: 115271120
- Chromosomal location& size: 19p13.2; overlaps the 5′ UTR and coding sequence of the LDLR n the antisense orientation
- Interaction with other molecules: PolII and potentially SREBP1a
- Biological consequence of such interaction: Downregulation of the production of the low density lipoprotein receptor.
4.2.13. Long Non-Coding RNA Growth Arrest-Specific 5
- Summary:
- Name/organism: GAS5/NCRNA00030/SNHG2; Homo sapiens
- Databases &Code: HGNC: 16355; NCBI Gene: 60674; Ensembl: ENSG00000234741; OMIM®: 608280
- Chromosomal location& size: 1q25.1; Ch 1: 173,858,559–173,868,882 reverse strand; 91 transcripts (splice variants)
- Interaction with other molecules: bind to the DNA binding domain of the glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1)
- Biological consequence of such interaction: blockage of the activation of glucocorticoid receptor, regulation of the transcriptional activity of other receptors, such as androgen, progesterone and mineralocorticoid receptors
4.3. LncRNA with Ambiguous Effects
4.3.1. Apolipoprotein A1 and A4 Antisense RNAs
- Summary:
- Name/organism: ApoA1-AS; Homo sapiens
- Databases &Code: GeneCaRNA, HGNC: 40079, NCBI Gene: 104326055, Ensembl: ENSG00000235910, OMIM®: 620112
- Chromosomal location& size: 11q23.3, Size: 20,898 bases, Orientation: Plus strand
- Interaction with other molecules: SUZ12, a component of the polycomb repressive complex 2 (PRC2)
- Biological consequence of such interaction: Suppression of APOA1 expression
- Name/organism: ApoA4-AS; mouse
- Databases &Code: Ensembl and UCSC Genome Database
- Chromosomal location& size: ∼900-nt
- Interaction with other molecules: APOA4
- Biological consequence of such interaction: APOA4-AS may regulate the expression of APOA4
4.3.2. lncRNA Induced by HCV, Regulator of SREBF1
- Summary:
- Name/organism: LNCHR1; Homo sapiens
- Databases &Code: Ensemble: ENSG00000257400.1; HGNC:56254
- Chromosomal location& size: 12q22: 94,491,546–94,496,442 reverse strand; Size: 420 bp
- Interaction with other molecules: SREB-1c
- Biological consequence of such interaction: Regulation of the expression of SREBP-1-responsive genes
4.3.3. Solute Carrier Family 25 Member 15 (SLC25A15/lnc-HC)
- Summary:
- Name/organism: lnc-HC/SLC25A15/HHH/ORC1/ORNT1/D13S327
- Databases &Code: GenBank: MN026163.1
- Chromosomal location& size: 1063 bp, linear
- Interaction with other molecules: Coregulator: hnRNPA2B1
- Biological consequence of such interaction: Reduction of the stability of mRNAs encoding Cyp7a1 and Abca1 (critical enzymes that contribute to cholesterol catabolism).
4.3.4. Metastasis-Associated Lung Adenocarcinoma Transcript 1
- Summary:
- Name/organism: MALAT1; HCN, LINC00047, MASCRNA, NCRNA00047, NEAT2, PRO1073; Homo sapiens
- Databases &Code: Ensembl: ENSG00000251562.11; HGNC:29665
- Chromosomal location& size: 11q13.1: 65,497,640–65,508,073 forward strand; 66 transcripts (splice variants)
- Interaction with other molecules: miR-17-ABCA1; miRNA-124-3p (sponge)
- Biological consequence of such interaction: Contribution to cholesterol efflux, promotion of the upregulation of inflammatory CRP, modulation of PPARα expression.
4.3.5. A Novel Long Non-Coding RNA in Lipid Associated Single Nucleotide Polymorphism Gene Region
- Summary:
- Name/organism: LASER/ LINC02702; Homo sapiens
- Databases &Code: HGNC:54217; Ensembl: ENSG00000237937; NCBI Gene: 101929011
- Chromosomal location& size: 11q23.3; 11: 116,639,422–116,658,295 forward strand; 4 transcripts
- Interaction with other molecules: probably PCSK9
- Biological consequence of such interaction: Enhancement of the expression of cholesterol metabolism genes
5. LncRNAs as Diagnostic and Therapeutic Targets in Lipid Disorders
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Price, N.L.; Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vasc. Pharmacol. 2019, 114, 93–102. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cardiovascular Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 December 2023).
- Singh, D.D.; Kim, Y.; Choi, S.A.; Han, I.; Yadav, D.K. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.-M.; Jakob, P.; Nakagawa, S.; Blankenberg, S. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J. 2018, 39, 2704–2716. [Google Scholar] [CrossRef] [PubMed]
- Churov, A.; Summerhill, V.; Grechko, A.; Orekhova, V.; Orekhov, A. MicroRNAs as potential biomarkers in atherosclerosis. Int. J. Mol. Sci. 2019, 20, 5547. [Google Scholar] [CrossRef]
- Collins, L.; Binder, P.; Chen, H.; Wang, X. Regulation of Long Non-coding RNAs and MicroRNAs in Heart Disease: Insight Into Mechanisms and Therapeutic Approaches. Front. Physiol. 2020, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Abdelmohsen, K.; Srikantan, S.; Yang, X.; Martindale, J.L.; De, S.; Huarte, M.; Zhan, M.; Becker, K.G.; Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 2012, 47, 648–655. [Google Scholar] [CrossRef]
- Gong, C.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 2011, 470, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zeng, X.; Ai, Z.; Yu, M.; Wu, Y.o.; Li, S. Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in oral cancer. BMC Med. Genom. 2020, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Paneru, B.; Ali, A.; Al-Tobasei, R.; Kenney, B.; Salem, M. Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle ‘degradome’ of rainbow trout. Sci. Rep. 2018, 8, 8416. [Google Scholar] [CrossRef]
- Mercer, T.R.; Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 2013, 20, 300–307. [Google Scholar] [CrossRef]
- Das, S.; Shah, R.; Dimmeler, S.; Freedman, J.E.; Holley, C.; Lee, J.-M.; Moore, K.; Musunuru, K.; Wang, D.-Z.; Xiao, J.; et al. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circ. Genom. Precis. Med. 2020, 13, e000062. [Google Scholar] [CrossRef]
- Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22, 1760–1774. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Fang, S.; Kang, Y.; Wu, W.; Hao, Y.; Li, Z.; Bu, D.; Sun, N.; Zhang, M.Q. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016, 44, D203–D208. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.T.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics 2013, 193, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.; Rotllan, N.; Fernández-Hernando, C. Noncoding RNAs and atherosclerosis. Curr. Atheroscler. Rep. 2014, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 2013, 10, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509. [Google Scholar] [CrossRef]
- Wu, T.; Du, Y. LncRNAs: From basic research to medical application. Int. J. Biol. Sci. 2017, 13, 295. [Google Scholar] [CrossRef]
- Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, Y.; Wang, R.; Hu, L.; Guo, D.; Xue, F.; Guo, W.; Zhang, D.; Hu, J.; Li, Y.; et al. Recent advances on the roles of LncRNAs in cardiovascular disease. J. Cell Mol. Med. 2020, 24, 12246–12257. [Google Scholar] [CrossRef]
- Hon, C.-C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 2017, 543, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, T.-T.; Li, Y.; Shi, M.-M.; Li, H.-M.; Yuan, H.-X.; Mo, Z.-W.; Chen, J.; Zhang, B.; Chen, Y.-X.; et al. High density lipoprotein from coronary artery disease patients caused abnormal expression of long non-coding RNAs in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2017, 487, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Ren, K.; Zhu, X.; Zheng, Z.; Yi, G. Long Noncoding RNAs: Advances in Lipid Metabolism. Adv. Clin. Chem. 2018, 87, 1–36. [Google Scholar] [CrossRef]
- Duan, J.; Huang, Z.; Nice, E.C.; Xie, N.; Chen, M.; Huang, C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J. Adv. Res. 2023, 48, 105–123. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef]
- Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 2010, 3, ra8. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Dashti, S.; Taheri, M. The HOTTIP (HOXA transcript at the distal tip) lncRNA: Review of oncogenic roles in human. Biomed. Pharmacother. 2020, 127, 110158. [Google Scholar] [CrossRef]
- Lee, J.T. The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb. Perspect. Biol. 2010, 2, a003749. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, W.; Yang, B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol. Ther. 2019, 203, 107389. [Google Scholar] [CrossRef]
- Sallam, T.; Sandhu, J.; Tontonoz, P. Long noncoding RNA discovery in cardiovascular disease: Decoding form to function. Circ. Res. 2018, 122, 155–166. [Google Scholar] [CrossRef]
- Nelson, B.R.; Makarewich, C.A.; Anderson, D.M.; Winders, B.R.; Troupes, C.D.; Wu, F.; Reese, A.L.; McAnally, J.R.; Chen, X.; Kavalali, E.T. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 2016, 351, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ruan, X.; Yang, L.; Kiesewetter, K.; Zhao, Y.; Luo, H.; Chen, Y.; Gucek, M.; Zhu, J.; Cao, H. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015, 21, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, S.; Hu, Y.; Guo, H.; Zhang, X.; Yan, Y.; Ma, J.; Li, Y.; Wang, H.; He, J.; et al. Microarray analysis of long non-coding RNA expression profiles in low high-density lipoprotein cholesterol disease. Lipids Health Dis. 2020, 19, 175. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Aryal, B.; Zhang, X.; Fan, Y.; Price, N.L.; Suárez, Y.; Fernández-Hernando, C. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2018; pp. 129–140. [Google Scholar]
- Chen, Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol. Metab. 2016, 5, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The road ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer Jr, H.B.; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.-C.; Phillips, M.C.; Rader, D.J. Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation 2012, 125, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J.; Hovingh, G.K. HDL and cardiovascular disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef]
- Linton, M.F.; Tao, H.; Linton, E.F.; Yancey, P.G. SR-BI: A multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol. Metab. 2017, 28, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Dikkers, A.; Tietge, U.J. Biliary cholesterol secretion: More than a simple ABC. World J. Gastroenterol. WJG 2010, 16, 5936. [Google Scholar]
- Nijstad, N.; Gautier, T.; Briand, F.; Rader, D.J.; Tietge, U.J. Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice. Gastroenterology 2011, 140, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Linsel-Nitschke, P.; Tall, A.R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 2005, 4, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Brewer, H.B. Focus on high-density lipoproteins in reducing cardiovascular risk. Am. Heart J. 2004, 148, S14–S18. [Google Scholar] [CrossRef]
- Chang, F.-J.; Yuan, H.-Y.; Hu, X.-X.; Ou, Z.-J.; Fu, L.; Lin, Z.-B.; Wang, Z.-P.; Wang, S.-M.; Zhou, L.; Xu, Y.-Q.; et al. High density lipoprotein from patients with valvular heart disease uncouples endothelial nitric oxide synthase. J. Mol. Cell. Cardiol. 2014, 74, 209–219. [Google Scholar] [CrossRef]
- Yuhanna, I.S.; Zhu, Y.; Cox, B.E.; Hahner, L.D.; Osborne-Lawrence, S.; Lu, P.; Marcel, Y.L.; Anderson, R.G.; Mendelsohn, M.E.; Hobbs, H.H.; et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 2001, 7, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef]
- HPS2-THRIVE randomized placebo-controlled trial in 25,673 high-risk patients of ER niacin/laropiprant: Trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 2013, 34, 1279–1291. [CrossRef] [PubMed]
- Franceschini, G.; Sirtori, C.R.; Capurso, A., II; Weisgraber, K.H.; Mahley, R.W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Investig. 1980, 66, 892–900. [Google Scholar] [CrossRef]
- Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013, 38, 754–768. [Google Scholar] [CrossRef]
- Sorrentino, S.A.; Besler, C.; Rohrer, L.; Meyer, M.; Heinrich, K.; Bahlmann, F.H.; Mueller, M.; Horváth, T.; Doerries, C.; Heinemann, M.; et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010, 121, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-Y.; Liu, J.-P.; Song, Z.-Y. Associations of the ATP-binding cassette transporter A1 R219K polymorphism with HDL-C level and coronary artery disease risk: A meta-analysis. Atherosclerosis 2011, 215, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cheng, M.; Niu, Y.; Chi, X.; Liu, X.; Fan, J.; Fan, H.; Chang, Y.; Yang, W. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int. J. Biol. Sci. 2017, 13, 349. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, Z.; Wu, J.; Zhang, L.; Lee, S.; Shin, D.J.; Tran, M.; Wang, L. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 2018, 67, 1768–1783. [Google Scholar] [CrossRef]
- Kumar, S.; Williams, D.; Sur, S.; Wang, J.-Y.; Jo, H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc. Pharmacol. 2019, 114, 76–92. [Google Scholar] [CrossRef]
- Hu, Y.-W.; Zhao, J.-Y.; Li, S.-F.; Huang, J.-L.; Qiu, Y.-R.; Ma, X.; Wu, S.-G.; Chen, Z.-P.; Hu, Y.-R.; Yang, J.-Y. RP5-833A20. 1/miR-382-5p/NFIA–dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 87–101. [Google Scholar] [CrossRef]
- Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 2018, 14, 452–463. [Google Scholar] [CrossRef]
- Sallam, T.; Jones, M.C.; Gilliland, T.; Zhang, L.; Wu, X.; Eskin, A.; Sandhu, J.; Casero, D.; Vallim, T.Q.d.A.; Hong, C. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 2016, 534, 124–128. [Google Scholar] [CrossRef]
- Sallam, T.; Jones, M.; Thomas, B.J.; Wu, X.; Gilliland, T.; Qian, K.; Eskin, A.; Casero, D.; Zhang, Z.; Sandhu, J. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat. Med. 2018, 24, 304–312. [Google Scholar] [CrossRef]
- Baggish, A.L.; Hale, A.; Weiner, R.B.; Lewis, G.D.; Systrom, D.; Wang, F.; Wang, T.J.; Chan, S.Y. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 2011, 589, 3983–3994. [Google Scholar] [CrossRef]
- Mitchel, K.; Theusch, E.; Cubitt, C.; Dosé, A.C.; Stevens, K.; Naidoo, D.; Medina, M.W. RP1-13D10.2 Is a Novel Modulator of Statin-Induced Changes in Cholesterol. Circ. Cardiovasc. Genet. 2016, 9, 223–230. [Google Scholar] [CrossRef]
- Zelcer, N.; Hong, C.; Boyadjian, R.; Tontonoz, P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325, 100–104. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013, 17, 657–669. [Google Scholar] [CrossRef]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef]
- Lee, E.B.; Lee, V.M.-Y.; Trojanowski, J.Q. Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.C.; Huang, S.F.; Hou, L.J.; Long, H.J.; Yin, K.; Hu, C.Y.; Zhao, G.J. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front. Cardiovasc. Med. 2021, 8, 688546. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Gholipour, M.; Taheri, M. The Emerging Role of Long Non-coding RNAs and Circular RNAs in Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 632393. [Google Scholar] [CrossRef]
- Hennessy, E.J.; van Solingen, C.; Scacalossi, K.R.; Ouimet, M.; Afonso, M.S.; Prins, J.; Koelwyn, G.J.; Sharma, M.; Ramkhelawon, B.; Carpenter, S.; et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat. Metab. 2019, 1, 98–110. [Google Scholar] [CrossRef]
- Han, L.; Huang, D.; Wu, S.; Liu, S.; Wang, C.; Sheng, Y.; Lu, X.; Broxmeyer, H.E.; Wan, J.; Yang, L. Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism. Nat. Cell Biol. 2023, 25, 1033–1046. [Google Scholar] [CrossRef]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Reue, K.; Abumrad, N.A.; Bickel, P.E.; Cohen, S.; Fisher, E.A.; Galis, Z.S.; Granneman, J.G.; Lewandowski, E.D.; Murphy, R. Deciphering the role of lipid droplets in cardiovascular disease: A report from the 2017 national heart, lung, and blood institute workshop. Circulation 2018, 138, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Borradaile, N.M.; Schaffer, J.E. Lipotoxicity in the heart. Curr. Hypertens. Rep. 2005, 7, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Y.; Chen, X.; Peng, Y.; Chen, F.; He, Y.; Pang, W.; Yang, G.; Yu, T. MiR-127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes. J. Cell. Physiol. 2019, 234, 21838–21850. [Google Scholar] [CrossRef] [PubMed]
- Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016, 135, 851–867. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Ji, X.; Li, B.; Wang, Y.; Huang, Y.; Zhang, X.; Yu, J.; Zou, R.; Qin, D.; et al. Long Noncoding RNA lncRHL Regulates Hepatic VLDL Secretion by Modulating hnRNPU/BMAL1/MTTP Axis. Diabetes 2022, 71, 1915–1928. [Google Scholar] [CrossRef]
- Chu, K.; Zhao, N.; Hu, X.; Feng, R.; Zhang, L.; Wang, G.; Li, W.; Liu, L. LncNONMMUG027912 alleviates lipid accumulation through AMPKα/mTOR/SREBP1C axis in nonalcoholic fatty liver. Biochem. Biophys. Res. Commun. 2022, 618, 8–14. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, L.; Min, D.; Xu, Y.; Zhu, J.; Sun, Z. Baicalin inhibits proliferation and promotes apoptosis of vascular smooth muscle cells by regulating the MEG3/p53 pathway following treatment with ox-LDL. Int. J. Mol. Med. 2019, 43, 901–913. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.C.; Lee, W.Y.W.; Trovik, J.; Chung, T.K.H.; Kwong, J. Long non-coding RNA HAND2-AS1 inhibits invasion and metastasis in endometrioid endometrial carcinoma through inactivating neuromedin U. Cancer Lett. 2018, 413, 23–34. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med. 2019, 43, 345–357. [Google Scholar] [CrossRef]
- Huang, P.; Huang, F.-Z.; Liu, H.-Z.; Zhang, T.-Y.; Yang, M.-S.; Sun, C.-Z. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism 2019, 94, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, S.; Sun, Q.; Yao, Y.; Li, S.; Yuan, C.; Zhang, B.; Jing, B.; Wu, J.; Song, Y.; et al. Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression. Aging 2019, 11, 1695–1715. [Google Scholar] [CrossRef]
- Huang, C.; Hu, Y.-W.; Zhao, J.-J.; Ma, X.; Zhang, Y.; Guo, F.-X.; Kang, C.-M.; Lu, J.-B.; Xiu, J.-C.; Sha, Y.-H. Long noncoding RNA HOXC-AS1 suppresses Ox-LDL-induced cholesterol accumulation through promoting HOXC6 expression in THP-1 macrophages. DNA Cell Biol. 2016, 35, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Papp, E.; Havasi, V.; Bene, J.; Komlosi, K.; Czopf, L.; Magyar, E.; Feher, C.; Feher, G.; Horvath, B.; Marton, Z. Glycoprotein IIIA gene (PIA) polymorphism and aspirin resistance: Is there any correlation? Ann. Pharmacother. 2005, 39, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.A.; Schneider, J.G.; Baroni, T.E.; Uluçkan, Ö.; Heller, E.; Hurchla, M.A.; Deng, H.; Floyd, D.; Berdy, A.; Prior, J.L. Dissection of platelet and myeloid cell defects by conditional targeting of the β3-integrin subunit. FASEB J. 2010, 24, 1117. [Google Scholar] [CrossRef]
- Shao, J.; Fu, Y.; Yang, W.; Yan, J.; Zhao, J.; Chen, S.; Xia, W. Thromboxane A2 receptor polymorphism in association with cerebral infarction and its regulation on platelet function. Curr. Neurovasc. Res. 2015, 12, 15–24. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, H.; Ning, X.; Li, L.; Yang, B.; Chen, S.; Wang, L.; Lu, X.; Gu, D. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019, 285, 31–39. [Google Scholar] [CrossRef]
- Ageeli Hakami, M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J. Biol. Sci. 2024, 31, 103976. [Google Scholar] [CrossRef]
- Yang, L.; Li, T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med. 2020, 24, 8836–8848. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, H.; Yue, Y.; Li, S.; Zhang, D.; He, R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc. Pathol. 2018, 33, 6–15. [Google Scholar] [CrossRef]
- Zhu, X.H.; Yuan, Y.X.; Rao, S.L.; Wang, P. LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3653–3660. [Google Scholar] [PubMed]
- Ye, Z.-M.; Yang, S.; Xia, Y.-P.; Hu, R.-T.; Chen, S.; Li, B.-W.; Chen, S.-L.; Luo, X.-Y.; Mao, L.; Li, Y. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019, 10, 138. [Google Scholar] [CrossRef]
- Sun, G.; Li, Y.; Ji, Z. Up-regulation of MIAT aggravates the atherosclerotic damage in atherosclerosis mice through the activation of PI3K/Akt signaling pathway. Drug Deliv. 2019, 26, 641–649. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Guo, Y.; Liu, R.; Yu, Q.; Gong, L.; Liu, Z.; Xie, W.; Wang, C. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem. Pharmacol. 2021, 189, 114284. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Pei, Y.; Zhu, Y.; Jiang, M.; Wang, C.; Cui, W.; Zhang, D. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis. 2019, 10, 909. [Google Scholar] [CrossRef]
- Sun, C.; Huang, L.; Li, Z.; Leng, K.; Xu, Y.; Jiang, X.; Cui, Y. Long non-coding RNA MIAT in development and disease: A new player in an old game. J. Biomed. Sci. 2018, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Yao, J.; Liu, J.-Y.; Li, X.-M.; Wang, X.-Q.; Li, Y.-J.; Tao, Z.-F.; Song, Y.-C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res. 2015, 116, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.H.; Lu, Z.F.; Kang, C.M.; Li, X.H.; Haworth, K.E.; Ma, X.; Lu, J.B.; Liu, X.H.; Fang, F.C.; Wang, C.S.; et al. The Long Noncoding RNA RP11-728F11.4 Promotes Atherosclerosis. Arter. Thromb. Vasc. Biol. 2021, 41, 1191–1204. [Google Scholar] [CrossRef]
- Li, P.; Yan, X.; Xu, G.; Pang, Z.; Weng, J.; Yin, J.; Li, M.; Yu, L.; Chen, Q.; Sun, K. A novel plasma lncRNA ENST00000416361 is upregulated in coronary artery disease and is related to inflammation and lipid metabolism. Mol. Med. Rep. 2020, 21, 2375–2384. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell 1997, 89, 331–340. [Google Scholar] [CrossRef]
- Sato, R. Sterol metabolism and SREBP activation. Arch. Biochem. Biophys. 2010, 501, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Belmonte, L.M.; Moreno-Santos, I.; Cabrera-Bueno, F.; Sánchez-Espín, G.; Castellano, D.; Such, M.; Crespo-Leiro, M.G.; Carrasco-Chinchilla, F.; Alonso-Pulpón, L.; López-Garrido, M.; et al. Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: Preliminary study. Int. J. Med. Sci. 2017, 14, 268–274. [Google Scholar] [CrossRef]
- Sun, C.; Fu, Y.; Gu, X.; Xi, X.; Peng, X.; Wang, C.; Sun, Q.; Wang, X.; Qian, F.; Qin, Z.; et al. Macrophage-Enriched lncRNA RAPIA. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1464–1478. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, Y.; You, T.; Heath, J.; Xu, L.; Zheng, X.; Wang, A.; Wang, Y.; Li, F.; Yang, F. Vascular semaphorin 7A upregulation by disturbed flow promotes atherosclerosis through endothelial β1 integrin. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 335–343. [Google Scholar] [CrossRef]
- Pan, Y.; Xin, W.; Wei, W.; Tatenhorst, L.; Graf, I.; Popa-Wagner, A.; Gerner, S.T.; Huber, S.E.; Kilic, E.; Hermann, D.M.; et al. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy. Cell Mol. Life Sci. 2024, 81, 30. [Google Scholar] [CrossRef]
- Vlachogiannis, N.I.; Sachse, M.; Georgiopoulos, G.; Zormpas, E.; Bampatsias, D.; Delialis, D.; Bonini, F.; Galyfos, G.; Sigala, F.; Stamatelopoulos, K. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J. Mol. Cell. Cardiol. 2021, 160, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, J.W.; Ke, Z.P.; Zhang, B.H. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J. Cell. Physiol. 2019, 234, 5319–5326. [Google Scholar] [CrossRef] [PubMed]
- Du, X.J.; Wei, J.; Tian, D.; Yan, C.; Hu, P.; Wu, X.; Yang, W.; Hu, X. NEAT1 promotes myocardial ischemia-reperfusion injury via activating the MAPK signaling pathway. J. Cell. Physiol. 2019, 234, 18773–18780. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar]
- Luo, M.; Sun, Q.; Zhao, H.; Tao, J.; Yan, D. Long noncoding RNA NEAT1 sponges miR-495-3p to enhance myocardial ischemia-reperfusion injury via MAPK6 activation. J. Cell. Physiol. 2020, 235, 105–113. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, C.; Wei, X.; Wei, R.; Qi, Z.; Chen, K.; Cai, X.; Xu, L.; Tang, L.; Zhou, J. NEAT1/hsa-miR-372–3p axis participates in rapaMYCin-induced lipid metabolic disorder. Free Radic. Biol. Med. 2021, 167, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Y.; Song, R.; Yang, G.; Han, J.; Lan, Y.; Pan, S.; Zhu, M.; Liu, Y.; Wang, Y. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol. Cancer 2018, 17, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, T.; Zhao, Z.-L.; Jiang, Y.; Ye, S. Propofol suppresses proinflammatory cytokine production by increasing ABCA1 expression via mediation by the long noncoding RNA LOC286367. Mediat. Inflamm. 2018, 2018, 8907143. [Google Scholar] [CrossRef] [PubMed]
- Joyce, C.W.; Amar, M.J.; Lambert, G.; Vaisman, B.L.; Paigen, B.; Najib-Fruchart, J.; Hoyt Jr, R.F.; Neufeld, E.D.; Remaley, A.T.; Fredrickson, D.S. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc. Natl. Acad. Sci. USA 2002, 99, 407–412. [Google Scholar] [CrossRef]
- Gao, J.-H.; He, L.-H.; Yu, X.-H.; Zhao, Z.-W.; Wang, G.; Zou, J.; Wen, F.-J.; Zhou, L.; Wan, X.-J.; Zhang, D.-W. CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-cateninT120/TCF21 pathway. J. Lipid Res. 2019, 60, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, S.; Cai, D.; Bian, D.; Wang, F. Long noncoding RNA lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway. Life Sci. 2018, 203, 48–53. [Google Scholar] [CrossRef]
- Cirera-Salinas, D.; Pauta, M.; Allen, R.M.; Salerno, A.G.; Ramírez, C.M.; Chamorro-Jorganes, A.; Wanschel, A.C.; Lasuncion, M.A.; Morales-Ruiz, M.; Suarez, Y. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012, 11, 922–933. [Google Scholar] [CrossRef]
- Go, G.-W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 2012, 85, 19. [Google Scholar]
- Ray, R.M.; Hansen, A.H.; Slott, S.; Taskova, M.; Astakhova, K.; Morris, K.V. Control of LDL uptake in human cells by targeting the LDLR regulatory long non-coding RNA BM450697. Mol. Ther. -Nucleic Acids 2019, 17, 264–276. [Google Scholar] [CrossRef]
- Chen, L.; Yao, H.; Hui, J.Y.; Ding, S.H.; Fan, Y.L.; Pan, Y.H.; Chen, K.H.; Wan, J.Q.; Jiang, J.Y. Global transcriptomic study of atherosclerosis development in rats. Gene 2016, 592, 43–48. [Google Scholar] [CrossRef]
- Meng, X.-D.; Yao, H.-H.; Wang, L.-M.; Yu, M.; Shi, S.; Yuan, Z.-X.; Liu, J. Knockdown of GAS5 inhibits atherosclerosis progression via reducing EZH2-mediated ABCA1 transcription in ApoE−/− mice. Mol. Ther.-Nucleic Acids 2020, 19, 84–96. [Google Scholar] [CrossRef]
- Halley, P.; Kadakkuzha, B.M.; Faghihi, M.A.; Magistri, M.; Zeier, Z.; Khorkova, O.; Coito, C.; Hsiao, J.; Lawrence, M.; Wahlestedt, C. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 2014, 6, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, X.; Xie, L.; Li, S.; Liu, J.; Jia, L.; Dong, X.; Ren, X.; Xiao, J.; Yang, C. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res. 2016, 44, 6423–6433. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Yan, J.; Ren, J.; Zhong, B.; Li, J.; Li, Y.; Liu, L.; Yi, J.; Sun, Q.; Yang, X. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016, 64, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Wu, L.; Wu, N.; Chen, Q.; Li, Y.; Du, X.; Wei, C.; Feng, L.; Li, Y.; Osoro, E.K. Long noncoding RNA lnc-HC regulates PPARγ-mediated hepatic lipid metabolism through miR-130b-3p. Mol. Ther.-Nucleic Acids 2019, 18, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Liu, L.; Feng, Q.; Yang, X. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J. Clin. Lab. Anal. 2021, 35, e23593. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, F.; Liu, Q.; Xu, D. Regulatory non-coding RNAs in acute myocardial infarction. J. Cell. Mol. Med. 2017, 21, 1013–1023. [Google Scholar] [CrossRef]
- Liu, L.; Tan, L.; Yao, J.; Yang, L. Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep. 2020, 21, 1761–1770. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wei, Y.; Xu, J.; Wang, Z.; Wang, P.; Sun, H.; Song, Z.; Liu, Q. LncRNA MALAT1 prevents the protective effects of miR-125b-5p against acute myocardial infarction through positive regulation of NLRC5. Exp. Ther. Med. 2020, 19, 990–998. [Google Scholar] [CrossRef]
- Chao, C.T.; Yeh, H.Y.; Yuan, T.H.; Chiang, C.K.; Chen, H.W. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. J. Cell. Mol. Med. 2019, 23, 5884–5894. [Google Scholar] [CrossRef]
- Ding, X.-Q.; Ge, P.-C.; Liu, Z.; Jia, H.; Chen, X.; An, F.-H.; Li, L.-H.; Chen, Z.-H.; Mao, H.-W.; Li, Z.-Y. Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Sci. Rep. 2015, 5, 14925. [Google Scholar] [CrossRef]
- Akhabue, E.; Thiboutot, J.; Cheng, J.-w.; Lerakis, S.; Vittorio, T.J.; Christodoulidis, G.; Grady, K.M.; Kosmas, C.E. New and emerging risk factors for coronary heart disease. Am. J. Med. Sci. 2014, 347, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, Z.; Zhang, W.; Yu, J.; Yang, Y.; Xu, Z.; Luo, H.; Liu, X.; Liu, Y.; Chen, C. Regulation of cholesterol homeostasis by a novel long non-coding RNA LASER. Sci. Rep. 2019, 9, 7693. [Google Scholar] [CrossRef] [PubMed]
- Seidah, N.G.; Awan, Z.; Chrétien, M.; Mbikay, M. PCSK9: A key modulator of cardiovascular health. Circ. Res. 2014, 114, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Hwang, H.-J.; Cho, J.-Y. Long Non-Coding RNA Associated with Cholesterol Homeostasis and Its Involvement in Metabolic Diseases. Int. J. Mol. Sci. 2020, 21, 8337. [Google Scholar] [CrossRef]
- Paredes, S.; Fonseca, L.; Ribeiro, L.; Ramos, H.; Oliveira, J.C.; Palma, I. Novel and traditional lipid profiles in metabolic syndrome reveal a high atherogenicity. Sci. Rep. 2019, 9, 11792. [Google Scholar] [CrossRef]
- Cox, R.; García-Palmieri, M. Cholesterol, Triglycerides, and Associated Lipoproteins. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Wang, W.-T.; Sun, Y.-M.; Huang, W.; He, B.; Zhao, Y.-N.; Chen, Y.-Q. Genome-wide long non-coding RNA analysis identified circulating LncRNAs as novel non-invasive diagnostic biomarkers for gynecological disease. Sci. Rep. 2016, 6, 23343. [Google Scholar] [CrossRef] [PubMed]
- Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in extracellular fluids as cancer biomarkers: The new frontier of liquid biopsies. Cancers 2019, 11, 1170. [Google Scholar] [CrossRef]
- Huang, S.F.; Peng, X.F.; Jiang, L.; Hu, C.Y.; Ye, W.C. LncRNAs as Therapeutic Targets and Potential Biomarkers for Lipid-Related Diseases. Front. Pharmacol. 2021, 12, 729745. [Google Scholar] [CrossRef]
- Pan, J.-X. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 322–328. [Google Scholar]
- Tao, K.; Hu, Z.; Zhang, Y.; Jiang, D.; Cheng, H. LncRNA CASC11 improves atherosclerosis by downregulating IL-9 and regulating vascular smooth muscle cell apoptosis and proliferation. Biosci. Biotechnol. Biochem. 2019, 83, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, W.; Guo, Y.; Chen, W.; Zheng, P.; Zeng, J.; Tong, W. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS ONE 2017, 12, e0185406. [Google Scholar] [CrossRef]
- Li, F.-P.; Lin, D.-Q.; Gao, L.-Y. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7439–7447. [Google Scholar] [PubMed]
- Yao, X.; Yan, C.; Zhang, L.; Li, Y.; Wan, Q. LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine 2018, 97, e0473. [Google Scholar] [CrossRef]
- Hu, Y.-W.; Guo, F.-X.; Xu, Y.-J.; Li, P.; Lu, Z.-F.; McVey, D.G.; Zheng, L.; Wang, Q.; John, H.Y.; Kang, C.-M. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J. Clin. Investig. 2019, 129, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, T.; Qi, L.; Zhou, C.; Wei, J.; Feng, F.; Liu, R.; Sun, C. Integrated analysis of co-expression and ceRNA network identifies five lncRNAs as prognostic markers for breast cancer. J. Cell. Mol. Med. 2019, 23, 8410–8419. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Kim, G.; Jang, S.Y.; Lee, Y.R.; Lee, E.; Lee, H.W.; Han, M.-H.; Chun, J.M.; Han, Y.S.; Yoon, J.S. Plasma long noncoding RNA LeXis is a potential diagnostic marker for non-alcoholic steatohepatitis. Life 2020, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Mannu, G.; Zaman, M.; Gupta, A.; Rehman, H.; Myint, P. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr. Cardiol. Rev. 2013, 9, 2–14. [Google Scholar]
- Chi, X.; Gatti, P.; Papoian, T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov. Today 2017, 22, 823–833. [Google Scholar] [CrossRef]
- Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 2017, 355, eaah7111. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, X.; Liu, F. Silencing TTTY15 mitigates hypoxia-induced mitochondrial energy metabolism dysfunction and cardiomyocytes apoptosis via TTTY15/let-7i-5p and TLR3/NF-κB pathways. Cell. Signal. 2020, 76, 109779. [Google Scholar] [CrossRef] [PubMed]
- Gong, N.; Teng, X.; Li, J.; Liang, X.-J. Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis. ACS Appl. Mater. Interfaces 2018, 11, 37–42. [Google Scholar] [CrossRef]
- Bernardo, B.C.; Ooi, J.Y.; Lin, R.C.; McMullen, J.R. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med. Chem. 2015, 7, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Mendell, J.T. Antisense-mediated transcript knockdown triggers premature transcription termination. Mol. Cell 2020, 77, 1044–1054.e1043. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.B.; Seth, P.P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 2016, 59, 9645–9667. [Google Scholar] [CrossRef] [PubMed]
- Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020, 9, 2004. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther. 2017, 25, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Ahmad, S.M.; Mumtaz, P.T.; Malik, A.A.; Dar, M.A.; Urwat, U.; Shah, R.A.; Ganai, N.A. Long non-coding RNAs: Mechanism of action and functional utility. Non-Coding RNA Res. 2016, 1, 43–50. [Google Scholar] [CrossRef]
- Bobbin, M.L.; Rossi, J.J. RNA interference (RNAi)-based therapeutics: Delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 2016, 56, 103–122. [Google Scholar] [CrossRef]
- Winter, H.; Winski, G.; Busch, A.; Chernogubova, E.; Fasolo, F.; Wu, Z.; Bäcklund, A.; Khomtchouk, B.B.; Van Booven, D.J.; Sachs, N.; et al. Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression. Mol. Ther. 2023, 31, 1775–1790. [Google Scholar] [CrossRef]
lncRNA | Impact on Lipid Metabolism and Cardiovascular Risk | Refs. |
---|---|---|
lncRNA H19 |
| [55] |
AC068234.2–202 |
| [34] |
AP001033.3–201 |
| [34] |
ApoA1-AS |
| [124] |
ApoA4-AS |
| [125] |
Overexpression of ENST00000602558.1 |
| [89] |
RP5-833A20.1 |
| [23,59] |
LeXis |
| [12,60] |
MeXis |
| [21,61,62] |
LncHR1 |
| [55] |
RP1-13D10.2 |
| [24,63] |
LncLSTR |
| [33] |
Lnc-HC |
| [1,126,127] |
LincRNA-DYNLRB2-2 |
| [58] |
CHROME (PRKRA-AS1) |
| [25,69,70] |
lncRNA LIPTER |
| [71,73] |
lncRHPL |
| [78] |
LncNONMMUG027912 |
| [79] |
MALAT1 |
| [134,135,136,137,138,139] |
TUG1 |
| [90] |
MIAT |
| [95,103] |
LncRNA RP11-728F11 |
| [100] |
lncRNA RP5-833A20.1 |
| [25] |
lncRNA ANRIL |
| [84] |
LASER |
| [136] |
lncRNA ENST00000416361 |
| [101,104] |
LncRNA RAPIA |
| [105,106] |
NEAT1 |
| [107,109,112,113,114] |
LOC286367 |
| [115] |
HOXC-AS1 |
| [85] |
LncARSR |
| [119,128] |
BM450697 |
| [120] |
GAS5 |
| [68,123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluba-Sagr, A.; Franczyk, B.; Rysz-Górzyńska, A.; Olszewski, R.; Rysz, J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int. J. Mol. Sci. 2024, 25, 9244. https://doi.org/10.3390/ijms25179244
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. International Journal of Molecular Sciences. 2024; 25(17):9244. https://doi.org/10.3390/ijms25179244
Chicago/Turabian StyleGluba-Sagr, Anna, Beata Franczyk, Aleksandra Rysz-Górzyńska, Robert Olszewski, and Jacek Rysz. 2024. "The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk" International Journal of Molecular Sciences 25, no. 17: 9244. https://doi.org/10.3390/ijms25179244
APA StyleGluba-Sagr, A., Franczyk, B., Rysz-Górzyńska, A., Olszewski, R., & Rysz, J. (2024). The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. International Journal of Molecular Sciences, 25(17), 9244. https://doi.org/10.3390/ijms25179244