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Abstract: Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate
the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating
leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate
cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and
therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly
glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack
the context of CAF–cancer interaction, focusing on monocultures. This study assesses the influence
of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red)
and fibroblast (green) in a co-culture system to evaluate CAFs’ effects on PCa cell proliferation and
clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas
the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell
lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of
LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic
analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium
and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival
analysis of GLS1 expression in the PCa epithelium and stroma identified a “high-risk” patient group
that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in
castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.

Keywords: tumour microenvironment; cancer-associated fibroblasts; hormone-sensitive prostate
cancer; castration-resistant prostate cancer; PCa

1. Introduction

Cancer-associated fibroblast (CAF)s are non-neoplastic fibroblasts with pro-tumorigenic
properties [1,2]. CAFs generate reactive stroma during carcinogenesis, where pro-tumorigenic
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alterations in the tumour microenvironment (TME) occur [3,4]. Tumour proliferation is
promoted by bidirectional signalling between tumour cells and other cellular entities, medi-
ated by CAF-derived chemokines, cytokines, growth factors, and exosomes within the TME.
This interaction also triggers immune evasion of cancer cells [5,6]. Furthermore, CAFs
participate in cancer progression by modulating the metabolic function of cancer cells. The
metabolic dialogue between cancer cells and CAFs occurs mainly via soluble factors, extra-
cellular matrix, and direct contact [7,8]. Breast cancer studies revealed that CAFs fuel cancer
cells with organic substances such as pyruvate and amino acids (e.g., glutamine), which
fill the citric acid cycle and subsequent mitochondrial respiration [7,9]. Glutamine (Gln) is
converted into glutamate and enters the citric acid cycle, fuelling biosynthetic pathways
that produce lipids, proteins, and nucleic acids, thus promoting cancer progression [9–12].
In breast cancer, it could be shown that Gln deprivation promotes CAF migration and
invasion, facilitating tumour epithelial cell migration toward nutrient-rich areas [13]. In
lymphoma, CAFs fuel cancer cells with amino acids (e.g., glutamine) and with organics
such as pyruvate, which is at the crossroads between glycolysis and mitochondrial oxida-
tive phosphorylation [14]. By engaging in bidirectional signalling with epithelial tumour
cells and other cells mediated by CAF-derived cytokines, chemokines, growth factors,
and exosomes within the TME, CAFs facilitate tumour proliferation and induce immune
evasion of cancer cells in gastrointestinal cancer [5]. In pancreatic ductal adenocarcinoma,
cancer cells can proliferate in nutrient-deprived conditions when supplied with Gln by
extracellular vesicles originating from CAFs [15].

CAFs are the predominant cell type within the prostate cancer (PCa) stroma [2,16].
PCa is a major clinical problem, as it has the second-highest incidence in the male popula-
tion worldwide and is the fifth leading cause of cancer-related deaths [17]. PCa treatment
depends on the tumour stage, patient age, general health status, and tumour risk assess-
ment. The treatment options recommended by the guidelines include active surveillance,
surgery, and radiotherapy for localised PCa with a curative intent [18]. However, only
palliative hormone therapy and chemotherapy are available for advanced and non-localised
PCa [19]. Despite an initially favourable response to established therapies, treatment failure
eventually occurs, leading to the progression of hormone-sensitive PCa (HSPC) to rapidly
growing and aggressive castration-resistant PCa (CRPC). Therefore, translational and basic
research has focused on identifying novel target structures in PCa and developing novel
therapeutic strategies.

In PCa, CAFs promote malignancy through metabolic rewiring [7]. Specifically, CAF-
PCa crosstalk enhances mitochondrial transfer and induces oxidative phosphorylation
(OXPHOS) addiction in PCa cells. Metabolic reprogramming is essential for PCa progres-
sion, tumour growth maintenance, and therapy resistance [20,21]. Recent studies have
shown that targeting amino acid metabolism in cancer cells reduces cancer cell prolifer-
ation and stemness [22]. Mainly targeting Gln metabolism has shown promising results
in in vitro and in vivo studies [11,20,23,24]. However, the influence of this inhibitor in a
CAF-PCa cell co-culture system has not yet been investigated.

Glutaminase (GLS) plays an essential role in the Gln metabolism. GLS catalyses the
transformation of Gln into glutamate, which is subsequently converted to α-ketoglutarate,
a component of the TCA [25]. Two primary glutaminase types have been identified:
glutaminase 1 (GLS1, also known as kidney-type) and glutaminase 2 (GLS2, also known as
liver-type). GLS1 is mainly expressed in prostate cancer (PCa), where its levels increase
with the tumour stage and progression, as reported by Myint et al. [26]. In contrast,
GLS1 and GLS2 appear to serve opposing roles in tumour development, attributed to
various regulatory mechanisms and their distinct immunological, kinetic, and molecular
properties [27]. Different regulatory mechanisms under various conditions influence the
expression of these enzymes. For instance, the transcription factor Myc enhances GLS1
expression, promoting the proliferation of tumour cells in PC3 PCa cells [28]. The specific
mechanisms through which c-Myc regulates glutaminolysis, particularly the upregulation
of GLS1, are not fully understood. However, in PC3 cells, it has been shown that c-



Int. J. Mol. Sci. 2024, 25, 9275 3 of 19

Myc elevates GLS1 expression through post-transcriptional modifications mediated by
microRNAs, specifically miR-23a and miR-23b.

The interaction between Myc and GLS2 is subject to ongoing debate, varying with
cell type and tumour characteristics. For example, GLS2 is downregulated in renal cell
carcinoma induced by Myc, whereas it is upregulated in T-lymphocytes by c-Myc [29,30].
GLS2, which plays a role in tumour metabolism and antioxidant defence in both stressed
and non-stressed conditions, is primarily controlled by the transcription factor p53 (Hu
et al., 2010). Additional transcription factors such as p73 and p63 also regulate GLS2
expression during processes like neuronal differentiation, epidermal differentiation, and
tumorigenesis under conditions of high oxidative stress [31,32]. Apart from regulation by
c-Myc or p53, specific metabolic products also influence the expression of these isoenzymes.
For example, GLS1 activity is increased by higher phosphate levels and decreased by
glutamate. In contrast, GLS2 activity increases with low phosphate levels and is unaffected
by glutamate [33].

Therefore, the effects of Gln deprivation on the stemness and proliferation of PCa cells
were examined. Additionally, the project aimed to visualise the spatial distribution of CAF
metabolism within PCa tissue sections to improve pathological assessment based on Gln
metabolism. To this end, a two-colour PCa cell (red) and CAF (green) co-culture system
was established. This model helped assess the influence of fibroblasts on PCa proliferation
and clonogenic potential. Furthermore, the role of CAFs in GLS1 pathways associated with
proliferation and clonogenic potential was investigated by manipulating glutamine (Gln)
metabolism using Gln deprivation and the GLS1 inhibitor CB-839.

2. Results
2.1. Established Prostate Cancer Cell Lines Expressing mKATE2-NLS to Trace Cell Proliferation
and Clonogenic Potential

To distinguish between fibroblasts and PCa cells in a co-culture system using an S3
Incucyte Live-Cell Analysis System (Sartorius AG, Göttingen, Germany), the PCa cell
lines LNCaP and C4-2 were transduced with mKATE2 fluorescent protein (excitation
maximum of 588 nm, emission maximum of 633 nm) linked to a nuclear localisation signal
(NLS). LNCaP and C4-2 cells were transduced with multiplicities of infection (MOI) of 2.5,
5, and 10. mKATE2-NLS positivity was assessed using a BZ-X800 microscope (Keyence
GmbH, Neu-Isenburg, Germany) and the BZ-X800 Analyzer software 1.3.0 (Keyence GmbH,
Figure 1A,B). LNCaP cells showed the highest mKATE2-NLS positivity (79.1% ± 0.1)
at an MOI of 2.5 (Figure 1A,B). C4-2 cells showed the highest mKATE2-NLS positivity
(100%) at an MOI of 5 (Figure 1A,B). Cells with the highest mKATE2-NLS positivity
were selected for 10 µM blasticidin treatment. To validate positive blasticidin selection,
mKATE2-NLS positivity was assessed again after the selection process, resulting in a
significant increase in LNCaP up to 87.2% ± 0.03 (Figure 1C), whereas C4-2 stayed at
100% mKATE2-NLS positivity (Figure 1C). To validate whether mKATE2-NLS nuclear
expression during proliferation correlated with the increase in confluence of unlabelled
cells, transduced cells were cultured in triplicate in 96-well plates, and cell confluence
and mKATE2-NLS numbers were determined for 5 days using the S3 Incucyte Live-Cell
Analysis System (Sartorius AG, Figure 1D). All the cell lines showed a significantly strong
correlation (LNCaP r = 0.97, C4-2 r = 0.99) between the observed variables. Therefore, the
mKATE2-NLS transduced cell lines were deemed suitable for co-culture experiments and
were utilised in all further experiments.
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Figure 1. Establishment of prostate cancer (PCa) cell lines expressing mKATE2-NLS. (A) LNCaP and 
C4-2 cells were transduced with a MOI of 2.5, 5, and 10. Positive cells were detected using the 
Keyence microscope and analysed with the BZ-X800 Analyzer software. The graphical illustration 
of the mKATE2-NLS positive cells for each cell line was plotted as a box and whisker plot (min to 
max) of the six technical replicates. (B) Representative pictures of each cell line before blasticidin 
selection are shown of the chosen MOI compared with the untransduced cells (negative CTRL). The 
scalebar represents 100 µm. (C) Analysis of positive cells before and after blasticidin selection. 
mKATE2-NLS positive cells were detected using the BZ-X800 microscope (Keyence GmBH, Neu-
Isenburg, Germany) and analysed with the BZ-X800 Analyzer software (Keyence GmbH). The 
graphical illustration of the mKATE2-NLS positive cells for each cell line was plotted as the mean ± 
SD of six technical replicates. An unpaired student’s T-test was used to detect significant differences. 
p-values ≤ 0.05 were considered significant. ***: p ≤ 0.001. (D) Correlation analysis of cell number 
determined by mKATE2 counting and cell confluence using the S3 Incucyte Live-Cell Analysis 
System (Sartorius AG, Göttingen, Germany). Cell lines were seeded in triplicates into 96-well plates, 
and confluence and mKATE2-NLS numbers were determined for 5 days. Pearson correlation (r) was 
calculated using Prism software (Boston, MA, USA). 

2.2. Cancer-Associated Fibroblasts Sensitise the Hormone-Sensitive LNCaPcell Line to 
Glutamine Deprivation 

To assess the impact of CAFs on Gln deprivation in LNCaP and C4-2 cells, the cell 
lines were grown in the presence and absence of CAFs and Gln (0 mM and 2 mM) for 96 
h. Changes in PCa cell proliferation were determined by mKATE2-NLS positive nuclei 
counting using the S3 Incucyte Live-Cell Analysis System (Sartorius AG, Göttingen, 
Germany), and changes in proliferation rates were displayed as changes in AUC (Figures 
2A,B and S1C), as suggested by Duan et al. [34]. Co-culturing LNCaP cells with CAF cells 
significantly increased the proliferation of LNCaP cells (Figure S1A), whereas the C4-2 
cell’s proliferation (Figure S1B) was not affected by CAFs (Figure S1C). Without CAFs, 
Gln deprivation had a negligible effect on LNCaP proliferation (Figure 2A). In the 
presence of CAFs, Gln deprivation significantly reduced cell proliferation. However, the 
growth rate of C4-2 cells was significantly reduced regardless of the presence or absence 
of CAFs (Figure 2B). In addition to proliferation assays, clonogenic assays were performed 
to study the influence of CAFs on Gln deprivation on the ability of a single LNCaP or C4-
2 cell to grow into a colony (Figure 2C,D). The analysis revealed that CAFs increased the 
CFE of both cell lines (Figure S1D). Moreover, the CFE-reducing effects of the Gln 
deprivation on LNCaP (Figure 2C) and C4-2 cells (Figure 2D) were diminished by CAF 
cells. 

Figure 1. Establishment of prostate cancer (PCa) cell lines expressing mKATE2-NLS. (A) LNCaP
and C4-2 cells were transduced with a MOI of 2.5, 5, and 10. Positive cells were detected using the
Keyence microscope and analysed with the BZ-X800 Analyzer software. The graphical illustration of
the mKATE2-NLS positive cells for each cell line was plotted as a box and whisker plot (min to max)
of the six technical replicates. (B) Representative pictures of each cell line before blasticidin selection
are shown of the chosen MOI compared with the untransduced cells (negative CTRL). The scalebar
represents 100 µm. (C) Analysis of positive cells before and after blasticidin selection. mKATE2-NLS
positive cells were detected using the BZ-X800 microscope (Keyence GmBH, Neu-Isenburg, Germany)
and analysed with the BZ-X800 Analyzer software (Keyence GmbH). The graphical illustration of
the mKATE2-NLS positive cells for each cell line was plotted as the mean ± SD of six technical
replicates. An unpaired student’s T-test was used to detect significant differences. p-values ≤ 0.05
were considered significant. ***: p ≤ 0.001. (D) Correlation analysis of cell number determined by
mKATE2 counting and cell confluence using the S3 Incucyte Live-Cell Analysis System (Sartorius
AG, Göttingen, Germany). Cell lines were seeded in triplicates into 96-well plates, and confluence
and mKATE2-NLS numbers were determined for 5 days. Pearson correlation (r) was calculated using
Prism software (Boston, MA, USA).

2.2. Cancer-Associated Fibroblasts Sensitise the Hormone-Sensitive LNCaPcell Line to
Glutamine Deprivation

To assess the impact of CAFs on Gln deprivation in LNCaP and C4-2 cells, the cell
lines were grown in the presence and absence of CAFs and Gln (0 mM and 2 mM) for
96 h. Changes in PCa cell proliferation were determined by mKATE2-NLS positive nu-
clei counting using the S3 Incucyte Live-Cell Analysis System (Sartorius AG, Göttin-
gen, Germany), and changes in proliferation rates were displayed as changes in AUC
(Figures 2A,B and S1C), as suggested by Duan et al. [34]. Co-culturing LNCaP cells with
CAF cells significantly increased the proliferation of LNCaP cells (Figure S1A), whereas the
C4-2 cell’s proliferation (Figure S1B) was not affected by CAFs (Figure S1C). Without CAFs,
Gln deprivation had a negligible effect on LNCaP proliferation (Figure 2A). In the presence
of CAFs, Gln deprivation significantly reduced cell proliferation. However, the growth
rate of C4-2 cells was significantly reduced regardless of the presence or absence of CAFs
(Figure 2B). In addition to proliferation assays, clonogenic assays were performed to study
the influence of CAFs on Gln deprivation on the ability of a single LNCaP or C4-2 cell to
grow into a colony (Figure 2C,D). The analysis revealed that CAFs increased the CFE of
both cell lines (Figure S1D). Moreover, the CFE-reducing effects of the Gln deprivation on
LNCaP (Figure 2C) and C4-2 cells (Figure 2D) were diminished by CAF cells.
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Figure 2. Influence of glutamine (Gln) deprivation on selected prostate cancer (PCa) cell growth co-
cultured with cancer-associated fibroblast (CAF) cells. (A) Influence of Gln deprivation on the 
LNCaP cell proliferation in the presence or absence of CAF cells. Red object count assessed 
proliferation for 96 h. Relative changes in AUC values were calculated from the growth curve 
experiments. Data were plotted as mean ± SEM of three biological replicates. Significant differences 
were identified using two-way ANOVA. p-values ≤ 0.05 were considered significant. **: p ≤ 0.01. (B) 
Influence of Gln deprivation on the C4-2 cell proliferation in the presence or absence of CAF cells. 
Red object count assessed proliferation for 96 h. Relative changes in AUC values were calculated 
from the growth curve experiments. Data were plotted as mean ± SEM of three biological replicates. 
Significant differences were identified using two-way ANOVA. p-values ≤ 0.05 were considered 
significant. **: p ≤ 0.01, ***: p ≤ 0.001 (C) Representative images of the clonogenic assays of the cell 
lines LNCaP and colony-forming efficiency (CFE) calculated from the clonogenic assays of LNCaP 
cells co-cultured with CAF cells after Gln deprivation. Colony number (≥50 cells/colony) was scored 
10 days after plating. The results are expressed as box and whisker plots (min to max) of 4 biological 
replicates and are compared with monocultured cells. (D) Representative images of the clonogenic 
assays of the cell lines C4-2 cells and colony-forming efficiency (CFE) calculated from the clonogenic 
assays of C4-2 cells co-cultured with CAF cells after Gln deprivation. Colony number ( 50 
cells/colony) was scored 10 days after plating. The results are expressed as box and whisker plots 
(min to max) of 4 biological replicates and are compared with monocultured cells. 
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To investigate how CAFs can sensitise hormone-sensitive LNCaP cells to Gln 

deprivation, the effect of CAFs on the LNCaP proteome was assessed. To this end, eGFP2-
nls transduced CAF cells were co-cultured for 96 h with mKATE2-nls transduced PCa cells 
and separated by FACS. The proteomes of the separated cells were analysed by mass 
spectrometry and compared with those of the corresponding transduced monoculture 
cells (Figure 3A). To investigate the differential gene expression induced by CAF cells after 
96 h of treatment, volcano plots (Figures 3B and S2A) comparing the co-cultured cells with 
the corresponding monocultured cells were used to illustrate the relationship between 
fold-change and statistical significance (adjusted p-value) for all analysed proteins. Co-
culturing resulted in a significant change (adjusted p-value <0.05) in 738 proteins and 182 
proteins in LNCaP and CAF cells, respectively (Figures 3B and S2A). To elucidate the 
biological pathways associated with the differentially expressed genes (DEGs), PathfindR 
analysis for pathway enrichment analysis was performed using an active subnetwork-
oriented approach to identify significantly enriched pathways (Figures 3C and S2B). The 
analysis identified several key pathways significantly enriched in our dataset, including 
metabolic pathways with highly significant gene enrichment in LNCaP co-cultured cells 
and several pathways influencing the extracellular matrix in CAF-co-cultured cells (Figure 
S2B). The gene set enrichment analysis (GSEA) analysis of different pathways of the 

Figure 2. Influence of glutamine (Gln) deprivation on selected prostate cancer (PCa) cell growth co-
cultured with cancer-associated fibroblast (CAF) cells. (A) Influence of Gln deprivation on the LNCaP
cell proliferation in the presence or absence of CAF cells. Red object count assessed proliferation for
96 h. Relative changes in AUC values were calculated from the growth curve experiments. Data were
plotted as mean ± SEM of three biological replicates. Significant differences were identified using
two-way ANOVA. p-values ≤ 0.05 were considered significant. **: p ≤ 0.01. (B) Influence of Gln
deprivation on the C4-2 cell proliferation in the presence or absence of CAF cells. Red object count
assessed proliferation for 96 h. Relative changes in AUC values were calculated from the growth
curve experiments. Data were plotted as mean ± SEM of three biological replicates. Significant
differences were identified using two-way ANOVA. p-values ≤ 0.05 were considered significant.
**: p ≤ 0.01, ***: p ≤ 0.001 (C) Representative images of the clonogenic assays of the cell lines LNCaP
and colony-forming efficiency (CFE) calculated from the clonogenic assays of LNCaP cells co-cultured
with CAF cells after Gln deprivation. Colony number (≥50 cells/colony) was scored 10 days after
plating. The results are expressed as box and whisker plots (min to max) of 4 biological replicates
and are compared with monocultured cells. (D) Representative images of the clonogenic assays of
the cell lines C4-2 cells and colony-forming efficiency (CFE) calculated from the clonogenic assays
of C4-2 cells co-cultured with CAF cells after Gln deprivation. Colony number (≥50 cells/colony)
was scored 10 days after plating. The results are expressed as box and whisker plots (min to max) of
4 biological replicates and are compared with monocultured cells.

2.3. Cancer-Associated Fibroblasts Reprogram LNCaP Cell’s Metabolic Needs

To investigate how CAFs can sensitise hormone-sensitive LNCaP cells to Gln depri-
vation, the effect of CAFs on the LNCaP proteome was assessed. To this end, eGFP2-nls
transduced CAF cells were co-cultured for 96 h with mKATE2-nls transduced PCa cells
and separated by FACS. The proteomes of the separated cells were analysed by mass
spectrometry and compared with those of the corresponding transduced monoculture cells
(Figure 3A). To investigate the differential gene expression induced by CAF cells after 96 h
of treatment, volcano plots (Figures 3B and S2A) comparing the co-cultured cells with the
corresponding monocultured cells were used to illustrate the relationship between fold-
change and statistical significance (adjusted p-value) for all analysed proteins. Co-culturing
resulted in a significant change (adjusted p-value <0.05) in 738 proteins and 182 proteins
in LNCaP and CAF cells, respectively (Figures 3B and S2A). To elucidate the biological
pathways associated with the differentially expressed genes (DEGs), PathfindR analysis
for pathway enrichment analysis was performed using an active subnetwork-oriented
approach to identify significantly enriched pathways (Figures 3C and S2B). The analysis
identified several key pathways significantly enriched in our dataset, including metabolic
pathways with highly significant gene enrichment in LNCaP co-cultured cells and sev-
eral pathways influencing the extracellular matrix in CAF-co-cultured cells (Figure S2B).
The gene set enrichment analysis (GSEA) analysis of different pathways of the metabolic
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group of the Reactome database revealed that the gene set/pathway “metabolism of amino
acids and derivatives” was significantly enriched in co-cultured LNCaP, with a normalised
enrichment score (NES) of 1.72 (Figure 3D,E).
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Figure 3. PathfindR and GSEA analysis results for differentially expressed genes after co-culturing
LNCaP and CAF cells. (A) Graphical representation of the experimental procedure. Created with
BioRender.com (accessed on 26 August 2023). LNCaP mKATE2-nls cells (1 × 106) and CAF eGFP-
nls cells (5 × 105) were seeded into a 10 cm2 dish and cultured for 96 h. The different cells were
then sorted and monocultured and the sorted cells were lysed for mass spectrometry. (B) Volcano
plot of differentially expressed proteins in LNCaP cells after co-culturing the cells for 96 h with
CAFs. Colour coding: gray = no statistically significant difference and not differentially expressed;
blue = statistically significantly downregulated proteins, red = statistically significantly upregulated
proteins. (C) The top 20 enriched pathways were identified by “pathfindR” pathway analysis using
Reactome pathways, ordered by −log10(Padj) in LNCaP cells after co-culturing the cells for 96 h
with CAF cells. (D) Selected metabolic gene sets enriched in co-cultured LNCaP cells using the
REACTOME database. (E) Selected GSEA plots of metabolism of amino acids and derivates for
LNCaP cells co-cultured with CAF.
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2.4. Cancer-Associated Fibroblasts Reduce the Inhibitory Effect of CB839 on Clonogenic Potential

Gln is a non-essential amino acid that makes its removal from the body impossible.
Several inhibitors have been developed to target Gln metabolism, of which the selective
GLS1 inhibitor CB839 is the most promising [12,35–37]. Therefore, the influence of CAFs on
the inhibitory effects of CB-839 cells on LNCaP and C4-2 cell proliferation and clonogenic
potential was examined (Figure 4). To ensure that both cell lines expressed the therapeutic
target structure of CB839, the expression of GLS1 in LNCaP and C4-2 cells was analysed
using qPCR and Western blotting. Both cell lines showed comparable expression levels of
GLS mRNA (Figure 4A) and GLS1 protein (Figure 4B,C). To assess the influence of CAFs on
the effects of CB-839, cell lines were cultured in the presence or absence of CAFs and CB-839
for 96 h (Figure 4D,E). As shown previously, CB-839 treatment led to a minor reduction in
LNCaP cell proliferation without CAFs.
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Figure 4. Influence of CB839 on selected prostate cancer (PCa) cell proliferation co-growth with
cancer-associated fibroblast (CAF) cells. (A) qPCR analysis of relative GLS mRNA levels in LNCaP
and C4-2 cells (n = 4). mRNA levels were normalised to HPRT1. The results are expressed as box
and whisker plots (min to max) of the 4 biological replicates. (B) Representative Western blots of
GLS1 (55–65 kDa) and the housekeeper GAPDH (37 kDa). Chameleon duo pre-stained protein ladder
(Ladder) was used as protein size standard. (C) Densiometric Western blot analysis of GLS1 protein
levels in LNCaP and C4-2 cells (n = 4). Protein levels were normalised to GAPDH. The results are
expressed as box and whisker plots (min to max) of 4 biological replicates. (D) Influence of CB-839
on the LNCaP cell proliferation in the presence or absence of CAF cells. Red object count assessed
proliferation for 96 h. Relative changes in AUC values were calculated from the growth curve
experiments. Data were plotted as mean ± SEM of three biological replicates. Significant differences
were identified using two-way ANOVA. p-values ≤ 0.05 were considered significant. **: p ≤ 0.01.
(E) Influence of CB-839 on the C4-2 cell proliferation in the presence or absence of CAF cells. Red
object count assessed proliferation for 96 h. Relative changes in AUC values were calculated from
the growth curve experiments. Data were plotted as mean ± SEM of three biological replicates.
Significant differences were identified using two-way ANOVA. p-values ≤ 0.05 were considered
significant. ***: p ≤ 0.001. (F + G) Representative images of the clonogenic assays of the cell lines
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LNCaP (F) and C4-2 (G). (H + I) Colony-forming efficiency (CFE) calculated from the clonogenic
assays of LNCaP (H) and C4-2. (I) cells co-cultured CAF cells after CB-839 treatment. Colony number
(≥50 cells/colony) was scored 10 days after plating. The results are expressed as box and whisker
plots (min to max) of 4 biological replicates and are compared with monocultured cells *: p ≤ 0.01.

In contrast, CAFs increased the inhibitory effect on cell proliferation (Figure 4D). This
result is also reflected in dose–response experiments after 96 h (Figure S2E). Consistent
with the Gln deprivation results, CB839 reduced proliferation to the same extent in C4-2
cells alone and co-cultured with CAFs (Figure 4E). As CAFs could rescue the effects of
Gln deprivation on clonogenic potential, the effects of CAFs on the clonogenic potential of
CB839 were also assessed (Figure 4F,G). In line with the results shown for Gln deprivation
(Figure 4H,I), the presence of CAFs reduced the inhibitory effects on the clonogenic potential
of CB839.

2.5. Low GLS1 Expression in Stroma and High Expression in Epithelial Cells Is a Marker for
Bad Prognosis

Previous studies have indicated the role of GLS1 as a marker for therapy resistance
and poor prognosis [11,20,23]. However, these studies did not include GLS1 expression
in stroma. Therefore, previously published GLS1 staining of the Dresden cohort was re-
evaluated using GLS1 staining of the stroma and epithelial cells [11]. GLS1 expression was
elevated in cancerous epithelial cells (Figure 5A).
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Figure 5. GLS1 expression is elevated in malignant epithelial and stroma prostate areas. (A) Im-
munohistochemical staining for GLS1 of representative benign and malignant prostate tissue. Scale
bar = 100 µm. (B) Quantification of GLS1 after immunohistochemistry (IHC) staining of benign and
malignant prostate tissue. Staining was evaluated using the immunoreactivity score (IRS), ranging
from 0 to 12 for GLS1. The results are expressed as box and whisker plots (min to max). Significant
differences were identified using one-way ANOVA. p-values ≤ 0.05 were considered significant.
***: p < 0.001. (C) Pearson correlation of GLS1 expression in benign and malignant PCa areas. The
r-values are displayed in a heat map.

Additionally, the assessment of GLS1 staining in stromal cells revealed elevated GLS1
expression in cancerous stroma areas (Figure 5B). Correlation analysis (Figure 5C) demon-
strated a significant moderate correlation (r = 0.67; p < 0.01) between GLS1 expression in
benign stroma and epithelium and a significant moderate correlation (r = 0.75; p < 0.01)
between GLS1 expression in cancer stroma and epithelium. In line with previous results,
Kaplan–Meier analysis revealed a median overall survival (MS) of 64 months for patients
with low GLS1 and 45 months for those with high GLS1 expression in the prostate epithe-
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lium (Figure 6A). For prostate stroma, Kaplan–Meier analysis revealed a MS of 64 months
for low GLS1 expression and 30 months for high GLS1 expression (Figure 6B). To inves-
tigate whether a combination of GLS1 epithelium and stoma combination would have
any predictive value, four groups (high/high, high/low, low/high, and low/low) were
created based on GLS1 expression in the prostate epithelium and stroma (Figure 6C). Group
analysis revealed an MS for low/low at 64 months, low/high at 57 months, high/low at
30 months, and high/high at 100 months. As the high/low group showed the lowest MS, it
was categorised as a high-risk group. Subsequently, Kaplan–Meier analysis of the high-risk
group compared with the rest of the cohort (low-risk) revealed a significant reduction in
MS to 30 months (high-risk) from 65 (low-risk) months (hazard ratio: 0.294) (Figure 6D).
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Figure 6. Kaplan–Meier analysis of the prostate cancer (PCa) cohort according to the GLS1 expression
reveals a high-risk group with bad clinical outcomes. Median overall survival (MS) analysis was
performed based on GLS1 expression in the epithelium (A), stroma (B), and combined expression
in the epithelium and stroma (C). For combination analysis, data were grouped into the following
expression patterns (epithelium/stroma): high/high, high/low, low/high, and low/low. The median
GLS1-IRS score was selected as the threshold. (D) Kaplan–Meier analysis of the identified high-risk
group (high/low) compared with the rest of the PCa cohort. Abbreviations: HR—hazard ratio
(log-rank). MS—median overall survival.

3. Discussion

Several efficient treatment options with curative intent are available for localised
PCa; however, approximately 20–40% of patients experience tumour recurrence, and
therapy resistance develops [38–42]. Therefore, research strategies are needed to detect
cancer progression and hormonal resistance to reveal possible target windows to inhibit
tumour spreading.

In PCa, metabolic changes enable cancer cells to utilise unconventional nutrients to
meet their energy needs and sustain proliferation [12,43]. Increased amino acid metabolism,
such as Gln, supports redox balance, energy regulation, biosynthesis, and homeostasis
in PCa, making it a promising therapeutic target. Targeting Gln metabolism has shown
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promising results [11,12,20,44,45]. CAFs within the TME play a crucial role in tumour
growth by supplying nutrients, such as amino acids, to cancer cells [7,46]. Therefore, this
study aimed to investigate the effects of amino acid metabolism inhibitors of GLS1 on CAFs
and their interaction and impact on the stemness and proliferation of PCa cell lines.

The TME influences PCa progression and therapeutic response, with CAFs exhibiting
pro-tumourigenic properties [47]. Co-culture experiments showed that CAFs enhance
the proliferation of hormone-sensitive LNCaP cells. This finding aligns with previous
studies by Yu et al., Sun et al., and Tagat et al., all of whom reported an increased LNCaP
proliferation and viability in the presence of CAFs [2,48,49].

Conversely, CAFs had little effect on the proliferation of CRPC cell line C4-2, unlike
previous studies showing significant enhancement by CAFs [49–51]. These studies used
conditioned supernatants or transwell systems, missing direct cell–cell interactions, which
may reduce growth due to contact inhibition and increase cell cycle inhibitors, such as
p27 and p21 [52–55]. Here, fibroblasts increased only LNCaP cell proliferation but not the
CRPC cell line C4-2, suggesting that fibroblasts play a proliferative role in HSPC. In CRPC,
CAFs may maintain and protect against cancer progression, potentially forming niches for
therapy resistance and correlating with unfavourable clinical outcomes [56,57].

This hypothesis was supported by clonogenic assays, which revealed that CAFs in-
crease CFE in both hormone-sensitive and castration-resistant PCa cell lines. This result
indicates that CAFs enhance stemness and regeneration, contributing to tumour progres-
sion [58]. Similar results have been observed in breast cancer cell lines co-cultured with
serum-activated fibroblasts, suggesting that these cells promote clonogenic growth, therapy
resistance, and metastasis [59,60].

CAFs have been reported to promote PCa progression via metabolic rewiring, responsi-
ble for tumour growth, progression, maintenance, and therapy resistance [7,28]. Proteomic
and GSEA analyses performed in this study confirmed the influence of metabolic path-
ways on the increase of hormone-sensitive cell line LNCaP dependency on amino acid
metabolism, particularly Gln. This increased metabolic requirement may be coupled with
the increased proliferation of LNCaP cells, resulting in a higher energy requirement. In
turn, the presence of LNCaP cells mainly influenced signalling pathways in CAFs that
affect the extracellular matrix (ECM). CAFs have been shown to alter the expression of
ECM and adhesion-related proteins, thereby influencing ECM remodelling [61]. Moreover,
collagen-related alterations in tissue were linked to clinically significant prostate cancer at
primary diagnosis, indicating that the influence of cancer cells on CAFs may be responsible
for the reported ECM changes, which could serve as a potential biomarker [62]. Several fac-
tors may be responsible for this reprogramming, including extracellular vesicles, cytokines,
and growth factors that are secreted from CAFs. Cytokines like IL-6 have been reported to
influence metabolic processes in cancer cells and alter LNCaPs response to other soluble
factors [63–65]. However, also direct cell–cell contact may induce metabolic rewiring in the
LNCaP cells.

To meet their elevated energy demands, cancer cells undergo metabolic reprogram-
ming, resulting in a phenomenon known as glutamine addiction [66]. In vivo and ex vivo
experiments conducted on cellular models of non-small cell lung cancer, glioblastoma,
and hepatocellular carcinoma have demonstrated a pronounced dependency of these cells
on Gln [67]. In the context of prostate cancer (PCa), specifically the castration-resistant
prostate cancer (CRPC) phenotype, such dependency appears to be limited to aggressive
forms [12,24]. This observation suggests a metabolic adaptation during the acquisition of
resistance to androgen receptor pathway inhibitors. The present study corroborates these
findings, illustrating an enhanced glutamine sensitivity in the CRPC-specific LNCaP sub-
cell line C4-2. Furthermore, variability in metabolic phenotypes has been observed across
different tumours and within sub-types of the same cancer. Such variations have been
reported in diverse cancer types, including non-small cell lung cancer, glioblastoma, and
breast cancer. This variation underscores the complexity of metabolic reprogramming in
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cancer and highlights the potential for targeted therapeutic interventions based on specific
metabolic dependencies.

Gln has multiple sources in the human body, so it cannot be eliminated. The selective
GLS1 inhibitor CB-839 was used to examine its influence on cell proliferation and clonogenic
potential. CB-839 has been tested in several clinical trials for advanced solid tumours,
including PCa, encouraging clinical activity and tolerability [12,68,69]. In line with the Gln
deprivation results, LNCaP cells were more sensitive to treatment in the presence of CAF
cells, validating the increased Gln requirement induced by CAFs. Independent of CAFs,
the CRPC cell line C4-2 exhibited similar sensitivity to CB-839. This finding is consistent
with previous studies reporting that CB-839 inhibits cell proliferation to a greater extent
in advanced PCa cells than in hormone-dependent cells [23,70]. Like Gln deprivation,
CB-839 treatment reduced the CFE across all investigated cell lines, showing an increased
influence on the CFE of CRPC cells compared with the hormone-sensitive cell line LNCaP.
This conclusion is supported by the findings of Xie et al., which demonstrated a radiation-
resistant phenotype of C4-2 using gene expression analyses that revealed differential
regulation of genes involved in cell cycle arrest and DNA repair [71]. Radioresistance has
been linked to increased Gln dependency in PCa [20].

Furthermore, C4-2 cells have been characterised by reduced sensitivity to androgen
deprivation and antiandrogen treatments, reinforcing their classification as castration-
resistant prostate cancer (CRPC) [72]. Both forms of resistance have been associated with an
increased dependency on glutamine (GLN) metabolism, which may explain the heightened
sensitivity of C4-2 cells to GLN deprivation [24]. These findings on cell proliferation and
CFE induced by CB-839 treatment align with previous observations, indicating that Gln
plays a more maintenance-oriented role in CRPC [23]. This conclusion can be supported
by the work of Xu et al., who showed a GLS1 isoform switch from KGE to GLC in CRPC
development, which is associated with more aggressive tumour progression and higher
Gln dependency [23].

Because CAFs have been shown to create a niche that promotes the clonogenic poten-
tial of all selected PCa cells, the influence of CAFs on Gln deprivation and GLS1 inhibition
was assessed. The results revealed that, after inhibition of GLS1 activity, CAFs diminished
the Gln-reducing effect in all tested cell lines. This result indicates that GLS1 plays a role in
the regenerative and clonogenic potential of PCa, independent of hormone status, and may
be an important factor in tumour recurrence and metastasis.

As Gln deprivation and GLS1 inhibition could only be partially counteracted by
fibroblasts, their expression was investigated in a large cohort of PCa tissues to assess its
value as a therapeutic target. In line with other studies, increased expression of GLS1 has
been observed [11,23,26,73]. Correlation analysis of the expression showed a moderate link
between the epithelium and stroma, indicating no direct relationship between increased
expression in the malignant epithelium and stroma. According to MS, the Kaplan–Meier
analysis of GLS1 expression in the epithelium and stroma revealed only a minor advantage
for patients with low GLS1 expression. Similar results were reported by Myint et al., who
did not show a statistical difference in MS but showed a trend toward worse disease-free
survival with high GLS mRNA levels [26]. However, Kaplan–Meier analysis of GLS1
expression in epithelium and stroma combined revealed a “high-risk” patient group with
low stroma and high cancer GLS1 expression, which had a statistically shorter MS than
the other patients. GLS1 expression is widespread among patients in malignant areas, so
these “high-risk” patients may benefit most from therapeutic intervention against GLS1.
However, this result needs to be validated in an independent patient cohort.

Moreover, this result reflects the high heterogeneity of PCa, one of the most sig-
nificant issues in precision therapeutic interventions, highlighting the urgent need for
suitable biomarkers for personalised medicine in PCa. However, targeting GLS1 and
the Gln metabolism has already been reported to induce a metabolic shift to glycoly-
sis [74]. This shift may be a reason for the mediocre success of Gln inhibitors in clinical
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trials [12,24,35,69]. Therefore, combination strategies should be considered to develop
suitable therapeutic strategies.

This feasibility study developed a two-colour co-culture PCa cell (red) and fibroblast
(green) model to investigate the direct influence of CAF and Gln metabolism on the growth
behaviour of HSPC and CRPC cell lines. It was demonstrated that CAFs lead to metabolic
reprogramming of the HSPC cell line LNCaP, making it more dependent on Gln for its
growth behaviour. While providing valuable insights, this study is subject to several limi-
tations that warrant mention. Firstly, although the proteomics analysis indicated various
alterations in LNCaP cells and co-cultured cancer-associated fibroblasts (CAFs), the direct
influence of CAFs on castration-resistant prostate cancer (CRPC) was not extensively inves-
tigated. Future studies should consider a detailed exploration of this interaction better to
understand the role of CAFs in CRPC progression. Secondly, comprehensive metabolomic
analysis is recommended to provide deeper insights into the metabolic reprogramming in-
duced by CAFs. Such studies would enhance our understanding of the metabolic dynamics
within the tumour microenvironment and could unveil potential therapeutic targets.

Additionally, this study has not thoroughly examined the impact of direct cell–cell
contacts. Comparative analyses involving co-culture systems and conditioned media could
elucidate the specific contributions of soluble factors versus direct cellular interactions to
tumour behaviour. The incorporation of 3D culture models, such as spheroids, should also
be considered in future research. It has been documented that 3D cultures can significantly
alter cancer cell metabolism, thus providing a more physiologically relevant model system
that better mimics in vivo conditions [75]. Furthermore, xenograft experiments present
challenges, as murine stroma can infiltrate human tumour cells, potentially confounding
results. Alternative models that minimise or account for these interspecies interactions
need to be developed to enhance translational relevance.

Despite these limitations, this study successfully demonstrates the feasibility of a co-
culture system and underscores the importance of replicating complex tumour architectures
in vitro. This approach is crucial for bridging the gap between laboratory findings and
clinical applications, thereby facilitating the translation of research from bench to bedside.
Moreover, failed clinical trials such as the ENTRATA Trial or the CANTATA randomized
clinical trial should be re-evaluated using GLS1 expression in TME and epithelial cells.

4. Materials and Methods
4.1. Cell Lines

Hormone-sensitive LNCaP, hTERT PF179T CAF (CAF), and 293T cell lines were
obtained from the American Type Culture Collection (ATCC). Castration-resistant C4-2
cells were kindly provided by Prof. Thalmann (University of Bern, Bern, Switzerland) [76].
Mycoplasma testing was routinely performed using the Mycoalert detection assay (Lonza,
Basel, Switzerland) and cell line authentication was performed annually using STR profiling.

4.2. Lentivirus Production, eGFP-NLS and mKATE2-NLS Nuclei Labelling, and Image Cytometry

For lentiviral production, 293T cells were transfected with psPAX2, pVSV-G, and
pLenti6.4-EF1a-mKATE2-NLS or pLenti6.4-EF1a-eGFP-NLS expression vectors at a ratio of
3:1:4 using ViaFect™ transfection reagent (Promega GmbH, Walldorf, Germany) according
to the manufacturer’s instructions, as described by Beier et al. 2024 [11]. For cell line
transduction with mKATE2-NLS, target cell lines were incubated overnight (ON) with
lentivirus and a multiplicity of infection of 2.5, 5, and 10. After one week, mKATE2-
NLS positivity was determined by immunofluorescence (Figure 1A,B). All the cells were
counterstained with 1 µM Hoechst 33,342 (Thermo Fisher Scientific GmbH, Frankfurt,
Germany). mKATE2-NLS (excitation peak 588 nm and emission peak 633 nm) and Hoechst
33,342 (excitation peak 352 nm and emission peak 454 nm) positive cells were detected
using a KEYENCE BZ-X800 microscope (Keyence GmbH, Neu-Isenburg, Germany) and
analysed using BZ-X800 Analyzer software (Keyence GmbH, Neu-Isenburg, Germany).
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The cell lines with the highest positivity were subsequently used for blasticidin selection
(Figure 1C).

4.3. Gln Deprivation and CB-839 Treatment

Cells were seeded in their growth media (2 mM Gln) for 24 h for Gln deprivation
proliferation experiments. Subsequently, media was discarded, and cells were cultured in
RPMI1640 (Cat# R0883, Sigma Aldrich, Merck KGaA, Darmstadt, Germany) supplemented
with 10% FBS with or without 2 mM L-glutamine (Gln, Cat# G8540, Sigma Aldrich) for
96 h or 120 h. Changes in PCa cell proliferation were assessed by red nuclei counting using
the S3 Incucyte® Live-Cell Analysis System. For CB-839 (Cat# S7655, Selleck Chemicals)
experiments, cells were seeded in RPMI1640 containing 2 mM Gln for 24 h. Subsequently,
cells were treated with different concentrations of CB-839 solved in DMSO 96 h. The
CB-839 untreated controls were treated with the appropriate amount of DMSO to exclude
solvent effects.

4.4. Proliferation Assay with the IncuCyte® S3 Live-Cell Analysis System

Cell proliferation was measured by mKATE2-NLS labelled nuclei counting determina-
tion using the IncuCyte S3 Live-Cell Imaging System (Sartorius AG, Goettingen, Germany).
The cells were seeded in 96-well clear flat-bottom plates (Corning GmbH, Kaiserslautern,
Germany) and incubated ON at 37 ◦C and 5% CO2. Subsequently, the plates were treated
and placed into the IncuCyte S3 Live-Cell Imaging System live imaging system and scanned
every 6 h for 5 consecutive days. Confluence and cell number were analysed using IncuCyte
2023C analysis software by measuring the growth area or counting the mKATE2-NLS la-
belled nuclei. Cell proliferation was expressed as increased cell confluence or number
compared with the first scan time point.

4.5. Clonogenic Assay

The clonogenic assay was performed as described by Franken et al. [77]. First, CAFs
were seeded in 6-well plates and allowed to adhere for 24 h. Subsequently, cancer cells were
either added to the previously seeded CAFs or individually in 6-well plates. Concurrently,
the cells were treated with 2 mM Gln (control group), 0 mM Gln, or 2 mM Gln + 1 µM
glutaminase inhibitor (CD-839) and incubated for 10 days. The cell medium was changed
after 4 days of incubation. Colonies were fixed with 3.7% formaldehyde solution (Merck
KGaA, Darmstadt, Germany) at room temperature (RT) for 15 min, washed multiple
times with 2 mL PBS, and covered with 1 mL PBS. Colony amounts were visualised and
determined using a compact fluorescence microscope BZ-X800E (Keyence GmbH, Neu-
Isenburg, Germany). Colony-forming efficiency was evaluated using BZ-X800 Analyzer
Software (Keyence GmbH, Neu-Isenburg, Germany). Cell colonies were defined as those
containing at least 50 cells per colony. The minimum size required was set individually for
each cell line. Colony-forming efficiency (CFE) and survival fraction were calculated as
described by Franken et al. [77].

4.6. Western Blot

Adherent cells were harvested with RIPA buffer complete protease inhibitor cocktail
(Roche Applied Science, Penzberg, Germany), lysed, and protein concentrations were
determined as previously described [78,79]. As previously described, 20 µg of protein was
used for the Western blot analysis [78,79]. Glutaminase-1/GLS1 (E9H6H) XPR rabbit mAb
(1:5000, LOT: 19/05-G4cc-C5cc, Cat#: NB600-502, Cell Signaling Technology, Frankfurt am
Main, Germany), mouse monoclonal anti-GAPDH (6C5cc) (1:10,000, LOT: 1, Cat#: 88964,
Bio-Techne GmbH, Wiesbaden, Germany), IRDye 680RD goat anti-mouse (1:20,000, LOT:
D30207-05, Cat#: 926-68070, Li-COR Biosciences GmbH, Bad Homburg vor der Höhe,
Germany), and IRDye 800 CW goat anti-rabbit (1:20,000, LOT: D30307-15, Cat#: 926-32211,
Li-COR Biosciences GmbH) were used for protein detection. Signal visualisation was
performed using an Odyssey M system (Li-COR Biosciences GmbH) and analysed using
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Image Studio 6.0 software (Li-COR Biosciences GmbH). Uncropped Western blot images
are displayed in the Supplementary Files. Raw images files are displayed in Figure S2C,D.

4.7. Data Preparation, Imputation, Overrepresentation Analysis (ORA), and Gene Set Enrichment
Analysis (GSEA) of the Mass Spectrometry Data

The cells were lysed using RIPA buffer for mass spectrometry, and the protein concen-
tration was determined as described previously [78,79]. Lysis buffer (10% SDS, 100 mM
TEAB, pH 8.5) was then added to the sample at a ratio of 1:1. The core facility “Mass
Spectrometry and Proteomics TU Dresden” processed and normalised the samples as
previously described [80,81]. Further analysis were performed using R and R Studio [82,83].
The gene names were separated and filtered for missing values, and duplicate genes were
excluded using tidyr und dplyr packages [84]. Imputation was performed using the miss-
Forest package [85,86]. Imputed data were processed using the limma package, which uses
moderated t-statistics and Benjamin Hochberg multiple analysis correction. Volcano plots
were computed to explore the data, visualising significantly up- or downregulated genes
with a p-value of <0.05 [87,88]. Differentially expressed genes with an adjusted p-value of
<0.05 were processed using the pathfindR package with the Reactome gene set [89]. This
package utilises a protein–protein interaction network (PIN) and performs a one-sided
hypergeometric test on the active subnetworks. For gene set enrichment analysis (GSEA),
all differentially expressed genes of LNCaP monoculture vs. co-culture were ranked ac-
cording to sign (logFC) × log10 (adjusted p-value) and sorted in descending order. Gene
symbols were converted to Enrez IDs using clusterProfiler’s bitr function. This ranked
list was processed by ReactomePA using the function gsePathway with the parameter by
=‘fgsea’ [90–93]. Afterwards, bar plots and GSEA plots were created. Pathways with an
adjusted p-value < 0.05 were considered significant. The R script, session info, and packages
used were deposited into GuitHub at https://doi.org/10.5281/zenodo.13208429.

4.8. Patients and Study Design

This cohort contained 108 tissue specimens from PCa patients undergoing palliative
TURP (Table 1) [11,94,95]. Matched benign samples were excised from the histologically
confirmed non-malignant regions of 76 patients. This study was approved by the local
institutional review board of the Faculty of Medicine of Technische Universität Dresden
(ethics vote EK43022017). This study followed the Declaration of Helsinki and the ICH
Harmonized Tripartite Guideline for Good Clinical Practice.

Table 1. Baseline characteristics of PCa patient cohort.

All HSPC CRPC
Patient Number 108 26 82

Median age at primary diagnosis, years 71 72 71
17 6.3 32.5

Median PSA at primary diagnosis, ng/mL (Interquartile range IQR) (6.8; 73.0) (2.7; 10.2) (8.9; 101.6)
Neuroendocrine differentiation at primary diagnosis, % 1 0 1

Presence of bone metastases at primary diagnosis, % 25 3.8 32
Presence of lymph node metastases at primary diagnosis, % 14 12 11.7

Presence of organ metastases at primary diagnosis, % 1 1 1
Median overall survival since the start of primary therapy, months 59 47 81

4.9. Immunohistochemistry

Immunohistochemistry (IHC) was performed as described previously [11]. GLS1
IHC was performed using the Ventana BenchMark device (Roche, Vienna, Austria). The
following antibodies were used: GLS1 (E9H6H) RabMab XP® (1:800; LOT: 19/05-G4cc-C5cc,
Cat#: NB600-502; Cell Signaling Technology, Frankfurt am Main, Germany). As previously
described, the evaluation was performed using the modified “quick-score” protocol [11].

https://doi.org/10.5281/zenodo.13208429
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4.10. qPCR

mRNA and cDNA were isolated as previously described [96,97]. Quantitative PCR
(qPCR) was performed using GoTAq Probe qPCR master mix (Promega GmbH, Mannheim,
Germany). To this end, the following qPCR-mix was used for each sample: 2.5 µL RNAse
and DNase-free distilled water, 0.5 µL 20× TaqMan assay (Thermo Fisher Scientific GmbH,
Frankfurt, Germany), and 5 µL Go Taq Probe qPCR master mix. cDNA (2 µL) was added to
8 µL qPCR mix, pipetted into a 96-well microtiter plate, and placed into a LightCycler 480
(Roche, Mannheim, Germany). qPCR was performed for 45 cycles using the recommended
run template (denaturation step at 95 ◦C for 10 min, amplification step at 95 ◦C for 15 s,
and subsequently at 60 ◦C for 60 s, and a final cooling step at 40 ◦C for 1 min). The data
were analysed using the ∆∆Ct method. Data were expressed as 2−∆Ct(Gene of Interest—HPRT1).
The following TaqMan assays (all Thermo Fisher Scientific GmbH, Frankfurt, Germany)
were used for qPCR: GLS (Hs01014020_m1), and HPRT1 (Hs02800695_m1).

4.11. Statistical Analysis

Prism 10.2.3 (GraphPad Software, San Diego, CA, USA) was used for statistical analy-
ses. Data were presented as mean ± SD or mean ± SEM to estimate the mean in repeated
experiments. The area under the curve (AUC) was calculated to compare growth rates,
as previously described [11,34,98]. The Kolmogorov–Smirnov and D’Agostino–Pearson
omnibus normality tests determined the Gaussian distribution. Student’s t-test (two-sided)
and one-way analysis of variance (ANOVA) with Šídák correction were used to identify
significant differences. Unless otherwise noted, all experiments were performed with at
least three biological replicates. Statistical significance was set at p ≤ 0.05, and statistical
significance was indicated by asterisks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25179275/s1.
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