S International Journal of
Molecular Sciences

Article

Multi-Omics Analysis Revealed the rfSNPs Potentially Involved
in T2DM Pathogenic Mechanism and Metformin Response

Igor S. Damarov !, Elena E. Korbolina 1'*, Elena Y. Rykova 2 and Tatiana I. Merkulova !

check for
updates

Citation: Damarov, 1.S.; Korbolina,
E.E.; Rykova, E.Y.; Merkulova, T.I.
Multi-Omics Analysis Revealed the
rSNPs Potentially Involved in T2DM
Pathogenic Mechanism and
Metformin Response. Int. J. Mol. Sci.
2024, 25,9297. https://doi.org/
10.3390/ijms25179297

Academic Editors: Antonio

Lucacchini and Koichi Fujisawa

Received: 11 July 2024
Revised: 14 August 2024
Accepted: 26 August 2024
Published: 27 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences,

630090 Novosibirsk, Russia; damarovis@bionet.nsc.ru (I1.5.D.); rykova.elena.2014@gmail.com (E.Y.R.);
merkulova@bionet.nsc.ru (T.I.M.)

Department of Engineering Problems of Ecology, Novosibirsk State Technical University,

630087 Novosibirsk, Russia

*  Correspondence: lungry@bionet.nsc.ru

Abstract: The goal of our study was to identify and assess the functionally significant SNPs with
potentially important roles in the development of type 2 diabetes mellitus (T2DM) and/or their effect
on individual response to antihyperglycemic medication with metformin. We applied a bioinfor-
matics approach to identify the regulatory SNPs (rSNPs) associated with allele-asymmetric binding
and expression events in our paired ChIP-seq and RNA-seq data for peripheral blood mononuclear
cells (PBMCs) of nine healthy individuals. The rSNP outcomes were analyzed using public data
from the GWAS (Genome-Wide Association Studies) and Genotype-Tissue Expression (GTEx). The
differentially expressed genes (DEGs) between healthy and T2DM individuals (GSE221521), including
metformin responders and non-responders (GSE153315), were searched for in GEO RNA-seq data.
The DEGs harboring rSNPs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG). We identified 14,796 rSNPs in the promoters of 5132 genes of human
PBMCs. We found 4280 rSNPs to associate with both phenotypic traits (GWAS) and expression quan-
titative trait loci (eQTLs) from GTEx. Between T2DM patients and controls, 3810 rSNPs were detected
in the promoters of 1284 DEGs. Based on the protein-protein interaction (PPI) network, we identified
31 upregulated hub genes, including the genes involved in inflammation, obesity, and insulin resis-
tance. The top-ranked 10 enriched KEGG pathways for these hubs included insulin, AMPK, and FoxO
signaling pathways. Between metformin responders and non-responders, 367 rSNPs were found in
the promoters of 131 DEGs. Genes encoding transcription factors and transcription regulators were
the most widely represented group and many were shown to be involved in the T2DM pathogenesis.
We have formed a list of human rSNPs that add functional interpretation to the T2DM-association
signals identified in GWAS. The results suggest candidate causal regulatory variants for T2DM, with
strong enrichment in the pathways related to glucose metabolism, inflammation, and the effects
of metformin.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and one of
the most prevalent metabolic disorders, which affects hundreds of millions of individuals
worldwide [1]. The etiology of this multifaceted disease involves an interplay of multiple
genetic, epigenetic, developmental, and environmental factors, including age, metabolic
syndrome, and lifestyle. T2DM also overlaps in epidemiology, pathogenesis, and genetics
as revealed by genome-wide association studies (GWAS) [2] with obesity; notably, there is
also a strong immune connection between the two diseases [3,4].

The characteristics of T2DM are the alterations in circulating glucose level regulation,
chronic hyperglycemia, and insulin resistance [5,6]. Emerging data suggest that the gluco-
toxicity caused by chronic hyperglycemia injures many cell types, such as pancreatic cells,
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leading to loss in functional (3-cells [7]; hepatic cells, inducing endoplasmic reticulum stress;
hepatocyte cell death; nonalcoholic fatty liver disease [8]; innate immune cells, inducing
an inflammatory response [9]; and activation of monocytic lineage cells [10]. In turn, the
chronic inflammatory state associated with the onset of T2DM leads to the development of
long-term consequences: macrovascular complications, including a range of cardiovascular
diseases [11,12] and microvascular complications, including retinopathy, nephropathy, and
neuropathy [13]. Furthermore, it may contribute to the chronic inflammation of the central
nervous system and neurodegeneration [14], as well as contribute to the association of
T2DM with other conditions promoted by inflammation, such as rheumatoid arthritis [15].

The candidate genes [16-18] and GWAS [19,20] have linked single nucleotide poly-
morphisms (SNPs) at more than 250 loci in the human genome to T2DM risk, laying the
foundations for functional investigations. Among them, the association of TCF7L2 (tran-
scription factor 7-like 2) with T2DM seems to be the most promising since many TCF7L2
variants that increase the disease risk have been replicated in numerous studies and pop-
ulations with diverse genetic origins [21]. The gene encodes a downstream effector of
the canonical Wnt/ 3-catenin signaling pathway, which has been associated with several
fundamental processes, including adipogenesis [22]. Most of the TCF7L2 variants revealed
by GWAS are located in noncoding genome regions suggesting that they exert their effects
by modulating expression. The high-performance sequencing of formaldehyde-assisted
isolation of regulatory elements (FAIRE-seq) in human islets demonstrated that TCF7L2
at-risk variants were mapped in open chromatin sites. Among them, the heterozygotes
of 157903146 showed that enhancer activity depended on the allele [23]. A therapeutic
potential was reported for some TCF7L2 variants, for example, intronic rs290487 influenced
the efficacy of repaglinide, an oral hypoglycemic agent, in Chinese T2DM patients [24].

Yet deciphering the functionality of the known risk variants on a genome-wide scale
is still challenging. That is why different omics approaches are ever more frequently used
to study the functional significance of noncoding variants. In particular, Yan et al. [25]
measured the transcription factor—DNA interactions using an ultra-high-throughput mul-
tiplex protein-DNA binding assay, termed SNP-SELEX (SNP evaluation by Systematic
Evolution of Ligands by Exponential enrichment). The authors examined the in vitro
binding of 270 human transcription factors to common sequence variants. The input DNA
library contained more than 380,000 oligonucleotides originally designed to represent over
95,000 SNPs. They covered 110 SNPs linked to T2DM susceptibility by GWAS at the start
of the project, 6724 SNPs in high LD with them (r> > 0.8), and 89,162 common SNPs in
annotated candidate cis-regulatory sequences located within 500 kb of GWAS-derived
SNPs. As a result, approximately 11% of the input SNPs (11,079 SNPs) showed significantly
differential binding to at least one transcription factor to predict the potential impact on the
involved molecular pathways.

In this study, we used a multi-omics approach to search for the functionally significant
SNPs associated with T2DM. First, we obtained the ChIP-seq data for histone modifications,
histone H3 lysine K4 trimethylation (H3K4me3), histone H3 lysine 27 acetylation (H3K27ac),
and the transcriptome sequencing data (RNA-seq) for peripheral blood mononuclear cells
(PBMCs) from nine healthy individuals. After the primary data processing and filtering,
we searched for allele-asymmetric binding and expression events in paired ChIP-seq and
RINA-seq data for each individual. Thus, we identified 14,796 rfSNPs that influenced the
expression of 5132 genes, of which about 40% coincided with the corresponding GWAS
data. The top GWAS phenotypic associations for these rSNPs included T2DM and a group
of closely related characteristics (waist-hip index, waist-to-hip ratio adjusted for BMI, and
a body shape index). Then, we used publicly available RNA-seq data from both healthy
individuals and the individuals with T2DM (GSE221521), including metformin responders
and non-responders (GSE153315), to evaluate the rSNPs potentially involved in T2DM
pathogenic mechanisms and drug response.
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2. Results
2.1. Algorithm for Searching the rSNPs Associated with Allele-Specific Events in ChIP-seq and
RNA-seq Data and Construction of rSNPs Panel

The rSNP search strategy comprised six main stages (Figure 1). At the first stage,
PBMCs were isolated from the peripheral blood of nine healthy individuals. At the next
stage, the active regulatory genome regions marked with histone modifications H3K4me3
and H3K27ac (ChIP-seq) were sequenced. Concurrently, the transcriptome of these PBMC
samples was sequenced (RNA-seq). Allelic asymmetry was separately computed for each
heterozygous SNP using the ChIP-seq and RNA-seq data. Next, allele-specific binding
(ASB) SNPs located within #1000 bp from the transcription start sites (TSSs) of the known
genes were extracted from ChIP-seq data. At the final stage of the search for rSNPs, the
promoter ASB SNPs were intersected with the corresponding genes with determined allele-
specific expression (ASE) events. The resulting rSNPs panel was characterized using the
GWAS [26,27], GTEx [28,29], and annotation and enrichment analysis of allele-specific tran-
scription factor binding at SNP (ANANASTRA) [30,31] data. Then, the representation of
rSNPs in the promoters of the genes with differential expression in the blood cells of T2DM
patients versus healthy subjects (GSE221521) and in response to metformin (GSE153315)
was assessed followed by the characterization of these genes utilizing the Search Tool
for the Retrieval of Interacting Genes (STRING) [32,33], KEGG [34,35], GO [36,37], Reac-
tome [38,39], and literature data.

Isolation of mononuclear cellsfrom peripheral blood of nine individuals

Acquisition of ChIP-seq data Acquisition of RNA-seq
(H3K4me2 and H3K27ac) data

Primary data processing

Data alignment to reference genome

Search for heterozygous positions

Construction of individual ive and data al to them

21

Identification of heterozygous SNPs with allelic asymmetry

Allelic asymmetry computation for each SNP from ChIP-seq and
RNA-seq data (bi ial test adj d for multiple comparisons)

UCSC Genome Browser (fig 38)

o
£a

Search for ChIP-seq ASB SNPs in promoters
(1000 bp from transcription start site)

Identification of rSNPs

Computation of ASE events in target genes based
of RNA-seq-derived allele-asymmetric SNPs

Search for ASB SNPs in regulatory regions of
genes with detected allele-specific expression

GTEx, GWAS, ANANASTRA

Characterization of rSNP panel

Search for DEGs

SIRING , KEGG, GO, Reactome
Analysis of resulting DEG set
Figure 1. Scheme of the main stages in the search for rSNPs and their further analysis. The solid gray
frame shows the stages of the search for rSNPs; the dotted gray frame, further analysis of the rSNP
panel; and the cyan italic, data sources.
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The total volume of our NGS data is 278.3 GB (ChIP-seq, 142 GB and RNA-seq,
136.3 GB); on average, the information volume per individual is 15.35 GB (15.7 GB, ChIP-seq
and 15.1 GB, RNA-seq), which is 177.6 million ChlIP-seq paired-end reads and 176 mil-
lion RNA-seq paired-end reads per individual. The determination of allele-asymmetric
events allowed us to find 14,796 rSNPs associated with the expression of 5132 genes
(Supplementary Table S1).

2.2. Characterizing Constructed rSNP Panel with GWAS, GTEx, and ANANASTRA

The interception of rSNPs with the genome regions within 1000 bp from SNPs in the
GWAS catalog (as of March 2023) demonstrated the association of 5688 rSNPs (38.4% of all
rSNPs of the panel) with different phenotypic traits. Note that 1107 rSNPs (7.5% of all rSNPs
of the panel) were directly represented in the GWAS catalog (Supplementary Table S2). The x>
estimation demonstrated the rSNP panel enrichment in GWAS variants (p-value < 2.2 x 1076;
OR = 1.7; and 95% CI, 1.6-1.8) compared with all heterozygous non-regulatory SNPs.

The resulting rSNP set is enriched in GWAS phenotype associations (Supplementary Table S3)
(Fisher’s test with Benjamini-Hochberg. p.adj < 0.1). Preliminarily, we excluded the traits
associated with less than 100 GWAS variants from the analysis. In the resulting group of
traits ranked according to the number of GWAS-derived rSNPs, most of the traits among
the top 20 ones were associated with quantitative blood cell characteristics (Table 1). In
addition, this list contains T2DM and the morphometric characteristics directly associated
with this disease, namely, waist-hip index, waist-to-hip ratio adjusted for BMI, and a body
shape index.

Table 1. Top 20 traits ordered according to the number of GWAS-derived rSNPs.

Total Number of SNPs Number of rSNPs
Trait per Trait in GWAS Directly Included in p-adj. Odds Ratio *
Catalog GWAS Catalog
Waist-to-hip ratio adjusted for BMI 3741 36 1.1 x 1073 2.2 (1.5-3.1)
Mean corpuscular volume 2227 31 1.1 x 107 3.2 (2.2-4.6)
White blood cell count 2456 31 6.1 x 1075 2.9 (2-4.2)
Waist-hip index 2526 28 1.1 x 1073 2.5(1.7-3.7)
Hip circumference adjusted for BMI 3359 28 4.1 x 1072 1.9 (1.3-2.8)
Platelet count 2609 27 3.9 x 1073 2.4 (1.6-3.5)
Mean corpuscular hemoglobin 2365 25 4.8 x 1073 2.4 (1.6-3.6)
Lymphocyte count 1651 24 9.8 x 1075 3.3 (2.1-5)
Monocyte count 1767 24 2.1 x10°* 3.1(2-4.7)
Red blood cell count 2487 24 1.9 x 1072 2.2 (1.4-3.3)
Neutrophil count 1559 23 1.1 x 1074 34 (2.1-5.1)
Eosinophil count 2100 23 48 x 1073 2.5 (1.6-3.8)
Type 2 diabetes 2830 23 7.1 x 1072 1.9 (1.2-2.8)
Red cell distribution width 1732 20 55 x 1073 2.6 (1.6-4.1)
Mean platelet volume 1402 16 2.1 x 1072 2.6 (1.5-4.3)
A body shape index 1514 16 3.6 x 1072 2.4 (1.4-3.9)
Monocyte percentage of white cells 738 15 1.9 x 1074 4.6 (2.6-7.7)
Plateletcrit 930 15 1.6 x 1073 3.7 (2-6.1)
Mean spheric corpuscular volume 821 14 1.6 x 1073 3.9 (2.1-6.6)
Appendicular lean mass 1569 14 8.8 x 1072 2(1.1-3.4)

* 95% confidence interval is parenthesized.
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We searched the GTEx Consortium data as of March 2023 for the rSNPs associated with
the altered gene expression in different tissues (search for eQTLs) and found that 9871 rSNPs
(66.7% of the overall rSNP panel) are associated with eQTLs; notably, 2474 rSNPs were
directly represented in the GTEx catalog and 7397 ones situated within +1000 bp of them
(Supplementary Table S4). Of all tissues represented in GTEX, the largest number of rSNPs,
2464, was expectedly detected in the whole blood (the data on individual blood cell fractions
are absent in the catalog). The enrichment analysis demonstrated that the rSNP panel was
enriched in the GTEx eQTL variants (p-value < 2.2 x 107¢; OR = 2.49; 95% ClI, 2.38-2.6) as
compared with all heterozygous non-regulatory SNPs identified in our ChIP-seq data.

In total, 4280 rSNPs (28.9% of all detected rSNPs) in 1628 genes were simultane-
ously associated with an eQTL effect (according to GTEx data) and a certain pheno-
typic trait (according to GWAS data) (Figure 2). Published data suggest the involvement
of many of these genes in inflammatory processes (ADAM1I7 [40-42], AHNAK [43,44],
AIF1 [45-47], CCDC92 [48], CTBP1 [49], HCP5 [50], MAPKBP1 [51], and MAST3 [52]);
obesity (TP53INP1 [53], TKT [54], ADAM17 [40,41], and AHNAK [55]), insulin resistance
(TP53INP1 [53], TKT [54], and CCDC92 [48]); insulin secretion (GIPR [56], KCNJ15 [57], and
AP352 [58], ARAP1 [59]); proliferation of pancreatic 3-cells (CDKN1B [60] and CCND2 [61]);
mitophagy (TP53INP1 [53]); glycolysis (TKT [54]); and carbohydrate transport (GBA2 [62]).
Approximately 14% of these rSNPs (598) were associated with T2DM or tightly correlated
with its traits according to GWAS data (Supplementary Table S5).

Traits
(GWAS)

IFs eQTLs
(ANANASTRA) (GTEx)

Figure 2. Venn diagram showing the number of the rSNPs localized to allele-specific transcription
factor binding sites (ANANASTRA), rSNPs associated phenotypic traits (GWAS data), and eQTLs
effects (GTEx data).

The intersection of our list of all 14,796 rSNPs with the variants detected in the
ANANASTRA allele-specific binding loci of different transcription factors (ChIP-seq data)
showed that 30.8% (4560, FDR < 0.05) of our rSNPs were localized to the allele-asymmetric
binding sites of different transcription factors (Figure 2). The share of such rSNPs increases
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to 33.4% (1433, FDR < 0.05) for the list of 4280 rSNPs associated with eQTLs and different
GWAS phenotypic traits. The largest number of the 4280 rSNPs was situated in the allele-
specific binding sites of ANDR (N =217), CTCF (N =215), STAT1 (N = 167), BRD4 (N = 126),
ESR1 (N =121), YY1 (N =97), GCR (N = 89), SPT5H (N = 76), STAG1 (N = 74), and ZFX
(N =63).

2.3. Analysis of Hub Genes, Modules, and Pathways in Associative Gene Networks
of rSNP-Governed Differentially Expressed Genes Related to T2DM

2.3.1. Search for Differentially Expressed Genes Related to T2DM and Harboring rSNPs
within Promotors

As described above, the formed rSNP panel emerged to be enriched in the variants
related to T2DM and the associated traits. To further clarify the putative role of the discov-
ered rSNPs in the mechanisms underlying T2DM, we analyzed the RNA-seq (GSE221521)
data deposited with the GEO datasets on the PBMCs of healthy subjects (N = 50), patients
diagnosed with this disease (N = 74), and T2DM subjects with diabetic retinopathy (N = 69),
representing the largest sample of the open access ones [63]. Note that these data were
already searched for DEGs [63]; however, the authors did not give their full list. Corre-
spondingly, we recomputed differential expression setting other significance thresholds
(IlogrFC 1 > 0.2 and p.adj. < 0.05).

We did not discover any DEGs when comparing the cohorts of healthy subjects and the
T2DM patients without retinopathy. However, the comparison of the healthy cohort and
the T2DM individuals with retinopathy allowed us to detect 4612 DEGs and 1284 of them
contained 3810 rSNPs in their promoters. Moreover, 2481 rSNPs resided in the promoters of
772 upregulated DEGs (logo FC > 0) and 1329 rSNPs in the promoters of 512 downregulated
DEGs (log, FC < 0) (Figure 3). Notably, among these rSNPs, rs893617 (AP3S2), rs1552224
(ARAP1), 1s3744347 (CBX1), and rs2066827 (CDKN1B) are associated with T2DM according
to GWAS data. The genes in which these rSNPs are located play an important role in the
pathogenesis of T2DM [58-60]. As we mentioned earlier, AP352 and ARAP1 are involved in
insulin secretion [58,59]. Increased expression of CDKN1B is associated with structural and
functional changes in the kidneys in diabetic nephropathy [64], decreased pancreatic (3-cell
proliferation and serum insulin levels [60], as well as decreased macrophage proliferation
and inflammation in atherosclerosis [65].
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Figure 3. Volcano plot of DEGs. The horizontal axis stands for log2 fold change and the vertical axis,
for —logjo (adjusted p-value). Statistically significant DEGs harboring rSNPs in their promoters are
marked red.

2.3.2. Identification of Hub Genes and Analysis of Key Modules Using STRING-Based
Protein Interactions, KEGG, and GO Enrichment

The detected DEGs carrying rSNPs in their promoters were searched for hub genes,
typically defined as genes involved in the regulation of various biological processes via the
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interaction with their numerous target genes or proteins. We assumed that the rSNPs in the
promoters of hub genes influenced their expression and thereby significantly interfered
with the regulation of key processes associated with the development of diabetes and
its complications.

Using STRING, we constructed a PPI network for the protein products of upregulated
DEGs, comprising 735 nodes and 2243 edges. The computations of topological character-
istics for each node in this network allowed us to identify the protein products of 31 hub
genes (Supplementary Table S6). Hub genes were mainly represented by the genes involved
in transcription regulation, namely, coding for transcription factors (TP53, SREBF1, and
RXRA), a corepressor (NCOR2), a chromatin-binding protein (BRD4), histone deacetylase
(HDAC4), and RNA polymerase II subunit RPB1 (POLR2A). The genes coding for ser-
ine/threonine kinases and membrane receptors formed a separate group. Many genes on
this list are involved in different processes associated with T2DM development [66-68],
such as obesity (SREBF1 and H6PD), inflammation (TGFB1), and insulin resistance (RP-
TOR and AKT1). Notably, according to the analysis of the enrichment of hub genes in
KEGG pathways, the insulin signaling pathway (N of genes = 7) displayed the maximum
enrichment (p.adj. = 5.6 x 107). The top ten pathways with the highest enrichment values
include AMPK (p.adj. =3.93 x 107°) and FoxO signaling pathways (p.adj. = 3.45 x 107),
which are responsible for the regulation of glucose metabolism [69,70] (Figure 4).

.PXN Insulin signaling pathway
F\’.XRA ‘
/ Cellular senescence

" Thyroid hormone signaling pathway

Platinum drug resistance
o

FoxQ signaling pathway
/
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Proteoglycans. in.cancer
Chronic myeloid leukemia
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FASN //f | i/ AMPK signaling pathway 8:%
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AKT1 RPTOR
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Figure 4. Network chart illustrating the link of top ten significant KEGG pathways according to the
enrichment analysis with upregulated hub genes.

Three significant modules were discovered in the PPI network constructed for upreg-
ulated genes. The most important of them (MCODE score = 5.514) comprised 36 nodes
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and 102 edges (Figure 5A) and included the protein products of nine hub genes: TGFB1,
RPTOR, HDAC4, BRD4, H6PD, NCOR2, RXRA, HIT, and ITGAM. The analysis of enrich-
ment in KEGG demonstrated that the genes coding for the proteins of this PPI module
were involved in the PI3K-Akt signaling pathway (p.adj. = 1.98 x 10~°) and insulin sig-
naling pathway (p.adj. = 1.75 x 10~%), directly associated with T2DM development [71].
Of the GO terms associated with T2DM pathogenesis, we identified those related to the
immune response, namely, myeloid leukocyte activation (p.adj. = 0.003), inflammatory
response (p.adj = 0.02), immune response (p.adj. = 0.04), mononuclear cell differentiation
(p.adj. = 0.005), and leukocyte activation (p.adj. = 0.002) (Supplementary Table S7).

The PPI module second in significance comprises 33 nodes and 73 edges (Figure 5B)
and includes the protein products of three hub genes: TP53, POLR2A, and MDM?2. Analysis
of the enrichment in GO terms showed that the genes in this module, similar to those in
the first one, are involved in the innate immune response (p.adj. = 0.02). In addition, the
response to peptides is among the significant terms (p.adj. = 0.04). A number of genes
associated with this term (TP53, MDM?2, IRF5, and TYK2) are directly involved in the
insulin response [72-75]. The KEGG enrichment analysis failed to detect any statistically
significant pathways associated with T2DM; however, such pathways were discovered
using the Reactome data [38,39]: interferon signaling (p.adj. = 3.2 x 107°), cytokine
signaling in immune system (p.adj. = 1.8 x 10~%), and transcriptional regulation by TP53
(p-adj. = 0.005) (Supplementary Table S7).

The third module of 24 nodes and 50 edges (Figure 5C) comprises the protein products
of five hub genes: FASN, MAPK3, SREBF1, INSR, and NOTCH1. KEGG pathway enrichment
analysis discovered insulin resistance (p.adj. = 0.003), mTOR signaling (p.adj. = 0.003),
T2DM (p.adj. = 0.03), insulin signaling (p.adj. = 0.003), and AMPK signaling (p.adj. = 0.01)
pathways (Supplementary Table S7).
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Figure 5. PPI network in the significant modules analyzed for KEGG and GO enrichment. (A) First
module. (B) Second module. (C) Third module. In the PPI network, nodes show proteins and edges,
their interaction. Hub proteins are denoted with larger symbols and the KEGG- and GO-annotated
proteins, with the corresponding color (see the legend).
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The constructed PPI network for the downregulated DEGs with the promoters har-
boring detected rSNPs comprises 485 nodes and 3961 edges. We distinguish 7 mod-
ules and 35 hub genes in this network, their protein products mainly belong to riboso-
mal subunits and chaperons (Supplementary Table S6). The analysis of enrichment in
KEGG/GO/Reactome DEG protein products of each module detected the common terms
and pathways related to ribosome biogenesis, transcription processes, rRNA processing, etc.
(Supplementary Table S7), poorly interpretable with respect to T2DM pathogenesis. Presum-
ably, the inhibition of protein synthesis is associated with the intake of antihyperglycemic
drugs [76,77] and is a result of the therapy. The representation analysis demonstrates that
the DEGs of this group are involved in the pathways involved in glucose metabolism,
namely, insulin (EIF4E2) and PI3K/Akt signaling (EIF4E2, GNB5, HSP90AB1, PPP2CA,
CDKN1B, ATF4, BCL2, and YWHAB) pathways. Moreover, BCL2 and HSP90AB1 were
identified as hub genes.

Taking into account the upregulated genes, 15 DEGs were represented in the insulin
signaling pathway and 22 DEGs, in the PI3K/ Akt signaling pathway. Figure 6A,B show
the scheme of the PI3K/ Akt signaling pathway with highlighted up- and downregulated
DEGs harboring rSNPs in their promoters.
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Figure 6. Graphical visualization of DEG representation in (A) insulin and (B) PI3K/ Akt signaling
pathways (KEGG data). Colors of nodes show the direction and value (1og2FC) of expression alteration.

2.3.3. Selecting Important Regulators from PPI Network Using ROC Analysis

Using an additional ROC analysis stage, we distinguished the hub genes the expression
level of which allowed the healthy individuals to be distinguished from T2DM subjects.
Of 66 hub genes, 36 displayed AUC > 0.7, making them valuable T2DM predictors for the
studied set of transcriptome data. The promoters of these hub genes contained 117 rSNPs
which are putatively associated with T2DM development and are of great interest for
further studies (Table 2).

Table 2. rSNPs in promoters of the hub genes with AUC > 0.7.

Gene Regulation AUC Rs_id
NOTCH1 Up 0.7212 1rs951509664, rs3013307, and rs3013306
H6PD Up 0.8072 rs184437520, rs3752547, rs9435144, and rs11121354
POLR2A Up 07314 rs4796424, rs57985740, rs41555218, rs144575559,

and rs9901161
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Table 2. Cont.

Gene Regulation AUC Rs_id

rs7960906, rs1006100, rs1199426444, rs191752208,
151432659465, rs998518300, rs906886068,

NCOR2 Up 0.7713 rs1458070990, rs948418315, rs79830634, rs12426514,
rs1316249, rs924583078, rs868110059,
and rs1407929149

PXN Up 0.7181 rs7953949 and rs3890165

FASN Up 0.7642 rs7209621 and rs62078751

SCARBI1 Up 0.7323 rs7305310, rs838884, and rs897715

GAK Up 0.734 Ezééggﬁ?:ﬁ 353:317536341365623, rs1403319282, rs182955420,

CTSD Up 0.7238 152292963, rs144932926, 152292962, and rs35640004

FZR1 Up 0.7145 rs8100223 and rs8644

SMG1 Up 0.7926 5142606705, rs12929094, and rs560580650

TP53 Up 0.7522 rs1800899

MAN1B1 Up 0.7762 rs4880199 and rs10870178
rs5757613, rs2072872, rs137626, rs2076125,

RPL3 Down 0.766 rs143897309, rs969895370, rs84491, rs137627, rs470081,
rs754570306, rs6509, rs137620, and rs12484030

RPS3 Down 0.7119 rs186612441

HSPI90AB1 Down 0.8227 rs324131

RPLI1 Down 0.801 ;‘;3522372,1 ;;191216%53674, rs878908315, rs558662093,

RPS11 Down 0.7358 15739349

RPL5 Down 0.7411 rs34244251

RPS20 Down 0.7159 rs17814456

RPL13A Down 0.7101 rs11539123

RACK1 Down 0.8054 rs2287715 and rs111326428

RPL14 Down 0.7908 rs62263890 and rs2276869

RPL12 Down 0.8285 rs2247310 and rs2247322

CcCcr7z Down 0.8027 rs779122697

RUVBL1 Down 0.7451 rs11719546

TCP1 Down 0.7292 rs62621403

PSMA7 Down 0.8005 rs73307256, rs6089665, and rs3746651

PSMC5 Down 0.7863 rs141975038

ATP5F1A Down 0.7092 rs3753069, rs41274316, and rs34907121

HNRNPK Down 0.742 rs1011582290, rs796004, and rs296890

SKP1 Down 0.7163 rs56257643

BCL2 Down 0.7176 rs4987834 and rs1160274961

SSRP1 Down 0.8262 rs61888886 and rs61888888

CDCA2 Down 0.7247 rs61778042, rs866829764, rs11801382, rs2255282,

rs12038474, and rs16826302
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2.4. Search for the rSNPs Potentially Associated with Individual Response to the Antidiabetic
Drug Metformin

Using our rSNP panel, we searched for the rSNPs potentially associated with the
response to metformin by analyzing the RNA-seq data (GSE153315, GEO DataSets) on
the blood cells of T2DM non-responders (N = 10) and T2DM responders (N = 10) after a
3-month medication [78]. In total, 406 DEGs were found for these cohorts. As it emerged,
the promoter regions of 131 DEGs harbored 367 rSNPs of our panel (Figure 7).

Logqg (P.value)

____________________

e il daa il

-5.0 -2.5

25 5.0

0.0
Log, fold change

Figure 7. Volcano plot of DEGs. The horizontal axis shows the log, fold change and the vertical axis,
-logio (adjusted p-value). Significant DEGs with detected rSNPs are colored red.

The group of genes coding for transcription factors emerged to be the largest among
those that carried predicted rfSNPs in their promoters, namely, (1) FOXP1 (rs9827299 and
rs927809457), coding for the well-known glucose homeostasis regulator [79], which is
also a known suppressor of macrophage differentiation into an anti-inflammatory pheno-
type [80]; (2) POU2F2 (rs3826705), the product of which is an important player in glucose
homeostasis being an activator of the AKT/mTOR signaling pathway [81] and is involved
in the cellular immune response by regulating B-cell proliferation and differentiation
genes [82]; (3) YY-1 (rs113799953 and rs760756349), which is expressed in all cell types be-
ing involved in a wide range of regulatory processes, including the regulation of lipid and
glucose metabolisms and immune response [83]; (4) KLF6 (rs3812715, rs17135808, rs3829201,
1510795076, and rs38127140), the product of which is associated with the differentiation
of monocytes to macrophages [84]; (5) NFIX (rs11555274, rs1354007230, rs1293177918,
and rs1235554616), the product of which is a putative myelopoiesis regulator [85]; and
(6) GMEBI (rs1013370834, 151022902336, and rs895890911), the product of which is necessary
for a normal function of islet endothelial cells [86]. We also detected a considerable number
of rSNPs in the promoter regions of the genes coding for the transcription factors with yet
vague functions: TSHZ2 (rs71354397), ZNF121 (rs7253981), ZNF44 (rs386901 and rs422563),
ZNF440 (rs1056484229), ZNF611 (rs1350535255, rs8109324, rs11879101, rs707303, rs10419223,
rs1044394923, and rs55769230), ZNF714 (rs7258409, rs182211521, and rs61733856), ZNF793
(rs2291003), and ZNF813 (rs1467168591, rs1157700262, rs2015145, rs4599028, rs112581977,
rs1968829, and rs181026484).

The genes of other transcription regulators are functionally related to this group.
They include (1) TAF3 (rs78092115 and rs2778473), coding for a basal transcription factor
involved in the formation of RNA polymerase II initiation complex and histone modifi-
cations; the association of TAF3 locus and a decreased Mg?* level in T2DM were recently
demonstrated [87]; (2) NCOR1 (rs8076864, rs1331834429, and rs178797), coding for a core-
pressor protein involved in insulin resistance [88]; (3) SMARCA4 (rs2288844, rs17766161,
rs1057226903, and rs4804550), coding for BRG1, a catalytic subunit of SWI/SNF chromatin
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remodeling complex involved in the regulation of inflammatory processes in many tis-
sues; in particular, a deficiency in BRG1 decreases the risk of diabetic atherosclerosis in
mice by suppressing an inflammatory response in vessels [89]; and (4) PCBD2 (rs319597),
the product of which is involved in the transcription upregulation by interacting with
the transcription factor HNF1{3, mutations in which are among the key genetic causes
maturity-onset diabetes of the young [90].

Other distinguished groups of genes are involved in the transport function (NPHP3,
SEC62, SLC30A7, SLC35E4, SLC37A2, SPNS1, and USEI; in total, they contain 13 rSNPs
in their promoters); are membrane proteins (SMIM14, SPAG1, TGOLN2, TMEM120B,
TMEM?245, and VAMPS; in total, 14 rfSNPs); are involved in ubiquitination (NOSIP, RNF145,
TRIMb6, TRIM5S8, and UBE2G2; in total, 12 rSNPs) and inflammation (TNFSF14, PILRB,
AIF1, PEBP1, CDE3; in total, 11 rSNPs); and are long noncoding RNAs and RNA-binding
proteins (NSRP1, RBM26, SNHG3, SNHG5, TPT1-AS1, and DDX52; in total, 12 rSNPs)
and ribosomal proteins or the enzymes involved in ribosome assembly (NSUN4, RPL14,
RPL27A, RPL37A, RPLP2, RPS23, and RPS2P32; in total, 24 rSNPs). Noteworthy, an analysis
of the relevant literature demonstrated that several of these genes were involved in the
processes underlying T2DM development/prevention and its complications [91-102].

3. Discussion

One of the main challenges in contemporary human genetics is the discovery of
the genome variations influencing different biomedical traits and the elucidation of the
molecular mechanisms allowing these variations to lead to phenotypic differences and
complex diseases. So far, over half a million variants (mainly, SNPs) associated with
various human traits and diseases have been discovered with the help of GWAS [27]. The
overwhelming majority of these variants are situated in the noncoding part of the genome,
which suggests their regulatory function [103,104]. Since the GWAS technology cannot give
information about the functionality of the found variants, the research into a functional
interpretation of the GWAS data at the level of individual SNPs and on a mass scale is
increasing [103,105], as well as the design of the GWAS-independent large-scale functional
approaches based on omics data analysis [29,103,106].

In this work, we used a multi-omics approach to search for the functional variants
able to influence gene expression (rfSNPs) in PBMCs, which are the most available human
tissue involved in immunity and diabetes [107-110]. We detected allele-asymmetric events
in our ChIP-seq data for H3K4me3 and H3K27ac histone marks and the transcriptome data
(RNA-seq) for nine healthy individuals and identified 14,796 rSNPs in the promoter regions
of 5132 genes. Note that obtaining similar data for other specific affected organs, such as
pancreatic beta cells, liver, muscle, etc., would significantly expand the rSNP panel.

We discovered a considerable enrichment of our rSNP panel in GWAS variants as
compared with a set of heterozygous non-regulatory SNPs (p-value = 2.8884 x 10~%), which
confirmed a significant role of the discovered rSNPs in the formation of the traits. The
intersection of rSNPs with the DNA regions within 31000 bp of GWAS SNPs demonstrated
the association of 5688 rSNPs (38.4% of all detected ones) with different phenotypic traits.
Of them, 1107 rSNPs (7.5%) were directly represented in the GWAS catalog. This is a good
matching of results for principally different approaches. On the one hand, this demonstrates
that a considerable part of the detected rSNPs is actually associated with certain phenotypic
traits and, on the other hand, uncovers the molecular sense of a large GWAS-identified
SNP group.

We obtained a considerably better fit of results when comparing our 14,796 rSNPs
to the GTEXx project data on eQTL analysis, which is also a functional approach that links
different SNP alleles to gene expression level [103]. It was found that 9871 rSNPs (66.7%
of the panel) are associated with eQTLs; in addition, 2474 rSNPs were directly contained
in the GTEXx catalog and 7397 rSNPs fell within the £1000 bp region from them. On the
contrary, the result of the comparison of the functional approach utilizing the search for
allele-asymmetric events in the binding sites of different transcription factors [31] was
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rather modest with only 39.4% (5844) of our rSNPs localized to the allele-asymmetric
binding sites of different transcription factors. In our opinion, the better fit of our results
to GTEx data compared with ANANASTRA is explainable with that our rSNP search
pipeline is based on the analysis of both allele-specific binding (ASB) and ASE events of the
corresponding genes, while ANANASTRA utilizes only ASB events.

The computation of the rSNP enrichment in GWAS variants (Table 1) shows the highest
enrichment for the rSNPs associated with blood cell quantitative characteristics, which is
expected because we used PBMCs. Among the diseases, the largest number of rSNPs were
associated with T2DM, matching the published data on the involvement of mononuclear
cells in the pathogenesis of this disease [111-113]. In addition, the rSNPs associated with
several morphometric characteristics (body mass index, body shape index, and waist-to-hip
ratio) were also identified; these rSNPs were mainly localized to the promoters of the genes
involved in inflammatory processes [40,43—45], insulin resistance [53,54], obesity [40,41],
and carbohydrate transport [62], suggesting their involvement on T2DM pathogenesis.

To further clarify the potential role of the rSNPs of our panel in the mechanisms of
T2DM pathogenesis and its complications, we searched for rfSNPs in the promoter regions
of the genes the expression of which changed during T2DM development using the largest
RNA-seq dataset of the GEO repository (GSE221521) for the PBMCs of healthy subjects and
T2DM patients without and with diabetic retinopathy. Retinopathy is a T2DM complication
occurring in approximately half of diabetes patients [114]. We did not discover any DEGs
when comparing the healthy donors and the T2DM subjects without retinopathy. Presum-
ably, this is associated with the effects of the therapy received by the patients (unfortunately,
the authors of the paper did not indicate which particular therapy was used) and the
selection of the controls, which included the individuals with HbAlc = 5.80%, typical to
a prediabetic state according to certain data [115]. However, 4612 DEGs were identified
when comparing the healthy cohort to the T2DM subject with retinopathy and 1284 of
them contained 3810 rSNPs in their promoters. The PPI network for these DEGs demon-
strated that the genes of key modules were involved in the insulin signal transduction
pathways and immune response. In particular, PIK3R2 and PIK3CG, represented in the first
module code for the PI3K (phosphoinositide 3-kinase) subunit, an upstream regulator in
the PI3K/AKT pathway. PI3K mediates the activation of the key enzyme in this pathway,
Akt kinase (AKT serine/threonine kinase), promoting the glucose intake by cells via medi-
ated activation of glucose transporters (GLUT) [116]; activation of glycogenesis via GSK-3
(glycogen synthase kinase 3) inhibition [117]; and negative regulation of gluconeogenesis
by downregulating the expression of glucose-6-phosphatase [71] and phosphoenolpyruvate
carboxykinase [118]. Note that Akt1 is a key upregulated hub gene in the PPI network
based on the highest values of topological parameters. The increase in Akt1 expression in
the PBMCs of the T2DM subjects as compared with healthy individuals was also reported
by Manoel-Caetano et al. [119]. TP53 (tumor protein p53), identified as the most significant
hub gene, also plays an important role in inflammation and T2DM development. This
gene codes for transcription factor p53, which as a rule inhibits inflammatory responses. In
addition, p53 is able to directly bind to Glut1 and Glut4, thereby directly inhibiting their
transcription and promoting the development of insulin resistance. The upregulation of
TP53 expression is associated with a positive regulation of gluconeogenesis (via expression
upregulation of glucose-6-phosphatase, phosphoenolpyruvate carboxylase, and so on)
and a negative regulation of glycolysis (decreasing the levels of fructose-2,6-bisphosphate,
phosphoglycerate mutase, glucose-6-phosphate dehydrogenase, and so on) [72]. Thus, our
data suggest that the rSNPs influencing gene expression in the considered modules are
most likely associated with T2DM development by interfering with glucose metabolism
and immune response. As for the rSNPs in hub gene promoters, they can well be the
key regulators of these processes and the alteration in their expression can influence their
genes/target proteins as well. We distinguished 117 rSNPs harbored in hub gene promoters
with a high potential of T2DM prediction in the analyzed dataset according to ROC analysis
data. The rSNPs of this type are of the greatest interest for further studies.
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We used the formed rSNP panel to analyze the RNA-seq data for the blood cells of
T2DM metformin responders and non-responders, which allowed for new insight into the
pharmacogenetic factors influencing the metformin response in this disease. Notably, the
research into genetic foundations of individual susceptibility to drugs has so far mainly
dealt with the search for variations in genes coding for phase I and II drug-metabolizing
enzymes, drug transporters, and some upstream transcription regulators of known phar-
macogenes [120-122]. However, a rather large pool of heterogeneous data on SNPs in the
genes belonging to a drug-metabolizing system [123-125] sets the challenge to develop the
approaches to a systematized search for such variants.

It is known that metformin, a first-line drug for T2DM, is ineffective for approximately
30% of the patients [126]. Association studies succeeded in detecting several tens of the
SNPs associated with the individual response to metformin. Since metformin is not metabo-
lized in the human body [127], these studies mainly focused on the genes coding for organic
cation transporters (OCTs) and multi-antimicrobial extrusion (MATE) proteins. As a result,
numerous SNPs associated with metformin pharmacokinetics and pharmacodynamics in
the protein-coding and noncoding regions of several genes of these groups were discovered.
These genes include SLC22A1 and SLC22A2, coding for OKT1 and OKT2; SLC47A1 and
SLC47A2, coding for MATE1 and MATE2-K; SLC2A, coding for one of the key glucose trans-
porters; and the gene encoding the SP1 transcription factor, which modulates the expression
of metformin transporters [127-131]. GWAS supplemented this list with a number of genes
the products of which perform other, first and foremost, regulatory functions. In particular,
the variations associated with metformin response in the genes of the AMPK signaling
pathway, namely, STK11, PRKAA1, and PRKAA2, were found [132]. The SNPs associated
with the metformin response are also discovered near the ATM gene, the product of which
is involved in the redox homeostasis in the cell, as well as in the PRPF31 (pre-mRNA
processing factor 31) gene; CPA6 gene, coding for carboxypeptidase A6), involved in the
regulation of Akt/mTOR signaling pathway; and STAT3 gene, coding for the transcrip-
tion factor actively involved in the regulation of metabolic and immune processes [133].
However, the use of GWAS in pharmacogenomics research requires a rather large cohort of
patients with different responses to a drug. A tremendous number of currently used drugs
and frequent cases of complex therapies considerably hinder obtaining mass data with the
help of this approach [134,135]. An integrated analysis of the current omics functional data
can help in resolving this problem, at least in part.

In this study, we, on the one hand, used our panel of 14,796 rSNPs constructed by de-
tecting allele-specific events in ChIP-seq and RNA-seq data for the PBMCs of nine healthy
individuals and, on the other hand, the transcriptome data (RNA-seq, GSE153315) for the
blood cells of T2DM non-responders to metformin (after 3-month medication, N = 10) and
the T2DM responders (N = 10) [78]. An integrated analysis of these data allowed us to
obtain a new, wider list of the SNPs potentially associated with the individual response to
metformin. Moreover, it has emerged that a considerable number of such SNPs reside in
the promoter regions of the genes coding for transcription factors (FOXP1, POU2F2, YY-1,
KLF6, NFIX, GMEB1, TSHZ2, ZNF121, ZNF44; ZNF440, ZNF611, ZNF714, ZNF793, and
ZNF813) and other regulatory proteins (TAF3, NCOR1, SMARCA4, and PCBD?2). The fact
that rSNPs are discovered in these genes is important because of the possible modulation
of an extensive reaction to the drug because these genes control different networks com-
prising numerous functionally linked genes. In particular, the YY-1 transcription factor
is the best-studied of the mentioned transcription factors. It is ubiquitously expressed
in many cell types and is able to activate or repress transcription of the networks com-
prising the genes involved in cell survival, replication, differentiation, metabolism, and
inflammation [136,137]. The multifunctionality of YY-1 also appears as its involvement
in the enhancer-promoter and super-enhancer—promoter interactions [138,139], splicing
regulation [140], and transcription initiation by binding to the initiator element (INR, a
core promoter) [141]. YY-1 has been shown to act in numerous processes the disturbance
of which is associated with the development of diabetes and its complications as well
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as the regulation of systemic inflammation [83,142-144]. This suggests that the rSNPs
discovered in the promoter-regulatory region of this gene are also potential contributors to
the implementation of metformin therapeutic effects by altering its expression level and, as
a consequence, the expression of YY-1 target genes. The assumption on an important role of
YY-1 in the metformin response agrees well with the results of our analysis of ANANASTRA
data [30,31] that the promoter regions of many genes differentially expressed in response
to metformin carry the rSNPs influencing YY-1 binding.

4. Materials and Methods
4.1. Subjects of Investigation

The study involved nine somatically healthy individuals living on the territory of the
Russian Federation (Novosibirsk, Russia) and displaying no diseases in their life history by
the moment of sampling their biological material. The sample comprised males (N = 3) and
females (N = 6) aged 26—42 (mean age, 33 years) (Supplementary Table S8). The study was
approved by the ethical committee of the Institute of Therapy and Preventive Medicine,
Novosibirsk, Russia. Each participant signed the informed consent.

4.2. Isolation of Peripheral Blood Mononuclear Cells

Blood (20 mL) was sampled from the cubital vein of each subject and diluted with
an equal volume of phosphate-buffered saline (PBS). Ficoll (12 mL; p = 1.077, Biolot, Saint
Petersburg, Russia) was added to two clean Falcon tubes to gently layer the diluted blood
(20 mL per each Falcon tube) onto the Ficoll solution with a pipette. The samples were
centrifuged at 400 g for 15 min at 4 °C. The layer of mononuclear cells from each Falcon
was transferred to a new tube, supplemented with PBS (4 mL), mixed, and centrifuged
(200x g/7 min/4 °C). The supernatant was removed and the pellet was supplemented with
the buffer for lysing erythrocytes (20 mL; 150 mM NH4Cl and 0.01 mM EDTA) to incubate
for 10 min at room temperature and centrifuge (200x g/7 min/4 °C). The supernatant
was removed and the sediment was washed twice with PBS (3 mL) and centrifuged
(200x g/7 min/4 °C). The purified cells from one Falcon tube were used to isolate RNA
and from the other one, in the experiments on chromatin immunoprecipitation.

4.3. mRNA Sequencing

The purified cells obtained from each donor were homogenized in Trizol buffer (1 mL;
Ambion, Austin, TX, USA), supplemented with chloroform (200 uL), and centrifuged
(12,000 x g/15 min/4 °C). The aqueous phase was transferred to a new tube, supplemented
with 1/5 volume of chloroform, and centrifuged (12,000x g/5 min/4 °C) to transfer the
supernatant into a new tube, precipitate it with one volume of isopropanol and 1 pL linear
polyacrylamide (BIORON, Romerberg, Germany), and centrifuge (20,238 x g/15 min/4 °C).
The supernatant was collected to precipitate RNA with 75% alcohol (1 mL) and centrifuge
(20,238 g/5 min/4 °C). The alcohol was removed and the pellet was dried at room
temperature for 5-10 min to dissolve in 25 puL of ddH,O. RNA concentration was measured
in a NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA) spectrophotometer. The
complementary DNA (cDNA) libraries were prepared using the NEBNext® Ultra™ II
Directional RNA Library Prep Kit for Mlumina® (New England Biolabs, Ipswich, MA, USA)
according to the manufacturer’s protocol.

4.4. Chromatin Immunoprecipitation

The cell sediment was dissolved in PBS (5 mL) and 37% formaldehyde (138.8 uL;
Sigma, Saint Louis, MO, USA), homogenized, and mixed in a rotator for 10 min at room
temperature. The reaction was stopped with 2 M glycine (342 pL), mixed for 5 min in a
rotator at room temperature, and centrifuged (200x ¢/5 min/4 °C); the supernatant was
removed. The pellet was twice washed with PBS (3 mL) and supplemented with 800 uL of
lysis buffer (10 mM Tris pH 7.5, 1 mM EDTA, 0.5% SDS, 0.1% sodium deoxycholate, and 1%
Triton X-100) and 100X protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA,
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USA) to break the chromatin into the fragments of 150-600 bp in an immersion homogenizer
(BANDELIN electronic GmbH & Co. KG, Berlin, Germany). The resulting fragments were
centrifuged (3000 x ¢/10 min/4 °C) and the supernatant was added to A- and G-protein
beads (20 uL; New England Biolabs, Ipswich, MA, USA) and supplemented with 1.5V of the
lysis buffer without SDS and 100X protease inhibitor cocktail. In parallel, G-protein beads
(40 pL), lysis buffer (160 uL), lysis buffer without SDS (240 uL), and the antibodies (8 uL)
to histone modification H3K4me3 or H3K27ac (Abcam, United Kingdom) were placed
into a separate tube to incubate it together with the tube containing chromatin and A- and
G-protein beads at a constant rotation for 2 h at 4 °C. The tubes were placed onto a magnetic
base and then the supernatant was removed from the tube with antibodies and the sediment
was supplemented with the supernatant after the incubation with A- and G-protein beads.
The immunoprecipitation reaction was conducted overnight at +4 °C in a rotator. In the
morning, the tube was returned onto magnetic base to remove the supernatant and washed
twice with an addition of the lysis buffer (1 mL), 1 mL of high salt buffer (10 mM Tris pH 7.5,
1 mM EDTA, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, and 0.5 M NaCl), 1 mL
of TE buffer (10 mM Tris pH 7.5, 1 mM EDTA, and 1% Triton X-100), and 1 mL of the TE
buffer without Triton X-100. After removal of the supernatant, the tube was supplemented
with 100 pL of elution buffer (1% SDS, 10 mM Tris pH 7.5, and 1 mM EDTA) and incubated
for 1 h at +65 °C in a thermoshaker (800 rpm). The tube was placed onto a magnetic base
and the supernatant was transferred into a new tube (the washing with elution buffer was
repeated twice). To prevent chromatin cross-linking, the sample was supplemented with
5M NaCl (to a final concentration of 370 mM) and incubated in a thermostat at +65 °C for
4 h. The sample was supplemented with 2.46 volume of ddH,0O, 0.5 M EDTA (1/50 of the
sample volume), 1 M Tris-HCl pH 6.5 (1/16 of the sample volume), 10% SDS (1/13 of the
sample volume) and 1 pL of proteinase K (800 U/mL; New England Biolabs, Ipswich, MA,
USA) to incubate in a thermostat at +52 °C for 3 h. Then, RNase A (20 mg/mL; Thermo
Fisher Scientific, Waltham, MA, USA) was added at the last 20 min. The sample was
taken off the thermostat and supplemented with 1 volume of phenol-chloroform pH 8.0
(1:1) and centrifuged (1000 x g/5 min) to transfer the aqueous phase to a new tube. Then,
1 volume of chloroform was added and centrifuged (1000 x g/5 min). The aqueous phase
was collected and supplemented with 1/10 V of 3 M NaAc, 1 volume of isopropanol, and
1 pL of linear polyacrylamide to incubate for 5-7 h at —70 °C followed by centrifugation
(10,000 g/20 min/4 °C), removal of the supernatant, precipitation with 75% ethanol, and
centrifugation (10,000x g/5 min/4 °C). The supernatant was removed and the pellet was
dissolved in ddH;O (20 puL). DNA libraries were prepared analogously to the protocol for
cDNA libraries.

4.5. Sequencing and Aligning to Reference Genome

Paired-end sequencing of cDNA and DNA libraries was performed using the No-
vaSeq 6000 or MGISEQ-2000RS platforms. The Illumina or DNBSEQ adapters and the reads
shorter than 36 bp were discarded from the ChIP-seq and RNA-seq data with Trimmomatic
v. 3.2.2 [145]. The resulting data were aligned to reference genome assembly GRCh38/hg38
(Genome Reference Consortium Human Build 38), available at the NCBI FTP site [146].
The forward and reverse reads (145-150 bp) were aligned with Bowtie 2 [147]; the thresh-
old value of mapping quality (MAPQ) was >20. The aligned reads were transferred into
bam format.

4.6. Search for Heterozygous Positions

To search for heterozygous positions, all ChIP-seq and RNA-seq files for each indi-
vidual were pooled with the help of the bcftools merge command [148]. A position was
regarded as heterozygous if it met the following conditions: coverage depth, >20 and
frequency of minor allele, >0.2 of the total coverage of the corresponding position. The
heterozygous positions were selected using beftools mpileup [148].
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4.7. Assembling Alternative Genome

In order to avoid the alignment bias towards the reads containing reference alleles
(resulting from the mapping algorithms that discriminate the alternative allele), an addi-
tional individual alternative genome was assembled for each person; in this genome, the
reference allele was replaced with the alternative one for each heterozygous position. Then,
the ChIP-seq and RN A-seq file carrying the reads for each individual was aligned to the
individual alternative sequence.

4.8. Computing Allelic Asymmetry

Allelic asymmetry for all heterozygous positions in the ChIP-seq and RNA-seq data
was computed using the binomial test against the null hypothesis on an equal coverage of
heterozygous positions by the reference reads aligned to reference genome and the alterna-
tive reads aligned to alternative genome with subsequent correction for multiple compari-
son according to Benjamini-Hochberg (p.adj. < 0.1). The rs ID numbers were assigned to
the computed allele-asymmetric positions based on the dbSNP Build 155 [149,150]. Allele-
asymmetric SNPs from ChIP-seq data were considered to be associated with allele-specific
binding (ASB) events, and allele-asymmetric SNPs from RNA-seq data were considered to
be associated with allele-specific expression (ASE) events.

4.9. Searching for Allele-Asymmetric SNPs in the Promoters of the Genes Displaying
Allele-Specific Expression

The list of ASB SNPs for the ChIP-seq data was intersected with gene promoter regions.
The region of 1000 bp from the transcription start site of all transcripts (including alter-
native transcription start sites) contained in the TxDb.Hsapiens.UCSC.hg38. knownGene
R annotation package for TxDb object(s) [151] was regarded as promoter. The list of ASE
SNPs based on the RNA-seq data was intersected with the coordinates of the genes con-
tained in the TxDb.Hsapiens.UCSC.hg38 knownGene package. The genes containing at
least one ASE SNP were regarded as expressed in an allele-specific manner. The total
allele-specific expression was computed for the genes carrying more than one ASE SNP
using the MBASED approach [152]; this method is based on the merging of the information
about allelic asymmetry for each heterozygous SNP in a particular gene. The final stage
consisted of the intersection of the ASB SNPs localized to promoters and the target genes
with the computed allele-specific expression. The promoter ASB SNPs, for which the target
genes are expressed in an allele-specific manner, were named regulatory SNPs (rSNPs).

4.10. Characterizing rSNPs with the Help of Open-Access Data

The data of the GTEx project on eQTLs [28,153], GWAS Catalog on the association of
genome loci and phenotypic traits [26,27], and ANANASTRA web server for annotation of
the loci of allele-specific transcription factor binding in ChIP-seq data [30,31] were used to
characterize the constructed rSNP panel.

4.11. Analyzing DEGs

DEGs were searched for using the DeSeq?2 (version 1.44) R package [154] in the RNA-
seq data deposited with the Gene Expression Omnibus database [155,156]. These data
were obtained for the whole blood samples of the cohorts of (1) healthy subjects (1 = 50)
and T2DM cases with diagnosed (n = 69) and not diagnosed (n = 74) diabetic retinopathy
(GSE221521) [63] and (2) healthy subjects (n = 10) and T2DM responders (1 = 10)/non-
responders (n = 10) to 3-month metformin treatment (GSE153315) [78]. According to [78]
the patients who had a decrease in glycated hemoglobin (HbAlc) level > 1% or a decrease
of >20 mg/dL in fasting blood glucose level from baseline after three months of therapy
were considered as responders.

Multiple testing correction according to Benjamini-Hochberg procedure setting the
false discovery rate (FDR) of <0.05 was used. Genes were regarded as differentially ex-
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pressed if 11ogoFC| > 0.2 and p.adj. < 0.05. Then, DEGs were intersected with the genes
harboring rSNPs from the constructed panel in their promoters.

4.12. Search for Hub Genes

The hub genes were searched for applying a network of protein interactions con-
structed with the help of STRING [32,33], which predicts protein—protein interactions
(PPI) based on the data on physical (experimental data) and functional (computational
predictions, co-expressions, and previous knowledge in databases) associations. The PPI
network was separately constructed for the upregulated and downregulated DEG groups,
which harbored rSNPs in their promoters. Then, three topological characteristics—degree,
stress centrality, and betweenness centrality—were computed using CytoNCA [157,158], a
Cytoscape plugin [159,160]. The lists of the top 20 proteins with the highest values of each
computed characteristic were formed and merged. The proteins in the consolidated list
were referred to as hub proteins and the corresponding genes, as hub genes.

4.13. Identification of Protein Modules

The significant modules in the analyzed PPI networks were identified using the
MCODE tool [161,162]; this tool clusters the densely connected regions in large protein—
protein interaction networks. The following criteria were used for selecting the significant
modules: max depth = 100, degree cut-off = 2, node score cut-off = 0.2, MCODE scores > 4,
and K-score = 2.

4.14. Enrichment Analysis of KEGG/Reactome/GO

Functional enrichment analysis of all significant modules was performed. The terms
from the GO Knowledgebase [36,37] together with the pathways from the KEGG [34,35]
and Reactome Knowledgebase [38,39] were used as functional terms. The enrichment was
analyzed using over-representation analysis (ORA) of the GO terms and KEGG/Reactome
pathways in the protein modules with the R clusterProfiler package (version 4.12.5) [163].
After the Benjamini-Hochberg procedure, p.adj. < 0.05 was set as the enrichment thresh-
old value.

4.15. ROC Analysis

ROC (Receiver Operator Characteristic) curves were constructed and AUC (Area
Under Curve) values were computed from the normalized expression values for each hub
gene calculated using DESeq2. The hub genes with AUC > 0.7 were regarded as good
predictors of T2DM in the studied transcriptome dataset. The ROC curves were constructed
using the pROC package (version 1.18.5) for R [164].

5. Conclusions

The search for allele-specific events in the experimental data on gene expression
profiles (RNA-seq) and active chromatin marks H3K4me3 and H3K27ac (ChIP-seq) in the
peripheral blood mononuclear cells of nine healthy donors allowed us to construct the
panel comprising 14,848 rSNPs in the promoter regions of 5132 genes. Over 38% of the
discovered rSNPs are associated with different GWAS phenotypic traits and 66.7%, with
GTEx eQTLs, which uncovers the molecular sense of a large GWAS-identified SNP group
and is an independent confirmation for the regulatory function of a considerable group of
variants from GTEx catalogs. The rSNPs potentially associated with T2DM development
and/or diabetic retinopathy as well as with individual specific features of the response to
the antidiabetic drug metformin are identified. The genes carrying these rSNPs in their
promoters are enriched in the pathways related to glucose metabolism and inflammation.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390/ijms25179297/s1.
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