CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture
Abstract
:1. Introduction
2. Major Fish Species Traits Improved by Genome Editing in Aquaculture
3. Disease Resistance
4. Fish Growth and Muscle Quality
5. Off-Target Effects in CRISPR/Cas9 and Advances in Aquaculture
6. Sex Determination
7. Effects of CRISPR/Cas9 Technology on Different Biological and Environmental Aspects
8. Effects of Using CRISPR/Cas9 in Gene Editing on Different Fish Species
9. Potential Socioeconomic Impacts of Widespread Adoption of CRISPR-Based Disease-Resistant Aquaculture in Developing Regions
10. CRISPR-Based Aquaculture on Global Aquatic Product Trade and Food Security in Developing Regions
11. Mitigation Strategies for the Sustainable Application of CRISPR/Cas9 in Aquaculture: Identifying Environmental and Ecological Impacts
12. Challenges and Limitations Genome Editing Technology in the Genetic Improvement of Fish in Aquaculture
13. Public Acceptability and Concern for Genetically Modified Fish
14. Potential Solution to Public Perceptions and Concerns Regarding the Challenges of Genome Editing Fish
Remedies | Impact | Ref. |
---|---|---|
Improved precision | It improves the precision of developing guide RNA molecules that are more efficient and accurate, minimizing off-target effects and enhancing gene editing specificity. | [126] |
Enhanced delivery methods | It enables scientists to develop new delivery methods, such as electroporation, microinjection, or transfection, to improve the efficiency of delivering CRISPR/Cas9 components into fish embryos for gene editing in aquaculture. | [127] |
Gene drive systems | CRISPR/Cas9 helps researchers to gene drive systems to quickly introduce advantageous traits, such as disease resistance or enhanced growth, into a fish population. | [44,128] |
Biosecurity measures | Secure laboratories and greenhouses are utilized to contain and minimize the risk of accidental release of GMOs into the environment. | [119] |
Public engagement and education | Educating the public improves understanding of CRISPR/Cas9, which in turn enables better comprehension of its mechanisms, benefits, and limitations in aquaculture and other applications. | [102] |
Targeting complex traits | CRISPR/Cas9 allows for the simultaneous targeting and modification of multiple genes or genetic loci in fish species. | [129] |
Ethical considerations | The ethical discussions regarding gene editing in aquaculture are important, as they consider animal welfare, environmental impact, and potential unintended consequences. | [116,124] |
15. Ethical Considerations of the Use of CRISPR Technology in Aquaculture and Its Impact on Food Security
16. Conclusions
Funding
Conflicts of Interest
References
- Kidane, L.; Kejela, A. Food security and environment conservation through sustainable use of wild and semi-wild edible plants: A case study in Berek Natural Forest, Oromia special zone, Ethiopia. Agric. Food Secur. 2021, 10, 29. [Google Scholar] [CrossRef]
- Dewali, S.; Sharma, N.; Melkani, D.; Arya, M.; Kathayat, N.; Panda, A.K.; Bisht, S.S. Aquaculture: Contributions to Global Food Security. In Emerging Solutions in Sustainable Food and Nutrition Security; Ghosh, S., Kumari Panda, A., Jung, C., Singh Bisht, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- FAO. FishStat: Global Production by Production Source 1950–2022. Available online: www.fao.org/fishery/en/statistics/software/fishstatj (accessed on 29 March 2024).
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed]
- Billon, P.; Bryant, E.E.; Joseph, S.A.; Nambiar, T.S.; Hayward, S.B.; Rothstein, R.; Ciccia, A. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes Through Induction of STOP Codons. Mol. Cell 2017, 67, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Adli, M. The CRISPR Tool Kit for Genome Editing and Beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef]
- Jao, L.-E.; Wente, S.R.; Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. 2013, 110, 13904–13909. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Tsai, S.Q.; Sander, J.D.; Peterson, R.T.; Yeh, J.J.; Joung, J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 227–229. [Google Scholar] [CrossRef]
- Ferdous, M.A.; Islam, S.I.; Habib, N.; Almehmadi, M.; Allahyani, M.; Alsaiari, A.A.; Shafie, A. CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. J. Microorg. 2022, 10, 2012. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kumar, V.; Behera, B.K.; Parhi, J.; Mohapatra, S.; Chakraborty, T.; Das, B.K. CRISPR/Cas Genome Editing—Can It Become a Game Changer in Future Fisheries Sector? Front. Mar. Sci. 2022, 9, 924475. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.; Zhao, J.; Fang, L.; Shi, H.; Li, M.; Sun, Y.; Zhang, X.; Jiang, D.; Zhou, L.; et al. Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9. Genetics 2014, 197, 591–599. [Google Scholar] [CrossRef]
- Khalil, K.; Elayat, M.; Khalifa, E.; Daghash, S.; Elaswad, A.; Miller, M.; Abdelrahman, H.; Ye, Z.; Odin, R.; Drescher, D.; et al. Generation of Myostatin GeneEdited Channel Catfsh (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System. Sci. Rep. 2017, 7, 7301. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Dong, Z.; Dong, X.; Chi, J.; Chen, H.; Zhao, Q.; Li, K. A new strain of yellow catfish carrying genome edited myostatin alleles exhibits double muscling phenotype with hyperplasia. Aquaculture 2018, 523, 735187. [Google Scholar] [CrossRef]
- Potts, R.W.A.; Gutierrez, A.P.; Penaloza, C.S.; Regan, T.; Bean, T.P.; Houston, R.D. Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Phil. Trans. R. Soc. B 2021, 376, 20200168. [Google Scholar] [CrossRef]
- Nagahama, Y.; Chakraborty, T.; Paul-Prasanth, B.; Ohta, K.; Nakamura, M. Sex Determination, Gonadal Sex Differentiation, and Plasticity in Vertebrate Species. Physiol. Rev. 2021, 101, 1237–1308. [Google Scholar] [CrossRef] [PubMed]
- Kamachi, Y.; Kawahara, A. CRISPR/Cas9-Mediated Genome Modifications in Zebrafish. Methods Mol. Biol. 2023, 2637, 313–324. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, T.; Yang, L.; Su, Y.; Zhao, C.; Li, L.; Cai, J.; Dai, X.; Wang, D.; Zhou, L. Generation of fast growth Nile tilapia (Oreochromis niloticus) by myostatin gene mutation. Aquaculture 2023, 562, 738762. [Google Scholar] [CrossRef]
- Wargelius, A.; Leininger, S.; Skaftnesmo, K.O.; Kleppe, L.; Andersson, E.; Taranger, G.L.; Schulz, R.W.; Edvardsen, R.B. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 2016, 6, 21284. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Q.; Xu, R.; Yue, C.; Du, S. Targeted Gene Disruption in Pacific Oyster Based on CRISPR/Cas9 Ribonucleoprotein Complexes. J. Mac. Biotecno. 2019, 21, 301–309. [Google Scholar] [CrossRef]
- Menchaca, A.; Anegón, I.; Whitelaw, C.B.A.; Baldassarre, H.; Crispo, M. New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016, 86, 160–169. [Google Scholar] [CrossRef]
- Sumana, S.L.; Chen, H.; Shui, Y.; Zhang, C.; Yu, F.; Zhu, J.; Su, S. Effect of dietary selenium on the growth and immune systems of fish. Animals 2023, 13, 2978. [Google Scholar] [CrossRef] [PubMed]
- Gratacap, R.L.; Regan, T.; Dehler, C.E.; Martin, S.A.; Boudinot, P.; Collet, B.; Houston, R.D. Efficient CRISPR/Cas9 Genome Editing in a Salmonid Fish Cell Line Using a Lentivirus Delivery System. BMC Biotechnol. 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Du, J.; Si, Z.; Yang, H.; Xu, X.; Wang, C. ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture 2019, 498, 230–235. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, R.; Liu, L.; Zhu, H. Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9. Aquaculture 2024, 583, 740594. [Google Scholar] [CrossRef]
- Li, M.; Dai, S.; Liu, X.; Xiao, H.; Wang, D. A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia. J. Hydrobiol. 2021, 848, 3865–3881. [Google Scholar] [CrossRef]
- Aich, N.; Parhi, J.; Mandal, S.C.; Sahoo, L. Application of CRISPR-Cas9 Technology in Fish. In Biotechnological Tools in Fisheries and Aquatic Health Management; Behera, B.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Edvardsen, R.B.; Leininger, S.; Kleppe, L.; Skaftnesmo, K.O.; Wargelius, A. Targeted Mutagenesis in Atlantic Salmon (Salmo salar L.) Using the CRISPR/Cas9 System Induces Complete Knockout Individuals in the F0 Generation. PLoS ONE 2014, 9, e108622. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.; Kinoshita, M.; Ng, T.H.; Chang, Y.; Maekawa, S.; Chiang, Y.; Aoki, T.; Wang, H. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes). J. Sci. Rep. 2017, 7, 11435. [Google Scholar] [CrossRef]
- Datsomor, A.K.; Olsen, R.E.; Zic, N.; Madaro, A.; Bones, A.M.; Edvardsen, R.B.; Wargelius, A.; Winge, P. CRISPR/Cas9-Mediated Editing of Δ5 and Δ6 Desaturases Impairs Δ8-Desaturation and Docosahexaenoic Acid Synthesis in Atlantic Salmon (Salmo salar L.). Sci. Rep. 2019, 9, 16888. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Feng, H.; Wang, F.; Lu, B.; Liu, X.; Sun, L.; Wang, D. Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. J. Steroid Biochem. Mol. Biol. 2019, 191, 105379. [Google Scholar] [CrossRef] [PubMed]
- Güralp, H.; Skaftnesmo, K.O.; Kjærner-Semb, E.; Straume, A.H.; Kleppe, L.; Schulz, R.W.; Edvardsen, R.B.; Wargelius, A. Rescue of Germ Cells in Dnd Crispant Embryos Opens the Possibility to Produce Inherited Sterility in Atlantic Salmon. Sci. Rep. 2020, 10, 18042. [Google Scholar] [CrossRef]
- Jin, Y.H.; Liao, B.; Migaud, H.; Davie, A. Physiological impact and comparison of mutant screening methods in piwil2 KO founder Nile tilapia produced by CRISPR/Cas9 system. Sci. Rep. 2020, 10, 12600. [Google Scholar] [CrossRef]
- Straume, A.H.; Kjærner-Semb, E.; Ove Skaftnesmo, K.; Güralp, H.; Kleppe, L.; Wargelius, A.; Edvardsen, R.B. Indel locations are determined by template polarity in highly efficient in vivo CRISPR/Cas9-mediated HDR in Atlantic salmon. Sci. Rep. 2020, 10, 409. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, L.; Wang, Y.; He, L.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. ITGB1b-deficient rare minnows delay grass carp reovirus (GCRV) entry and attenuate GCRV-triggered apoptosis. Int. J. Mol. Sci. 2018, 19, 3175. [Google Scholar] [CrossRef]
- Cleveland, B.M.; Yamaguchi, G.; Radler, L.M.; Shimizu, M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 16054. [Google Scholar] [CrossRef]
- Dehler, C.E.; Lester, K.; Della Pelle, G.; Jouneau, L.; Houel, A.; Collins, C.; Dovgan, T.; Machat, R.; Zou, J.; Boudinot, P.; et al. Viral Resistance and IFN signaling in STAT2 knockout fish cells. J. Immunol. 2019, 203, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Hamar, J.; Kültz, D. An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Sci. Rep. 2021, 11, 7854. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Su, B.; Bruce, T.J.; Wise, A.; Zeng, P.; Cao, G.; Simora, R.M.C.; Bern, L.; Shang, M.; Li, S.; et al. CRISPR/Cas9 microinjection of transgenic embryos enhances the dual-gene integration efficiency of antimicrobial peptide genes for bacterial resistance in channel catfish. Ictalurus Punctatus. Aquac. 2023, 575, 739725. [Google Scholar] [CrossRef]
- Ma, J.; Fan, Y.; Zhou, Y.; Liu, W.; Jiang, N.; Zhang, J.; Zeng, L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish Shellfish. Immunol. 2018, 76, 206–215. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y. Enhancing aquaculture disease resistance: Antimicrobial peptides and gene editing. Rev. Aquac. 2023, 16, 433–451. [Google Scholar] [CrossRef]
- Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017, 169, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.F.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Sig. Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Houston, R.D.; Newman, S. Genetics and genomics of disease resistance in salmonid species. Front. Genet. 2014, 5, 415. [Google Scholar] [CrossRef]
- Hammer, S.E.; El-Matbouli, M.; Saleh, M. Review: Recent applications of gene editing in fish species and aquatic medicine. Animals 2023, 13, 1250. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, Y.; Zhao, J.; Shi, H.; Zeng, S.; Ye, K.; Jiang, D.; Zhou, L.; Sun, L.; Tao, W.; et al. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet. 2015, 11, e1005678. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Niu, P.; Wang, M.; Huang, G.; Xu, S.; Sun, Y.; Xu, X.; Hou, Y.; Sun, X.; Yan, Y.; et al. Targeted disruption of sp7 and myostatin with CRISPR/Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 2016, 6, 22953. [Google Scholar] [CrossRef]
- Chakrapani, V.; Patra, S.K.; Panda, R.P.; Rasal, K.D.; Jayasankar, P.; Barman, H.K. Establishing Targeted Carp TLR22 Gene Disruption via Homologous Recombination Using CRISPR/Cas9. Dev. Comp. Immunol. 2016, 61, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, G.D.; Nissa, M.; Chen, J.; Zou, S.M. Disruption of mstna and mstnb gene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream (Megalobrama amblycephala). Aquaculture 2020, 528, 735597. [Google Scholar] [CrossRef]
- Kim, J.; Cho, J.Y.; Kim, J.-W.; Kim, H.-C.; Noh, J.K.; Kim, Y.-O.; Hwang, H.-K.; Kim, W.-J.; Yeo, S.-Y.; An, C.M.; et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 2019, 512, 734336. [Google Scholar] [CrossRef]
- Kishimoto, K.; Washio, Y.; Yoshiura, Y.; Toyoda, A.; Ueno, T.; Fukuyama, H.; Kato, K.; Kinoshita, M. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 2018, 495, 415–427. [Google Scholar] [CrossRef]
- Hallerman, E. Genome editing in cultured fishes. CABI Agric. Biosci. 2021, 2, 46. [Google Scholar] [CrossRef]
- Moreno-Campos, R.; Singleton, E.W.; Uribe, R.A. A targeted CRISPR-Cas9 mediated F0 screen identifies genes involved in the establishment of the enteric nervous system. PLoS ONE 2024, 19, e0303914. [Google Scholar] [CrossRef]
- Srivastava, R.; Davison, C.W.; Krull, A.G.; Entriken, S.M.; Zumbrock, A.; Cortes Hidalgo, M.D.; Adair, K.J.; Escherich, A.M.; Lara, J.N.; Neverman, E.C.; et al. Microinjection of CRISPR/Cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. J. Vis. Exp. 2018, 131, 56275. [Google Scholar] [CrossRef]
- Robinson, N.; Østbye, T.-K.K.; Kettunen, A.H.; Coates, A.; Barrett, L.T.; Robledo, D.; Dempster, T. A guide to assess the use of gene editing in aquaculture. Rev. Aquac. 2023, 16, 775–784. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sundström, L.F.; Leggatt, R.A. Assessing ecological and evolutionary consequences of growth-accelerated genetically engineered fishes. BioScience 2015, 65, 685–700. [Google Scholar] [CrossRef]
- Kiron, V. Fish immune system and the role of dietary lysine. Rev. Aquac. 2012, 4, 199–209. [Google Scholar]
- Mokrani, A.; Liu, S. Harnessing CRISPR/Cas9 system to improve economic traits in aquaculture species. Aquaculture 2024, 579, 740279. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Heule, C.; Salzburger, W.; Bohne, A. Genetics of sexual development: An evolutionary playground for fish. Genetics 2014, 196, 579–591. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Hajiahmadi, Z.; Movahedi, A.; Wei, H.; Li, D.; Orooji, Y.; Ruan, H.; Zhuge, Q. Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int. J. Mol. Sci. 2019, 20, 3719. [Google Scholar] [CrossRef]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Hoshijima, K.; Jurynec, M.J.; Shaw, D.K.; Jacobi, A.M.; Behlke, M.A.; Grunwald, D.J. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos That Lack Gene Function in Zebrafish. Dev. Biol. 2019, 449, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Mengstie, M.A.; Azezew, M.T.; Dejenie, T.A.; Teshome, A.A.; Admasu, F.T.; Teklemariam, A.B.; Mulu, A.T.; Agidew, M.M.; Adugna, D.G.; Geremew, H.; et al. Recent advancements in reducing the off-target effect of CRISPR-Cas9 genome editing. Biologics 2024, 18, 21–28. [Google Scholar] [CrossRef]
- Moore, E.C.; Roberts, R.B. Polygenic sex determination. Curr. Biol. 2013, 23, R510–R512. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wu, L.; Xie, L.; Yang, S.; Charkraborty, T.; Shi, H.; Wang, D.; Zhou, L. Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus). J. Mol. Cell Endocrinol. 2014, 392, 152–162. [Google Scholar] [CrossRef]
- Chen, L.L.; Wang, S.P.; Zhang, X.Y.; Li, J.M. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J. Endocrinol. 2016, 231, 123–134. [Google Scholar] [CrossRef]
- Jiang, D.; Jiang, J.; Lu, J.; Ding, J.; Lin, H.; Wang, D. CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev. Biol. 2017, 428, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Yuan, J.; Zhou, L.; Sun, L.; Sun, Y.; Yang, S.; Li, M.; Zeng, S.; Huang, B.; Wang, D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 2013, 8, e63604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, D.; Wang, H.; Wang, Y.; Hu, W.; Sun, Y. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. J. Endocrinol. 2020, 161, bqaa048. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Shirak, A.; Dor, L.; Zak, T.; Perelberg, A.; Seroussi, E.; Ron, M. A duplication of the Anti-Müllerian hormone gene is associated with genetic sex determination of different Oreochromis niloticus strains. Heredity 2020, 125, 317–327. [Google Scholar] [CrossRef]
- Liew, W.C.; Bartfai, R.; Lim, Z.; Sreenivasan, R.; Siegfried, K.R.; Orban, L. Polygenic sex determination system in zebrafish. PLoS ONE 2012, 7, e34397. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Guyomard, R.; Nicol, B.; Jouanno, E.; Quillet, E.; Klopp, C.; Cabau, C.; Bouchez, O.; Fostier, A.; Guiguen, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 2012, 22, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Bregnballe, J. A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. J. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Ablain, J.; Durand, E.M.; Yang, S.; Zhou, Y.; Zon, L.I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell 2015, 32, 756–764. [Google Scholar] [CrossRef]
- Shah, A.N.; Davey, C.F.; Whitebirch, A.C.; Miller, A.C.; Moens, C.B. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods 2015, 12, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Sweet, J.B. Draft Study on Risk Assessment: Application of Annex 1 of Decision CP 9/13 to Living Modified Fish. Report for the Secretariat of the Convention on Biological Diversity, UN Environmental Programme. 2019. Available online: https://bch.cbd.int/protocol/risk_assessment/report%20-%20study%20on%20risk%20assessment%2020.12_final%20for%20posting.pdf (accessed on 28 July 2024).
- Leggatt, R. Summary of the Environmental and Indirect Human Health Risk Assessment of Aquadvantage Salmon; Canadian Science Advisory Secretariat Science Response: Ottawa, ON, Canada, 2023. [Google Scholar]
- Evans, O. GM Salmon Farmer Receives Exemption for Gene-Edited Tilapia in Argentina. Salmonbusinesscom. 2018. Available online: https://salmonbusiness.com/gm-salmon-farmer-receive-exemption-for-gene-edited-tilapia-in-argentina (accessed on 28 July 2024).
- Blix, T.B.; Dalmo, R.A.; Wargelius, A.; Myhr, A.I. Genome Editing on Finfish: Current Status and Implications for Sustainability. Rev. Aquac. 2021, 13, 2344–2363. [Google Scholar] [CrossRef]
- Kim, J.; Cho, J.Y.; Kim, J.-W.; Kim, D.-G.; Nam, B.-H.; Kim, B.-S.; Kim, W.-J.; Kim, Y.-O.; Cheong, J.; Kong, H.J. Molecular characterization of paralichthys olivaceus MAF1 and its potential role as an anti-viral hemorrhagic septicaemia virus factor in hirame natural embryo cells. Int. J. Mol. Sci. 2021, 3, 1353. [Google Scholar] [CrossRef]
- Hallerman, E.M.; Dunham, R.; Houston, R.D.; Walton, M.; Wargelius, A.; Wray-Cahen, D. Toward the production of genome-edited aquaculture species. Rev. Aquac. 2023, 15, 404–408. [Google Scholar] [CrossRef]
- Wargelius, A. Application of genome editing in aquatic farm animals: Atlantic salmon. Transgenic Res. 2019, 28, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Coogan, M.; Alston, V.; Su, B.; Khalil, K.; Elaswad, A.; Khan, M.; Johnson, A.; Xing, D.; Li, S.; Wang, J.; et al. Improved Growth and High Inheritance of Melanocortin-4 Receptor (mc4r) Mutation in CRISPR/Cas-9 Gene-Edited Channel Catfish, Ictalurus punctatus. Mar. Biotechnol. 2022, 24, 843–855. [Google Scholar] [CrossRef]
- Hattori, R.S.; Yoshinaga, T.T.; Butzge, A.J.; Hattori-Ihara, S.; Tsukamoto, R.Y.; Takahashi, N.S.; Tabata, Y.A. Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS ONE 2020, 15, e0214034. [Google Scholar] [CrossRef] [PubMed]
- Kossack, M.E.; Draper, B.W. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr. Top. Dev. Biol. 2019, 134, 119–149. [Google Scholar] [CrossRef]
- Hisano, Y.; Sakuma, T.; Nakade, S.; Ohga, R.; Ota, S.; Okamoto, H.; Yamamoto, T.; Kawahara, A. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 2015, 5, 8841. [Google Scholar] [CrossRef]
- Segev-Hadar, A.; Slosman, T.; Rozen, A.; Sherman, A.; Cnaani, A.; Biran, J. Genome Editing Using the CRISPR/Cas9 System to Generate a Solid-Red Germline of Nile Tilapia (Oreochromis niloticus). CRISPR 2021, 4, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Gui, T.; Zhang, J.; Song, F.; Sun, Y.; Xie, S.; Yu, K.; Xiang, J. CRISPR/Cas9-Mediated Genome Editing and Mutagenesis of EcChi4 in Exopalaemon carinicauda. G3 Genes|Genomes|Genetics 2016, 6, 3757–3764. [Google Scholar] [CrossRef] [PubMed]
- Sandquist, E.J.; Ogilvie, C.; Lafontant, P.J.; Essner, J.J. An undergraduate course in CRISPR/Cas9-mediated gene editing in zebrafish. Zebrafish 2024, 21, 162–170. [Google Scholar]
- Brummett, R.E.; Lazard, J.; Moehl, J. African Aquaculture: Realizing the Potential. Food Policy 2008, 33, 371–385. [Google Scholar] [CrossRef]
- Garlock, T.M.; Asche, F.; Anderson, J.L.; Eggert, H.; Anderson, T.M.; Che, B.; Chávez, C.A.; Chu, J.; Chukwuone, N.; Dey, M.M.; et al. Environmental, Economic, and Social Sustainability in Aquaculture: The Aquaculture Performance Indicators. Nat. Commun. 2024, 15, 5274. [Google Scholar] [CrossRef] [PubMed]
- Egelie, K.J.; Graff, G.D.; Strand, S.P.; Johansen, B. The emerging patent landscape of CRISPR-Cas gene editing technology. Nat. Biotechnol. 2016, 34, 1025–1031. [Google Scholar] [CrossRef]
- Gao, C. The Future of CRISPR Technologies in Agriculture. Nat. Rev. Mol. Cell Biol. 2018, 19, 275–276. [Google Scholar] [CrossRef]
- Kapuscinski, A.R.; Hayes, K.R.; Li, S.; Dana, G. Environmental risk assessment of genetically modified organisms. In Environmental Risk Assessment of Genetically Modified Organisms; Kapuscinski, A.R., Hayes, K.R., Li, S., Dana, G., Eds.; CABI Publishing: Wallingford, CT, USA, 2007; Volume 3. [Google Scholar]
- Thresher, R.E.; Hayes, K.; Bax, N.J.; Teem, J.; Benfey, T.J.; Gould, F. Genetic control of invasive fish: Technological options and its role in integrated pest management. Biol. Invasions 2014, 16, 1201–1216. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sundström, L.F.; Muir, W.M. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol. 2006, 24, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.A.; Haslam, R.P.; Olsen, R.E.; Tocher, D.R.; Betancor, M.B. Agriculture can help aquaculture become greener. Nat. Food 2020, 1, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Okoli, A.S.; Blix, T.; Myhr, A.I.; Xu, W.; Xu, X. Sustainable use of CRISPR/Cas in fish aquaculture: The biosafety perspective. Transgenic Res. 2022, 31, 1–21. [Google Scholar] [CrossRef]
- Arcieri, M. Spread and Potential Risks of Genetically Modified Organisms. Agric. Agric. Sci. Procedia 2016, 8, 552–559. [Google Scholar] [CrossRef]
- Peeler, E.J.; Murray, A.G. Disease interaction between farmed and wild fish populations. Fish Biol. 2004, 65, 321–322. [Google Scholar] [CrossRef]
- Perry, K.J.; Henry, J.Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicate. Genesis 2015, 53, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-J. The Biological Impact Assessing Effectiveness and Risks. Fluid Mech.: Open Access 2024, 11, 2296–2476. [Google Scholar]
- Jin, Y.H.; Robledo, D.; Hickey, J.M.; McGrew, M.J.; Houston, R.D. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol. Adv. 2021, 49, 107756. [Google Scholar] [CrossRef]
- Qiong, O. A brief introduction to perception. Stud. Lit. Lang. 2017, 15, 18–28. [Google Scholar]
- Ishii, T.; Araki, M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 2017, 8, 44–56. [Google Scholar] [CrossRef]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global regulation of genetically modified crops amid the gene edited crop boom-a review. Front Plant Sci. 2021, 12, 630369. [Google Scholar] [CrossRef] [PubMed]
- Van Eenennaam, A.L.; Muir, W.M. Transgenic salmon: A final leap to the grocery shelf? Nat. Biotechnol. 2011, 29, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, M.V.; Sutterlin, A. The Foraging and Antipredator Behaviour of Growth-Enhanced Transgenic Atlantic Salmon. Anim. Behav. 1999, 58, 933–942. [Google Scholar] [CrossRef]
- Delpuech, E.; Vandeputte, M.; Morvezen, R.; Bestin, A.; Besson, M.; Brunier, J.; Bajek, A.; Imarazene, B.; François, Y.; Bouchez, O.; et al. Whole-genome sequencing identifies interferon-induced protein IFI6/IFI27-like as a strong candidate gene for VNN resistance in European sea bass. J. Genet. Sel. Evol. 2023, 55, 30. [Google Scholar] [CrossRef]
- Godel, J.B. Disease Agents and Parasites of Carp. 2015. Available online: https://www.researchgate.net/publication/284617414 (accessed on 28 July 2024).
- Garnett, S.T.; Burgess, N.D.; Fa, J.E.; Fernández-Llamazares, Á.; Molnár, Z.; Robinson, C.J.; Watson, J.E.M.; Zander, K.K.; Austin, B.; Brondizio, E.S.; et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 2018, 1, 369–374. [Google Scholar] [CrossRef]
- Myskja, B.K.; Myhr, A.I. Non-safety assessments of genome-edited organisms: Should they be included in regulation? Sci. Eng. Ethics 2020, 26, 2601–2627. [Google Scholar] [CrossRef]
- Tran, N.; Rodriguez, U.P.; Chan, C.Y.; Phillips, M.J.; Mohan, C.V.; Henriksson, P.J.G.; Koeshendrajana, S.; Suri, S.; Hall, S. Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the Asia fish model. Mar. Policy 2017, 79, 25–32. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, R.; Wang, X.; Zhou, Z.; Peng, Y.; Li, S.; Han, D.; Li, S.; Wang, Y.; Han, T.; et al. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. J. Trends Food Sci Technol. 2022, 122, 211–222. [Google Scholar] [CrossRef]
- Beeckman, D.S.A.; Rüdelsheim, P. Biosafety and Biosecurity in Containment: A Regulatory Overview. Front. Bioeng. Biotechnol. 2020, 8, 650. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, P.; Yu, S.-Y.; Thomson, S.B.; Birkenshaw, A.; Leavitt, B.R.; Ross, C.J.D. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol. Pharm. 2022, 19, 1669–1686. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Young, A.E. Public Perception of Animal Biotechnology. In Animal Biotechnology 2-Emerging Breeding Technologies; Niemann, H., Wrenzycki, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 275–303. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Preparing for Future Products of Biotechnology; National Academies Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Almeida, M.; Ranisch, R. Beyond Safety: Mapping the Ethical Debate on Heritable Genome Editing Interventions. Humanit. Soc. Sci. Commun. 2022, 9, 139. [Google Scholar] [CrossRef]
- Doudna, J.A. The promise and challenge of therapeutic genome editing. Nature 2020, 578, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Bauer, D.E.; Chiarle, R. Assessing and advancing the safety of CRISPR-Cas tools: From DNA to RNA editing. Nat. Commun. 2023, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Alghadban, S.; Bouchareb, A.; Hinch, R.; Hernandez-Pliego, P.; Biggs, D.; Preece, C.; Davies, B. Electroporation and Genetic Supply of Cas9 Increase the Generation Efficiency of CRISPR/Cas9 Knock-in Alleles in C57BL/6J Mouse Zygotes. Sci. Rep. 2020, 10, 17912. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shao, G.; Ding, Y.; Xu, L.; Shao, J.; Ao, J.; Chen, X. Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). Aquac. Fish. 2023, 8, 26–32. [Google Scholar] [CrossRef]
- McCarty, N.S.; Graham, A.E.; Studená, L.; Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11, 1281. [Google Scholar] [CrossRef]
- Kobayashi, M.; Msangi, S.; Batka, M.; Vannuccini, S.; Dey, M.M.; Anderson, J.L. Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. [Google Scholar] [CrossRef]
- Funge-Smith, S.; Bennett, A. A Fresh Look at Inland Fisheries and Their Role in Food Security and Livelihoods. Fish Fish. 2019, 20, 1176–1195. [Google Scholar] [CrossRef]
- Chaverra-Rodriguez, D.; Macias, V.M.; Hughes, G.L.; Pujhari, S.; Suzuki, Y.; Peterson, D.R.; Kim, D.; McKeand, S.; Rasgon, J.L. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 2018, 9, 3008. [Google Scholar] [CrossRef] [PubMed]
- Elaswad, A.; Khalil, K.; Ye, Z.; Liu, Z.; Liu, S.; Peatman, E.; Odin, R.; Vo, K.; Drescher, D.; Gosh, K.; et al. Effects of CRISPR/Cas9 Dosage on TICAM1 and RBL Gene Mutation Rate, Embryonic Development, Hatchability, and Fry Survival in Channel Catfish. Sci. Rep. 2018, 8, 16499. [Google Scholar] [CrossRef] [PubMed]
- Thilsted, S.H.; Thorne-Lyman, A.; Webb, P.; Bogard, J.R.; Subasinghe, R.; Phillips, M.J.; Allison, E.H. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 2016, 61, 126–131. [Google Scholar] [CrossRef]
- Naylor, R.; Hindar, K.; Fleming, I.A.; Goldburg, R.; Williams, S.; Volpe, J.; Whoriskey, F.; Eagle, J.; Kelso, D.; Mangel, M. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. BioScience 2005, 55, 427–437. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Gao, J. Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res. 2019, 28, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Kofler, N.; Collins, J.P.; Kuzma, J.; Marris, E.; Esvelt, K.; Nelson, M.P.; Resnik, D.B. Editing nature: Local roots of global governance. Science 2018, 362, 527–529. [Google Scholar] [CrossRef] [PubMed]
- N’souvi, K.; Sun, C.; Che, B. Aquaculture technology adoption and profitability of the polyculture system practiced by prawn and crab farmers: Case study of Anhui province in China. Aquac. Rep. 2021, 21, 100896. [Google Scholar] [CrossRef]
- Pinstrup-Andersen, P. Food security: Definition and measurement. Food Secur. 2009, 1, 5–7. [Google Scholar] [CrossRef]
Applicable Fields | Impacts | Ref. |
---|---|---|
Disease resistance | It is used to reduce the viral hemorrhagic septicemia virus (VHSV) infection of olive flounder hirame natural embryo (HINAE) cells. | [84] |
It enables gene editing in fish species such as salmon, tilapia, and shrimp to increase their resistance to diseases. | [85,86] | |
It helps in the deletion of the JAM-A gene in grass carp cells, which significantly enhances resistance to grass carp reovirus (GCRV) infection. | [39] | |
It helps enhance fish cell lines for host response and genetic resistance against infectious diseases, using Atlantic salmon and rainbow trout as model systems in aquaculture. | [22] | |
Environmental adaptation | It helps to edit genes in fish species, such as farmed salmon, to adapt to changing environments. | [31,86] |
Improved growth rates and muscles | It increases muscle growth by knocking out melanocortin (mc4r) receptor genes and has been experimentally tried on channel catfish and medaka fish. | [28,87] |
It improved the growth rates and increased muscle mass of the channel catfish by modifying the myostatin gene in channel catfish embryos. | [12] | |
It helps increase the muscle mass of blunt snout bream due to the disruption of the mstna and mstnb genes. | [48] | |
Bone development | It helps in myostatin gene disruption of genes, such as transcription factor sp7, causing bone defects in common carp, and increases muscular cells, resulting in a more robust muscular phenotype. | [46] |
Colour defects | It can be used to edit genes involved in pigmentation pathways, potentially leading to loss of skin pigmentation, e.g., edited mutant of large-scale loach, causing skin pigmentation loss and black patch dispersion in the Oujiang color common carp. | [19,68] |
It helps identify and introduce mutations in genes responsible for pigmentation, such as tyrosinase or mitf, which can lead to pigmentation defects in fish species like salmon. | [68] | |
It helps to reveal a recessive inheritance pattern for the white-albino phenotype, lacking pigment-containing chromatophores, in rainbow trout. | [88] | |
Sex determination | It can be used to disrupt or modify the gonadal soma-derived factor (gsdf) gene, which is a crucial gene in teleost fish. Disruption of genes such as dmrt1 and cyp19a1a can lead to sex reversal phenotypes in zebrafish. | [89] |
DNA integration | It facilitates the integration of exogenous DNA into the zebrafish genome, but it may also cause additional genetic mutations or disruptions, depending on the editing conditions and precision of the technique. | [90] |
kidney and gonads development | It helps disrupt the Wilms tumor 1 (wt1a) gene, which may lead to abnormal gonad and kidney development in Nile tilapia. | [69] |
Immune genes improvement | It has been used to knock out or edit genes in salmon fish. However, overexpressing interferon (IFN) or inducing stimulated genes (ISGs) does not guarantee broad disease resistance. | [36] |
Fish Species | Technological Impacts | Ref. |
---|---|---|
Nile tilapia | It is used to produce sterile Nile tilapia populations, reducing the risk of environmental damage from escaped fish. | [11] |
Atlantic salmon | It helps in gene editing to create species that are highly resistant to viral infections, e.g., salmon. | [18] |
Zebrafish | It allows scientists to study mutations and genetic variants in zebrafish. | [93] |
It can be used to successfully integrate composite tags into zebrafish embryos, enabling precise labeling and visualization of cellular structures or proteins. This offers potential for studying protein dynamics, gene expression, and other biological processes in this model organism. | ||
Rainbow trout | It has been shown to reduce the expression of the igfbp-2b gene in rainbow trout, influencing growth and development, but its impact on overall performance and the endocrine system remains unclear. | [35] |
Atlantic salmon and Rainbow trout | It has been used to target unique genes associated with growth and immunity in Atlantic salmon, rainbow trout, and coho salmon cells. | [22] |
Japanese medaka | It has the potential to increase muscle growth and body weight in farmed fish species such as medaka. However, further investigation is needed to determine its impact on production yield and fish health. | [28] |
Olive flounder | It can be used to disrupt the myostatin gene in olive flounder, potentially increasing body weight and muscle tissue, but further research is needed to understand its effects on production efficiency and fish health. | [49] |
Channel catfish | It has been used to modify the myostatin gene in Channel catfish to improve muscle growth and quality, but further research is needed to fully understand its effects. | [12] |
Public Concerns | Impacts | Ref. |
---|---|---|
Awareness and education | It helps to increase public understanding and awareness of GMOs, particularly CRISPR-modified fish, and can significantly impact their acceptance and safety. | [10,102] |
Benefits and risks | It improved nutrition and reduced environmental impact. Emphasizing safety assessments and risk mitigation strategies can significantly influence public opinion. | [102,116] |
Ethical and environmental considerations | Public acceptance of genetically modified fish may be influenced by ethical and environmental concerns. Clear communication, transparency, and engagement play an essential role in gaining public trust. | [116,117] |
Transparency and engagement | Public participation, achieved through an open dialogue among various stakeholders such as consumers, scientists, policymakers, and environmental organizations, will foster trust and acceptance. | [102] |
Food labeling and consumer choice | Clear labeling and transparent information about modified fish products can assist consumers in making informed decisions regarding food consumption and safety. | [116,118] |
Environmental sustainability | It provides potential environmental and sustainable aquaculture benefits, such as reduced antibiotic use and improved resource efficiency, which could have a positive impact on public acceptance. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Sumana, S.L.; Abdullateef, M.M.; Falayi, O.C.; Shui, Y.; Zhang, C.; Zhu, J.; Su, S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int. J. Mol. Sci. 2024, 25, 9299. https://doi.org/10.3390/ijms25179299
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. International Journal of Molecular Sciences. 2024; 25(17):9299. https://doi.org/10.3390/ijms25179299
Chicago/Turabian StyleZhu, Minli, Sahr Lamin Sumana, Mukhtar Muhammad Abdullateef, Opeoluwa Christiana Falayi, Yan Shui, Chengfeng Zhang, Jian Zhu, and Shengyan Su. 2024. "CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture" International Journal of Molecular Sciences 25, no. 17: 9299. https://doi.org/10.3390/ijms25179299
APA StyleZhu, M., Sumana, S. L., Abdullateef, M. M., Falayi, O. C., Shui, Y., Zhang, C., Zhu, J., & Su, S. (2024). CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. International Journal of Molecular Sciences, 25(17), 9299. https://doi.org/10.3390/ijms25179299