Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases—Independently of Usual Markers of Kidney Impairment and Inflammation
Abstract
:1. Introduction
2. Results
2.1. Biomarkers Previously Identified in Early AS Discriminated between Healthy Children and Those with Various Other Nephropathies
2.2. Several Individual BMs and Combinations of BMs Showed Valuable Diagnostic Scores
2.3. Correlation of Our BMs with Clinical Parameters
2.4. Sex Differences
3. Discussion
4. Materials and Methods
4.1. Patients
- (A)
- obesity, metabolic syndrome, manifested T2DM, and arterial hypertension
- (B)
- T1DM
- (C)
- functional solitary kidney (renal agenesis, multicystic dysplastic kidney, and unilateral hypoplasia without renal function)
- (D)
- congenital anomalies of the kidney and urinary tract (ureteropelvic stenosis, duplex kidneys, vesico-ureteral reflux, and lower urinary tract obstruction)
- (E)
- autosomal dominant and recessive polycystic KDs (ADPKD, ARPKD)
- (F)
- hereditary ciliopathy (juvenile nephronophthisis)
- (G)
- glomerular diseases (IgAN, IgA-vasculitis (IgAV), post-infectious glomerulonephritis (GN)).
4.2. Samples
4.3. Evaluation by Immune Assays
4.4. Statistical Analysis of ELISA Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, J.C.; Zhang, L.X. Prevalence and Disease Burden of Chronic Kidney Disease. Adv. Exp. Med. Biol. 2019, 1165, 3–15. [Google Scholar]
- Gross, O.; Licht, C.; Anders, H.J.; Hoppe, B.; Beck, B.; Tönshoff, B.; Höcker, B.; Wygoda, S.; Ehrich, J.H.; Pape, L.; et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012, 81, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Lindhardt, M.; Rossing, P.; Parving, H.H. Prevention of microalbuminuria using early intervention with ren-in-angiotensin system inhibitors in patients with type 2 diabetes: A systematic review. J. Renin Angiotensin Aldosterone Syst. 2016, 17, 1470320316652047. [Google Scholar] [CrossRef] [PubMed]
- Van den Belt, S.M.; Heerspink, H.J.L.; Gracchi, V.; de Zeeuw, D.; Wühl, E.; Schaefer, F.; ESCAPE Trial Group. Early Proteinuria Lowering by Angiotensin-Converting Enzyme In-hibition Predicts Renal Survival in Children with CKD. J. Am. Soc. Nephrol. 2018, 29, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Andeen, N.K.; Nguyen, T.Q.; Steegh, F.; Hudkins, K.L.; Najafian, B.; Alpers, C.E. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy. Kidney Int. 2015, 88, 1099–1107. [Google Scholar] [CrossRef]
- Marshall, C.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic? Am. J. Physiol. Ren. Physiol. 2016, 311, F831–F843. [Google Scholar] [CrossRef]
- Kriz, W.; Löwen, J.; Gröne, H.-J. The complex pathology of diabetic nephropathy in humans. Nephrol. Dial. Transplant. 2023, 38, 2109–2119. [Google Scholar] [CrossRef]
- Neu, A.; Burger-Busing, J.; Danne, T.; Dost, A.; Holder, M.; Holl, R.W.; Ziegler, R. Diagnosis, Therapy and Follow-up of Diabetes Mellitus in Children and Adolescents. Exp. Clin. Endocrinol. Diabetes 2019, 127, 341–352. [Google Scholar]
- Pugliese, G.; Penno, G.; Natali, A.; Barutta, F.; Di Paolo, S.; Reboldi, G.; Society, I.D. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1127–1150. [Google Scholar]
- Ceccarelli, D.C.; Paleari, R.; Solerte, B.; Mosca, A. Re-thinking diabetic nephropathy: Microalbuminuria is just a piece of the diagnostic puzzle. Clin. Chim. Acta 2022, 524, 146–153. [Google Scholar] [CrossRef]
- Pichler, R.; Afkarian, M.; Dieter, B.P.; Tuttle, K.R. Immunity and inflammation in diabetic kidney disease: Translating mecha-nisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 2017, 312, F716–F731. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.U.; Lin, J.; Liu, X.; Li, H.; Lu, W.; Zhong, Z.; Zhang, H.; Waqas, M.; Shen, L. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochim. Et Biophys. Acta Proteins Proteom. 2020, 1868, 140475. [Google Scholar] [CrossRef]
- Zürbig, P.; Jerums, G.; Hovind, P.; MacIsaac, R.J.; Mischak, H.; Nielsen, S.E.; Panagiotopoulos, S.; Persson, F.; Rossing, P. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 2012, 61, 3304–3313. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, L.; Raslik, I.; Gröne, H.; Schönherr, E.; Macakova, K.; Ugorcakova, J.; Budny, S.; Schaefer, R.M.; Kresse, H. Small proteoglycans in human diabetic nephropathy: Discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. FASEB J. 2001, 15, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel biomarkers of diabetic kidney disease: Current status and potential clinical application. Acta Diabetol. 2021, 58, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Chebotareva, N.; Bobkova, I.; Lysenko, L.; Moiseev, S. Urinary Markers of Podocyte Dysfunction in Chronic Glomerulone-phritis. Adv. Exp. Med. Biol. 2021, 1306, 81–99. [Google Scholar]
- Lodge, M.D.S.; Pullen, N.; Pereira, M.; Johnson, T.S. Urinary levels of pro-fibrotic transglutaminase 2 (TG2) may help predict progression of chronic kidney disease. PLoS ONE 2022, 17, e0262104. [Google Scholar]
- Peters, L.J.F.; Floege, J.; Biessen, E.A.L.; Jankowski, J.; van der Vorst, E.P.C. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int. J. Mol. Sci. 2020, 21, 6547. [Google Scholar] [CrossRef]
- He, X.; Kuang, G.; Wu, Y.; Ou, C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 2021, 11, e468. [Google Scholar] [CrossRef]
- Kuo, F.C.; Chao, C.T.; Lin, S.H. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applica-tions Vis-a-Vis. Int. J. Mol. Sci. 2022, 23, 843. [Google Scholar] [CrossRef]
- Lanzaro, F.; Barlabà, A.; De Nigris, A.; Di Domenico, F.; Verde, V.; del Giudice, E.M.; Di Sessa, A. Pediatric Diabetic Nephropathy: Novel Insights from microRNAs. J. Clin. Med. 2023, 12, 1447. [Google Scholar] [CrossRef]
- Smith, D.A.; Redman, J.E.; Fraser, D.J.; Bowen, T. Identification and detection of microRNA kidney disease biomarkers in liquid biopsies. Curr. Opin. Nephrol. Hypertens. 2023, 32, 515–521. [Google Scholar] [CrossRef]
- Li, J.; Zheng, S.; Ma, C.; Chen, X.; Li, X.; Li, S.; Wang, P.; Chen, P.; Wang, Z.; Li, W.; et al. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front. Endocrinol. 2023, 14, 1129884. [Google Scholar] [CrossRef] [PubMed]
- Saenz-Pipaon, G.; Echeverria, S.; Orbe, J.; Roncal, C. Urinary Extracellular Vesicles for Diabetic Kidney Disease Diagnosis. J. Clin. Med. 2021, 10, 2046. [Google Scholar] [CrossRef] [PubMed]
- Ugarte, F.; Santapau, D.; Gallardo, V.; Garfias, C.; Yizmeyián, A.; Villanueva, S.; Sepúlveda, C.; Rocco, J.; Pasten, C.; Urquidi, C.; et al. Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents with Type 1 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 654269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Qin, X. Advances in early biomarkers of diabetic nephropathy. Front. Public Health 2018, 64, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Guo, J.; Liu, Z.-S. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: An epigenetic perspective. Clin. Epigenet. 2021, 13, 87. [Google Scholar] [CrossRef]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211058856. [Google Scholar] [CrossRef]
- Mezher, M.; Al-Radeef, M.; Salih, K. Roles of interleukins (interleukin-18 and interleukin-17a) and transforming growth factor-beta markers in the pathogenesis of diabetic kidney diseases. J. Adv. Pharm. Technol. Res. 2023, 14, 229–234. [Google Scholar] [CrossRef]
- Suh, J.-S.; Kim, S.-H.; Cho, K.S.; Jung, I.-A.; Cho, W.K.; Jeon, Y.J.; Jung, M.H.; Suh, B.K. Urinary markers in the early stage of nephropathy in patients with childhood-onset type 1 diabetes. Pediatr. Nephrol. 2016, 31, 623–631. [Google Scholar] [CrossRef]
- Satirapoj, B. Tubulointerstitial Biomarkers for Diabetic Nephropathy. J. Diabetes Res. 2018, 2018, 2852398. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, X.; Xie, W.; Hong, Z.; Zhang, Y. Integrative analyses of biomarkers and pathways for diabetic nephropathy. Front. Genet. 2023, 14, 1128136. [Google Scholar] [CrossRef]
- Liu, H.; Feng, J.; Tang, L. Early renal structural changes and potential biomarkers in diabetic nephropathy. Front. Physiol. 2022, 13, 1020443. [Google Scholar] [CrossRef]
- Chebotareva, N.; Vinogradov, A.; McDonnell, V.; Zakharova, N.V.; Indeykina, M.I.; Moiseev, S.; Nikolaev, E.N.; Kononikhin, A.S. Urinary Protein and Peptide Markers in Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 12123. [Google Scholar] [CrossRef] [PubMed]
- Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.; van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Roointan, A.; Gheisari, Y.; Hudkins, K.L.; Gholaminejad, A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2253–2272. [Google Scholar] [CrossRef]
- Li, T.; Liu, T.C.; Liu, N.; Zhang, M. Changes in urinary exosomal protein CALM1 may serve as an early noninvasive biomarker for diagnosing diabetic kidney disease. Clin. Chim. Acta 2023, 547, 117466. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, J.-S.; Park, J.-H.; Lee, E.-Y.; Moon, J.-S.; Lee, S.-K.; Lee, J.-S.; Kim, J.-H.; Kim, H.-S. Identification of Novel Biomarker for Early Detection of Diabetic Nephropathy. Biomedicines 2021, 9, 457. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Aziz, W.M.; Shaker, S.E.; Fayed, D.B.; Shawky, H. Urinary transferrin and proinflammatory markers predict the earliest diabetic nephropathy onset. Biomarkers 2022, 27, 178–187. [Google Scholar] [CrossRef]
- Dagdeviren Cakir, A.; Saygili, S.K.; Canpolat, N.; Konukoğlu, D.; Turan, H.; Çalışkan, S.; Evliyaoğlu, O. Elevated Urinary VEGF-A, Transferrin, and Angiotensinogen Levels in Normoalbuminuric Children and Adolescents with Type 1 Diabetes: Can They Be Early Markers of Diabetic Kidney Disease? Horm. Res. Paediatr. 2021, 94, 426–432. [Google Scholar] [CrossRef]
- El-Beblawy, N.M.; Andrawes, N.G.; Ismail, E.A.; Enany, B.E.; El-Seoud, H.S.; Erfan, M.A. Serum and Urinary Orosomucoid in Young Patients with Type 1 Diabetes: A Link Between Inflammation, Microvascular Complications, and Subclinical Athero-sclerosis. Clin. Appl. Thromb. Hemost. 2016, 22, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Montoro, J.I.; Morales, E.; Cornejo-Pareja, I.; Tinahones, F.J.; Fernández-García, J.C. Obesity-related glomerulopathy: Current approaches and future perspectives. Obes. Rev. 2022, 23, e13450. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Tao, L.; Su, H. The Complement System in Metabolic-Associated Kidney Diseases. Front. Immunol. 2022, 13, 902063. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Woo, K.; Yi, J.A. Epidemiology of end-stage kidney disease. Semin. Vasc. Surg. 2021, 34, 71–78. [Google Scholar] [CrossRef]
- Magayr, T.A.; Song, X.; Streets, A.J.; Vergoz, L.; Chang, L.; Valluru, M.K.; Ong, A.C. Global microRNA profiling in human urinary exosomes reveals novel disease bi-omarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int. 2020, 98, 420–435. [Google Scholar] [CrossRef]
- Hastings, M.C.; Rizk, D.V.; Kiryluk, K.; Nelson, R.; Zahr, R.S.; Novak, J.; Wyatt, R.J. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr. Nephrol. 2021, 37, 719–733. [Google Scholar] [CrossRef]
- Moran, S.M.; Cattran, D.C. Recent advances in risk prediction, therapeutics and pathogenesis of IgA nephropathy. Minerva Medica 2019, 110, 439–449. [Google Scholar] [CrossRef]
- Kashtan, C.E. Animal models of Alport syndrome. Nephrol. Dial. Transplant. 2002, 17, 1359–1362. [Google Scholar] [CrossRef]
- Rhode, H.; Lüse, A.; Tautkus, B.; Nabity, M.; John-Kroegel, U.; Weigel, F.; Dost, A.; Schitke, J.; Metzing, O.; Böckhaus, J.; et al. Urinary Protein-Biomarkers Reliably Indicate Very Early Kidney Damage in Children with Alport Syndrome Independently of Albuminuria and Inflammation. Kidney Int. Rep. 2023, 8, 2778–2793. [Google Scholar] [CrossRef]
- Muckova, P.; Wendler, S.; Rubel, D.; Büchler, R.; Alert, M.; Gross, O.; Rhode, H. Preclinical Alterations in the Serum of COL(IV)A3(-)/(-) Mice as Early Biomarkers of Alport Syndrome. J. Proteome Res. 2015, 14, 5202–5214. [Google Scholar] [CrossRef]
- Dennis, J.; Meehan, D.T.; Delimont, D.; Zallocchi, M.; Perry, G.A.; O’Brien, S.; Tu, H.; Pihlajaniemi, T.; Cosgrove, D. Collagen XIII induced in vascular endothelium mediates alpha1beta1 integ-rin-dependent transmigration of monocytes in renal fibrosis. Am. J. Pathol. 2010, 177, 2527–2540. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, F.; Zhang, X.; Li, B.; Ding, J. The Expression Profile of Complement Components in Podocytes. Int. J. Mol. Sci. 2016, 17, 471. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.N.; Wang, W.; Loomba, L.; Afkarian, M.; Butani, L. Diabetic kidney disease in children and adolescents: An update. Pediatr. Nephrol. 2022, 37, 2583–2597. [Google Scholar] [CrossRef] [PubMed]
- Tommerdahl, K.L.; Kendrick, J.; Nelson, R.G.; Bjornstad, P. Youth versus adult-onset type 2 diabetic kidney disease: Insights into currently known structural differences and the potential underlying mechanisms. Clin. Sci. 2022, 136, 1471–1483. [Google Scholar] [CrossRef]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkd. 2001, 149, 807–818. [Google Scholar] [CrossRef]
- U.S. Department of Health And Human Services. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents; U.S. Department of Health And Human Services: Washington, DC, USA, 2005.
- Wang, J.; Shibayama, Y.; Kobori, H.; Liu, Y.; Kobara, H.; Masaki, T.; Wang, Z.; Nishiyama, A. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS ONE 2017, 12, e0185600. [Google Scholar] [CrossRef] [PubMed]
- Garagliano, J.M.; Katsurada, A.; Miyata, K.; Derbenev, A.V.; Zsombok, A.; Navar, L.G.; Satou, R. Advanced Glycation End Products Stimulate Angiotensinogen Production in Renal Proximal Tubular Cells. Am. J. Med. Sci. 2019, 357, 57–66. [Google Scholar] [CrossRef]
- Urushihara, M.; Nagai, T.; Kinoshita, Y.; Nishiyama, S.; Suga, K.; Ozaki, N.; Jamba, A.; Kondo, S.; Kobori, H.; Kagami, S. Changes in urinary angiotensinogen posttreatment in pediatric IgA nephropathy patients. Pediatr. Nephrol. 2015, 30, 975–982. [Google Scholar] [CrossRef]
- Nishiyama, A.; Kobori, H. Independent regulation of renin–angiotensin–aldosterone system in the kidney. Clin. Exp. Nephrol. 2018, 22, 1231–1239. [Google Scholar] [CrossRef]
- Kamel, M.F.; Nassar, M.; Elbendary, A.; Mohamed, A.G.A.; Abdullah, M.G.; Gomaa, H.R.A.; Awad, E.M.I.; Mahmoud, H.H.; Elfiki, M.A.; Abdalla, N.H.; et al. The potential use of urinary transferrin, urinary adiponectin, urinary Retinol Binding Protein, and serum zinc alpha 2 glycoprotein levels as novel biomarkers for early diagnosis of diabetic nephropathy: A case-control study. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102473. [Google Scholar] [CrossRef]
- Tung, C.; Hsu, Y.; Shih, Y.; Chang, P.; Lin, C. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018, 23 (Suppl. S4), 32–37. [Google Scholar] [CrossRef] [PubMed]
- Noone, D.; Licht, C. Chronic kidney disease: A new look at pathogenetic mechanisms and treatment options. Pediatr. Nephrol. 2014, 29, 779–792. [Google Scholar] [CrossRef]
- La Scola, C.; Ammenti, A.; Bertulli, C.; Bodria, M.; Brugnara, M.; Camilla, R.; Capone, V.; Casadio, L.; Chimenz, R.; Conte, M.L.; et al. Management of the congenital solitary kidney: Consensus recommendations of the Italian Society of Pediatric Nephrology. Pediatr. Nephrol. 2022, 37, 2185–2207. [Google Scholar] [CrossRef]
- Nishi, K.; Uemura, O.; Harada, R.; Yamamoto, M.; Okuda, Y.; Miura, K.; Pediatric, C.K.D. Early predictive factors for progression to kidney failure in infants with severe con-genital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 2022, 38, 1057–1066. [Google Scholar] [CrossRef]
- Gross, O.; Tonshoff, B.; Weber, L.T.; Pape, L.; Latta, K.; Fehrenbach, H.; Wilkening, F. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syn-drome. Kidney Int. 2020, 97, 1275–1286. [Google Scholar] [CrossRef]
- Liao, W.-T.; Chen, W.-L.; Tain, Y.-L.; Hsu, C.-N. Complement Factor H and Related Proteins as Markers of Cardiovascular Risk in Pediatric Chronic Kidney Disease. Biomedicines 2022, 10, 1396. [Google Scholar] [CrossRef]
- Feldt, J.; Schicht, M.; Garreis, F.; Welss, J.; Schneider, U.W.; Paulsen, F. Structure, regulation and related diseases of the ac-tin-binding protein gelsolin. Expert. Rev. Mol. Med. 2019, 20, e7. [Google Scholar] [CrossRef]
- Lueck, A.; Brown, D.; Kwiatkowski, D.J. The actin-binding proteins adseverin and gelsolin are both highly expressed but dif-ferentially localized in kidney and intestine. J. Cell Sci. 1998, 111 Pt 24, 3633–3643. [Google Scholar] [CrossRef] [PubMed]
- Piktel, E.; Levental, I.; Durnaś, B.; Janmey, P.A.; Bucki, R. Plasma Gelsolin: Indicator of Inflammation and Its Potential as a Diagnostic Tool and Therapeutic Target. Int. J. Mol. Sci. 2018, 19, 2516. [Google Scholar] [CrossRef]
- Peddada, N.; Sagar, A.; Ashish; Garg, R. Plasma gelsolin: A general prognostic marker of health. Med. Hypotheses 2012, 78, 203–210. [Google Scholar] [CrossRef]
- Lin, Q.; Mao, J.-H. Early prediction of acute kidney injury in children: Known biomarkers but novel combination. World J. Pediatr. 2018, 14, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Kustán, P.; Horváth-Szalai, Z.; Mühl, D. Nonconventional Markers of Sepsis. EJIFCC 2017, 28, 122–133. [Google Scholar] [PubMed]
- Williams, C.E.C.; Toner, A.; Wright, R.D.; Oni, L. A systematic review of urine biomarkers in children with IgA vasculitis nephritis. Pediatr. Nephrol. 2021, 36, 3033–3044. [Google Scholar] [CrossRef]
- Higashisaka, K.; Takeya, S.; Kamada, H.; Obana, M.; Maeda, M.; Kabayama, M.; Yamamoto, K.; Ishida, N.; Isaka, R.; Tsujino, H.; et al. Identification of biomarkers of chronic kidney disease among kidney-derived proteins. Clin. Proteom. 2022, 19, 3. [Google Scholar] [CrossRef]
- Mizdrak, M.; Kumrić, M.; Kurir, T.T.; Božić, J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J. Pers. Med. 2022, 12, 548. [Google Scholar] [CrossRef]
- Latta, K.; Boeckhaus, J.; Weinreich, I.; Borisch, A.; Müller, D.; Gross, O. Clinical Practice Guideline: Microhematuria in Children and Young Adults—Evaluation for the Early Detection of Kidney Disease. Dtsch. Aerzteblatt Online 2024, 121, 461–466. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the eval-uation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
Parameter | Concentration range | Obesity, Metabolic Syndrome, Hypertension, T2DM | T1DM | Renal Agenesis, Multicystic Renal Dysplasia | Anomalies of the Urinary Tract, Duplex Kidneys | ADPKD, ARPKD | Nephronophthisis | Post-Infectious GN, IgAN, IgAV |
---|---|---|---|---|---|---|---|---|
Serum | ||||||||
n of patients | 7–16 | 11–19 | 11–32 | 10–17 | 5–15 | 3 | 3–8 | |
ADP | ng/mL | |||||||
a1AGP | mg/mL | |||||||
AGT | ng/mL | |||||||
ColXIII | ng/mL | 0.066 | ||||||
GS | µg/mL | |||||||
LRGP1 | pg/mL | |||||||
HABP2 | ng/mL | 0.066 | ||||||
PICP | ng/mL | <0.001 | 0.077 | |||||
TGFβ | ng/mL | 0.049 | 0.047 | 0.068 | ||||
VTN | µg/mL | 0.003 | 0.032 | 0.001 | ||||
C9 | ng/mL | 0.056 | ||||||
C4BP | ng/mL | 0.044 | ||||||
CRP | ng/mL | 0.003 | 0.020 | |||||
LUM | ng/mL | |||||||
FMN | pg/mL | |||||||
CFH | ng/mL | |||||||
CFI | ng/mL | |||||||
FGG | ng/mL | 0.074 | 0.067 | |||||
C1q | ng/mL | |||||||
Urine | ||||||||
n of patients | 10–20 | 40–44 | 25–33 | 9–18 | 10–16 | 3 | 6–8 | |
ADP | ng/mg c | 0.013 | ||||||
a1AGP | ng/mg c | 0.064 | 0.003 | |||||
AGT | ng/mg c | 0.050 | 0.042 | <0.001 | ||||
ColXIII | ng/mg c | 0.013 | 0.031 | 0.044 | 0.004 | 0.005 | <0.001 | |
GS | ng/mg c | 0.016 | 0.007 | |||||
LRGP1 | ng/mg c | 0.019 | ||||||
HABP2 | ng/mg c | 0.006 | <0.001 | <0.001 | <0.001 | 0.012 | 0.020 | |
PICP | pg/mg c | <0.001 | 0.003 | 0.002 | ||||
TGFβ | pg/mg c | 0.002 | ||||||
VTN | ng/mg c | 0.046 | 0.003 | 0.029 | ||||
C9 | pg/mg c | 0.053 | ||||||
C4BP | ng/mg c | 0.009 | 0.002 | 0.015 | 0.028 | <0.001 | ||
CRP | pg/mg c | <0.001 | 0.065 | <0.001 | ||||
CFH | ng/mg c | 0.045 | 0.011 | 0.006 | ||||
CFI | ng/mg c | 0.020 | <0.001 | |||||
FMN | pg/mg c | 0.002 | ||||||
LUM | ng/mg c | |||||||
FGG | ng/mg c | 0.014 | <0.001 | |||||
C1q | ng/mg c | 0.029 | 0.035 |
Product of BMs in Urine | Obesity, Metabolic Syndrome, Hypertension, T2DM | T1DM | Renal Agenesis, Multicystic Renal Dysplasia | Anomalies of the Urinary Tract, Duplex Kidneys | ADPKD, ARPKD | Nephronophthisis | Post-Infectious GN, IgAN, IgAV |
---|---|---|---|---|---|---|---|
n of patients | 10–13 | 41–43 | 25–30 | 9–17 | 10–13 | 3 | 5–8 |
ADP × PICP | <0.001 | 0.009 | 0.006 | ||||
ADP × C9 | 0.011 | ||||||
ADP × C4BP | 0.030 | 0.004 | 0.044 | 0.068 | 0.026 | <0.001 | |
AGT × GS | 0.007 | 0.001 | |||||
AGT × C9 | 0.019 | 0.007 | |||||
ColXIII × C4BP | 0.002 | 0.005 | <0.001 | 0.010 | 0.002 | <0.001 | |
ColXIII × FMN | 0.002 | 0.005 | 0.014 | 0.021 | 0.021 | <0.001 | |
GS × CFH | 0.056 | 0.006 | 0.002 | ||||
GS × C9 | 0.007 | ||||||
GS × VTN | 0.008 | 0.003 | |||||
GS × CFI | 0.001 | 0.001 | |||||
LRGP1 × C1q | 0.025 | 0.059 | 0.033 | ||||
HABP2 × TGFβ | 0.024 | <0.001 | 0.056 | 0.002 | 0.005 | ||
HABP2 × FGG | 0.007 | <0.001 | 0.006 | 0.084 | <0.001 | 0.001 | |
VTN × AGT | 0.050 | 0.012 | 0.035 | 0.003 | |||
VTN × C9 | 0.025 | ||||||
VTN × CFI | 0.002 | <0.001 | |||||
C9 × CFH | 0.082 | 0.099 | 0.024 | ||||
CRP × C1q | 0.008 | 0.021 | 0.002 | ||||
CFH × CFI | 0.068 | 0.003 | <0.001 | ||||
CFH × FGG | 0.096 | 0.002 | <0.001 | ||||
CFI × FGG | 0.003 | <0.001 | |||||
CFI × a1AGP | 0.035 | <0.001 | |||||
CFI × GS | 0.053 | 0.026 | |||||
FMN × FGG | 0.017 | <0.001 | |||||
ColXIII × C4BP × HABP2 | <0.001 | 0.006 | 0.016 | 0.015 | <0.001 | <0.001 |
BM | Cut-off | Sensitivity | 1-Specificity | AUC | 95%—Confidence Interval | Misclassification Rate | BM × BM | Cut-off | Sensitivity | 1-Specificity | AUC | 95%—Confidence Interval | Misclassification Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ColXIII | 0.07 | 0.857 | 0.36 | 0.717 | 0.624–0.810 | 0.34 | ADP × PICP | 260.4 | 0.500 | 0.061 | 0.727 | 0.536–0.918 | 0.11 |
HABP2 | 0.29 | 0.636 | 0.194 | 0.744 | 0.595–0.894 | 0.21 | AGT × GS | 115.3 | 0.500 | 0.146 | 0.754 | 0.592–0.916 | 0.48 |
C4BP | 3.46 | 0.692 | 0.240 | 0.693 | 0.512–0.874 | 0.27 | AGT × C9 | 245.8 | 0.600 | 0.073 | 0.754 | 0.571–0.938 | 0.10 |
CRP | 7.54 | 0.529 | 0.149 | 0.656 | 0.495–0.818 | 0.20 | C4BP × ColXIII | 0.53 | 0.667 | 0.235 | 0.750 | 0.603–0.897 | 0.27 |
CFH | 8.89 | 0.667 | 0.313 | 0.697 | 0.542–0.853 | 0.31 | GS × CFH | 624.0 | 0.700 | 0.253 | 0.754 | 0.589–0.918 | 0.26 |
CFI | 1.70 | 0.462 | 0.131 | 0.669 | 0.496–0.842 | 0.14 | GS × C9 | 19728 | 0.600 | 0.091 | 0.754 | 0.581–0.926 | 0.12 |
GS × CFI | 184.1 | 0.700 | 0.111 | 0.796 | 0.635–0.958 | 0.13 | |||||||
HABP2 × TGFβ | 3.28 | 0.700 | 0.133 | 0.755 | 0.569–0.941 | 0.15 | |||||||
HABP2 × FGG | 365.4 | 0.700 | 0.092 | 0.812 | 0.678–0.947 | 0.11 | |||||||
VTN × CFI | 4.83 | 0.667 | 0.101 | 0.765 | 0.576–0.954 | 0.07 | |||||||
CFH × CFI | 27.3 | 0.636 | 0.152 | 0.762 | 0.599–0.925 | 0.17 | |||||||
CFI × FGG | 2883 | 0.583 | 0.040 | 0.755 | 0.586–0.924 | 0.08 | |||||||
CFH × FGG | 9180 | 0.727 | 0.232 | 0.771 | 0.610–0.931 | 0.14 | |||||||
C4BP × ColXIII × HABP2 | 0.11 | 0.700 | 0.156 | 0.784 | 0.626–0.942 | 0.17 |
Group | n | Gender | Age [y] | BMI [SDS, z] | eGFR [mL/min/1.73m2] | Cystatin cGFR [mL/min/1.73m2] | Cystatin C [serum] mg/L | Blood Glucose [mmol/L] | HBA1c [%] | Blood Pressure Syst. [SDS, z] | Blood Pressure Diast [SDS, z] | Serum Creatinine [µmol/L] | Urine Albumin [mg/g creatinine] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total controls | 104 | 48 m/56f | 10.3 (4.0, 3.1–17.1) | 0.069 (1.264, −3.44–3.68) | 149.8 (28.2) | 117.7 (23.0) | 0.84 (0.12) | 5.01 (1.44) | 5.18 (0.28) | 0.404 (0.999) | 0.344 (0.943) | 48.1 (14.4) | 9.2 (9.9) | |
Female controls | 56 | f | 10.3 (4.0, 3.5–16.7 | −0.064 (1.25, −3.44–2.90) | 153.4 (30.0) | 121.5 (22.5) | 0.81 (0.11) | 5.00 (1.88) | 5.17 (0.28) | 0.325 (1.00) | 0.409 (1.01) | 45.5 (12.7) | 11.1 (12.0) | |
Male controls | 48 | m | 10.3 (4.1, 3.1–17.1) | 0.220 (1.28, −2.50–3.68) | 145.6 (25.6) | 113.2 (23.1) | 0.87 (0.12) | 5.01 (0.60) | 5.19 (0.29) | 0.490 (0.997) | 0.274 (0.866) | 51.0 (15.8) | 6.9 (5.9) | |
A | Metabolic syndrome, hypertension, obesity, T2DM | 18 | 7 m/11 f | 14.6 b (2.8) | 2.55 b (0.85, 0.58–4.34) | 154.8 (34.7) | 112.1 (20.1) | 0.83 (0.13) | 6.01 b (1.29) | 5.50 b (0.39) | 2.048 b (1.27) | 1.981 b (1.31) | 53.2 (10.2) | 5.3 (4.8) |
B | T1DM | 52 | 27 m/25 f | 14.7 b (4.1) | 0.629 b (1.16, −2.96–3.23) | n. d. | 107.5 a (19.3) | 0.87 a (0.14) | 8.6 b (3.8) | 7.68 b (1.01) | 1.370 b (1.10) | 1.456 b (0.932) | 52.0 (19.0) | 16.4 (49.5) |
C | Renal agenesis, hypoplasia, multicystic renal dysplasia | 33 | 21 m/12 f | 11.4 (4.3) | 0.268 (1.197, −2.68–3.25) | 138.9 (27.4) | 101.3 a (14.7) | 0.94 b (0.11) | 5.44 b (0.68) | 5.27 (0.27) | 1.452 b (1.27) | 0.556 (0.837) | 54.4 (15.5) | 23.6 (47.3) |
D | Anomalies of the urinary tract, duplex kidneys | 19 | 11 m/8 f | 10.9 (3.8) | 0.438 (1.212, −2.68–3.25) | 141.5 (27.9) | 118.1 (28.7) | 0.85 (0.16) | 5.25b (0.48) | 5.23 (0.25) | 1.647b (0.856) | 0.577 (0.815) | 52.8 (14.1) | 17.9 (24.5) |
E | ADPKD, ARPKD | 17 | 9 m/8 f | 10.4 (4.5) | 0.091 (0.930, −1.58–1.92) | 156.7 (29.0) | 117.1 (19.0) | 0.84 (0.12) | 5.25 a (0.27) | 5.19 (0.25) | 1.587 b (1.14) | 1.101 (0.975) | 45.9 (11.1) | 95.6 b (205.5) |
F | Nephron-ophthisis | 3 | 1 m/2 f | 8.5 (1.6) | −0.270 (0.488, −0.96–0.10) | 137.8 (32.8) | 99.3 (12.7) | 0.98 a (0.11) | 5.20 (0.43) | 5.33 (0.25) | 1.707 a (0.684) | 1.771 b (0.441) | 46.7 (12.5) | 11.6 (5.7) |
G | Post-infectious GN, IgAN, IgAV | 9 | 3m/6 f | 13.7 b (2.3) | 0.083 (1.746, −2.31–2.43) | 146.8 (29.7) | 100.8 b (18.7) | 0.93 b (0.14) | 5.87 a (0.85) | 5.34 (0.35) | 1.001 (0.835) | 0.054 (0.754) | 55.0 (14.6) | 57.6 a (65.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhode, H.; Tautkus, B.; Weigel, F.; Schitke, J.; Metzing, O.; Boeckhaus, J.; Kiess, W.; Gross, O.; Dost, A.; John-Kroegel, U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases—Independently of Usual Markers of Kidney Impairment and Inflammation. Int. J. Mol. Sci. 2024, 25, 9320. https://doi.org/10.3390/ijms25179320
Rhode H, Tautkus B, Weigel F, Schitke J, Metzing O, Boeckhaus J, Kiess W, Gross O, Dost A, John-Kroegel U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases—Independently of Usual Markers of Kidney Impairment and Inflammation. International Journal of Molecular Sciences. 2024; 25(17):9320. https://doi.org/10.3390/ijms25179320
Chicago/Turabian StyleRhode, Heidrun, Baerbel Tautkus, Friederike Weigel, Julia Schitke, Oliver Metzing, Jan Boeckhaus, Wieland Kiess, Oliver Gross, Axel Dost, and Ulrike John-Kroegel. 2024. "Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases—Independently of Usual Markers of Kidney Impairment and Inflammation" International Journal of Molecular Sciences 25, no. 17: 9320. https://doi.org/10.3390/ijms25179320
APA StyleRhode, H., Tautkus, B., Weigel, F., Schitke, J., Metzing, O., Boeckhaus, J., Kiess, W., Gross, O., Dost, A., & John-Kroegel, U. (2024). Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases—Independently of Usual Markers of Kidney Impairment and Inflammation. International Journal of Molecular Sciences, 25(17), 9320. https://doi.org/10.3390/ijms25179320