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Abstract: Irritable bowel syndrome with diarrhea (IBS-D) is the most prevalent subtype of IBS, char-
acterized by chronic gastrointestinal symptoms in the absence of identifiable pathological findings.
This study aims to investigate the molecular mechanisms underlying IBS-D using transcriptomic data.
By employing causal network inference methods, we identify key transcriptomic modules associated
with IBS-D. Utilizing data from public databases and applying advanced computational techniques,
we uncover potential biomarkers and therapeutic targets. Our analysis reveals significant molecular
alterations that affect cellular functions, offering new insights into the complex pathophysiology of
IBS-D. These findings enhance our understanding of the disease and may foster the development of
more effective treatments.

Keywords: IBS-D; transcriptomics; causal network inference; biomarkers; therapeutic targets

1. Introduction

Functional gastrointestinal disorders (FGIDs) encompass a spectrum of conditions
characterized by chronic gastrointestinal (GI) symptoms without identifiable pathological
findings on routine diagnostic assessments [1]. Among FGIDs, irritable bowel syndrome
(IBS) is the most prevalent subtype [1]. IBS is a multifactorial disorder [2] marked by
abdominal pain, altered stool consistency and frequency, and the absence of detectable
biochemical or structural anomalies [3]. IBS is classified in four subtypes based on stool
patterns: IBS with constipation (IBS-C), IBS with diarrhea (IBS-D), IBS with mixed bowel
habit (IBS-M), and IBS unclassified (IBS-U) [4].

This study is primarily focused on IBS-D, which, according to multiple sources, is the
most common subtype, followed by IBS-C and IBS-M. One study in an adult population
found that IBS-D accounted for approximately 40% of cases, IBS-C for 35%, IBS-M for
23%, and IBS-U for 8% [5]. Interestingly, this functional disorder also affects pediatric
populations [6]. Due to the absence of objective diagnostic biomarkers [7], these percentages
may vary depending on the study population, the diagnostic criteria used (e.g., Rome III
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vs. Rome IV), and the geographical region [8]. Nevertheless, IBS-D consistently emerges as
the most common subtype across various studies and regions.

Despite its prevalence and clinical impact, the pathophysiology of IBS-D remains
poorly understood [9]. Complex diseases like FGIDs are thought to arise from a combination
of molecular changes that disrupt cellular function [10]. Advances in omics technologies
(e.g., genomics, transcriptomics, and proteomics) [11] have significantly contributed to our
understanding of the fundamental mechanisms underlying these conditions [12].

Considerable research has been conducted on IBS and the role of the gut microbiota
but our understanding of the biochemical, metabolic, functional, and inflammatory mech-
anisms underlying IBS-D remains limited [13]. Human studies are often restricted by
the limited availability of biopsies for microstructural and molecular analysis [13]. Addi-
tionally, there is a lack of robust animal models that fully replicate the pathophysiology
of IBS, particularly IBS-D [14]. Thanks to the availability nowadays of well-established
experimental protocols and the reduced costs of omics platforms, large quantities of omics
data are being generated [14] and made accessible through public databases (e.g., Gene
Expression Omnibus) [15]. RNA sequencing (RNA-seq) technology, for example, is a crucial
tool for defining the transcriptome landscape from isolated cells, tissue sections, or biopsy
samples [16].

In this context, pathway enrichment analysis is essential for identifying active bio-
logical processes [17–20], elucidating disease-associated molecular pathways, devising
novel therapeutic strategies, and delineating diagnostic biomarkers [21,22]. Integrating
genomic expression data with biomolecular interaction databases, such as Reactome [23]
or KEGG [24], offers significant advantages, especially in the big data era. This approach
is essential to understand the disease complexity in each patient [12,25]. Consequently,
network biology, aimed at enhancing our understanding of complex biological systems,
has gained considerable interest in recent years [26]. Identifying pathways that drive
disease-specific expression signatures can reveal “hidden nodes,” which, although not
differentially expressed, play a crucial role in connecting differentially expressed genes
within complex networks [27,28].

In this framework, the modular structure of biological networks provides critical in-
sights into the connections and interactions between elements within a network. A disease
module represents a collection of cellular components whose disruption can lead to a
disease phenotype. Notably, these modules are identified as clusters of highly intercon-
nected genes that show significant differences in expression between diseased and control
cells [27]. Understanding these modules may help to elucidate disease mechanisms and
biological functions, particularly during disease progression [29,30]. Furthermore, there
is growing interest in employing inference analysis to model and quantify cause–effect
relationships within modules, particularly from a multivariate statistical perspective in the
context of experimental perturbation [31,32].

Given the complex and multifactorial nature of IBS-D, driven by both genetic and
environmental factors, a causal network-based approach utilizing graph theory [33,34]
and structural equation modeling [31] could be beneficial. This approach enables tran-
scriptomic interactions, such as active disease modules and their associated communities,
to be explored and inferences about their effects drawn. This study aimed to investigate
the transcriptomic complexity of IBS-D using a graph theory-SEM integrated approach,
applying network model theory to identify an IBS-D active module and its associated
communities and explore/infer their effects. This innovative approach may provide new
insights into the molecular mechanisms underlying IBS-D.

2. Results
2.1. Preprocessing and Dataset Selection

The gene expression profiles from two RNA-seq datasets, GSE146853 and GSE166869,
derived from intestinal biopsies, were obtained from the NCBI Gene Expression Omnibus
(GEO) database. A total of 164 raw FastQ files were processed, representing 38 IBS-
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D patients and 44 healthy controls. The average sequencing coverage per sample was
42.0 million reads (range: 28.3–68.1 million) for the GSE146853 dataset and 25.3 million
reads (range: 3.1–44.7 million) for the GSE166869 dataset (Table S1). Additionally, the
average ribosomal RNA (rRNA) content was 15% (range: 11.2–21.7%) for GSE146853 and
77.5% (range: 22.7–99.2%) for GSE166869 (Table S1). Due to insufficient quality control,
the GSE166869 dataset was excluded from further analysis. The 35 samples collected at
time point 1 (T1) from the GSE146853 dataset were subsequently analyzed. The results are
summarized in Table 1.

Table 1. Gender, age, and BMI characteristics in IBS-D and healthy patients.

Samples Male Female Age (years) BMI (kg/m2)

Healthy 18 5 13 23–59 27
IBS-D 17 6 11 26–59 27

BMI: Body Mass Index.

2.2. Differentially Expressed Genes (DEG) and Reactome Enrichment Analyses

Preliminary principal component analysis (PCA) indicated that disease status was not
associated with transcriptomic variability, as reflected in the first two principal components,
regardless of their complexity (Figure S1). To further explore the transcriptomic complexity,
a DEG analysis was conducted as an initial step, comparing the 35 samples (17 IBS-D pa-
tients and 18 healthy controls). This analysis identified 54 significant DEGs (p-value < 0.05),
34 being upregulated (log2FoldChange ≥ 1) and 20 downregulated (log2FoldChange ≤−1).
The identified DEGs are detailed in Table 2 and visualized in the volcano plot (Figure 1).
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Table 2. Negative binomial analysis by DESeq2 identified DEGs, comparing IBS-D versus healthy
samples.

Gene_ID ENSEMBL_ID Gene Description log2FC p-Value
DUOX2 ENSG00000140279 dual oxidase 2 2.52 0
KLK12 ENSG00000186474 kallikrein related peptidase 12 1.38 0
SH2D6 ENSG00000152292 SH2 domain containing 6 1.26 0

MST1P2 ENSG00000186301 macrophage stimulating 1 pseudogene −1.84 0
None ENSG00000290851 novel transcript −2.09 0

RPL13P12 ENSG00000215030 ribosomal protein L13 pseudogene 12 −2.8 0
HTR3C ENSG00000178084 5-hydroxytryptamine receptor 3C 1.39 0.0001
SH2D7 ENSG00000183476 SH2 domain containing 7 1.12 0.0001
HMX3 ENSG00000188620 H6 family homeobox 3 1.11 0.0001

RPSAP15 ENSG00000237506 ribosomal protein SA pseudogene 15 1.04 0.0001

ELFN2 ENSG00000166897 extracellular leucine-rich repeat and fibronectin type
III domain containing 2 1.01 0.0003

AGAP7P ENSG00000264204 ArfGAP with GTPase domain, ankyrin repeat and PH
domain 7, pseudogene −1.91 0.0005

RPL29P4 ENSG00000230202 ribosomal protein L29 pseudogene 4 1.79 0.0006
None ENSG00000277400 None 1.35 0.0006

DUOXA2 ENSG00000140274 dual oxidase maturation factor 2 2 0.0007
ACTG1P22 ENSG00000271615 actin gamma 1 pseudogene 22 1.16 0.0008

GTF2H2 ENSG00000145736 general transcription factor IIH subunit 2 1.03 0.0008

ATP12A ENSG00000075673 ATPase H+/K+ transporting non-gastric alpha2
subunit −2.01 0.0011

HTR3E ENSG00000186038 5-hydroxytryptamine receptor 3E 1.16 0.0012
CHAT ENSG00000070748 choline O-acetyltransferase 1.05 0.0014
MT1H ENSG00000205358 metallothionein 1H −1.04 0.0014

HCG4B ENSG00000227262 HLA complex group 4B −1.12 0.0016

PKD1P2 ENSG00000227827 polycystin 1, transient receptor potential channel
interacting pseudogene 2 −2.08 0.0017

GATD3 ENSG00000160221 glutamine amidotransferase class 1 domain
containing 3 1.63 0.0021

IGHV2-70 ENSG00000274576 immunoglobulin heavy variable 2–70 −1.23 0.0025
SLC13A3 ENSG00000158296 solute carrier family 13 member 3 −1.02 0.0028
IGHV5-78 ENSG00000211978 immunoglobulin heavy variable 5–78 (pseudogene) 1.4 0.003
ADGRF1 ENSG00000153292 adhesion G protein-coupled receptor F1 1.25 0.0032
IGKV2-29 ENSG00000253998 immunoglobulin kappa variable 2–29 −1.93 0.0045
FAM230I ENSG00000178248 family with sequence similarity of 230 member, I 1.32 0.0048

None ENSG00000287188 novel transcript, antisense to ANXA10 1.22 0.0057
ITPRID1 ENSG00000180347 ITPR interacting domain containing 1 1.02 0.0065

PI16 ENSG00000164530 peptidase inhibitor 16 −1.17 0.0067
MGAM2 ENSG00000257743 maltase-glucoamylase 2 (putative) 1.05 0.0078

None ENSG00000230563 novel transcript 1.09 0.0111
CCNO ENSG00000152669 cyclin O 1.04 0.0117
CHIT1 ENSG00000133063 chitinase 1 1.47 0.0136
AFF2 ENSG00000155966 ALF transcription elongation factor 2 1.28 0.0143

HERC2P3 ENSG00000290376 HERC2 pseudogene 3 1.12 0.0144
None ENSG00000289911 novel transcript, antisense to PTP4A1 −1.06 0.0159
SFRP2 ENSG00000145423 secreted frizzled-related protein 2 −1.01 0.0178

LGSN ENSG00000146166 lengsin, lens protein with glutamine synthetase
domain −1.67 0.0187

SULT2A1 ENSG00000105398 sulfotransferase family 2A member 1 −2.18 0.0188
None ENSG00000274767 novel transcript, antisense CCL3L3 −1.15 0.0212

PLA2G10BP ENSG00000254609 phospholipase A2 group XB, pseudogene 1.49 0.0214
None ENSG00000289810 novel transcript 1.3 0.0244
None ENSG00000224114 ribosomal protein S14 (RPS14) pseudogene −1.31 0.0249

OLFM4 ENSG00000102837 olfactomedin 4 1.26 0.0255
CR2 ENSG00000117322 complement C3d receptor 2 1.29 0.0267
LTF ENSG00000012223 Lactotransferrin 1.08 0.0315

None ENSG00000213058 ribosomal protein S14 (RPS14) pseudogene −1.64 0.0328

HSD3B2 ENSG00000203859 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and
steroid delta-isomerase 2 1.23 0.039

PWP2 ENSG00000241945 PWP2 small subunit processome component 1.09 0.0406
SVOPL ENSG00000157703 SVOP like −1 0.0481

The genes are arranged according to their p-value in ascending order. Abbreviations: Gene_ID: gene identification;
ENSEMBL_ID: ENSEMBLE Identification; Log2FC: Log2 fold-change.
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The DEGs detected by their ENSEMBL IDs were used to identify pathways in Reac-
tome analysis tools that include at least one DEG, as detailed in Table S2 and illustrated in
Figure 2.
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Figure 2. Reactome pathways identified by the 54 differentially expressed genes (DEGs) are depicted
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corresponds to the number of DEGs contained within the gene set of the pathway.

2.3. Statistical Analysis
2.3.1. SEM-Based Gene Set Analysis (SEMgsa)

In the first step, an SEMgsa was performed on notable genes—without considering
the newly discovered transcripts by RNA-seq analysis. Table 3 displays the results of the
procedure. Notably, the pathways involved in the complement system—including the
generation of C4 and C2 activators, classical antibody-mediated complement activation,
the complement cascade, and its regulation—show significant inhibition (p < 0.05).

As shown in Table 4, 22 unique DEGs were identified. The pathways complement
cascade and regulation of complement cascade included the highest number of DEGs,
involving eight and seven genes, respectively. Consequently, these DEGs were also used as
seed genes for the Steiner tree (ST) identification procedure.
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Table 3. Results of the SEMgsa.

Pathway No. Nodes No. DEGs Perturbation Status pNa pNi pval

Creation of C4 and C2 activators 14 5 Down 0.999 0.000 0.001
Formation of the Early Elongation Complex 33 2 Up 0.001 0.995 0.003
Classical antibody-mediated complement
activation 6 5 Down 1.000 0.002 0.004

Complement cascade 57 8 Down 0.680 0.006 0.011
Regulation of complement cascade 46 7 Down 0.694 0.007 0.014
Initial triggering of complement 22 6 Down 0.611 0.008 0.016
Negative regulation of TCF-dependent
signaling by WNT ligand antagonists 15 4 Down 0.742 0.008 0.016

Digestion of dietary carbohydrate 7 2 Down 0.370 0.144 0.288
FCGR activation 12 2 Down 0.415 0.049 0.098
Role of phospholipids in phagocytosis 24 0 Down 0.306 0.231 0.462
Thyroxine biosynthesis 7 1 Up 0.230 0.600 0.460
Scavenging of heme from plasma 12 0 Down 0.587 0.131 0.261
Role of LAT2/NTAL/LAB on calcium
mobilization 12 0 Up 0.298 0.372 0.597

FCERI-mediated Ca+2 mobilization 30 1 Up 0.177 0.495 0.353
CD22-mediated BCR regulation 5 0 Up 0.368 0.844 0.735
FCGR3A-mediated IL10 synthesis 28 2 Up 0.321 0.323 0.642
Antigen activates B-Cell Receptor (BCR),
leading to the generation of second messengers 29 0 Up 0.414 0.590 0.827

The pathway mineralocorticoid biosynthesis analyzed in SEMgsa has not been included in the table because
the RICF algorithm did not converge. Abbreviations: No: number; DEGs: differentially expressed genes; up:
activated; down: inhibited; pNa: Brown’s combined p-value of pathway node activation; pNi: Brown’s combined
p-value of pathway node inhibition; pval: Bonferroni combined p-value of activation and inhibition, expressed as
2× min (activation p-value, inhibition p-value); ADJP: adjusted Bonferroni p-value of pathway perturbation; i.e.,
min (number of pathways × p-value; 1).

Table 4. List of differentially expressed genes (DEGs) per pathway.

Pathway DEG 1 DEG 2 DEG 3 DEG 4 DEG
5

DEG
6 DEG 7 DEG 8

Creation of C4 and C2 activators C1QC C1QB MASP1 C1S C1R
Formation of the Early Elongation

Complex GTF2H2 SUPT4H1

Classical antibody-mediated
complement activation C1QA C1QC C1QB C1S C1R

Complement cascade C1QC C1QB C4BPA MASP1 C6 C1S C1R C3AR1
Regulation of complement cascade C1QC C1QB C4BPA C6 C1S C1R C3AR1

Initial triggering of complement C1QC C1QB MASP1 C4B C1S C1R
Negative regulation of

TCF-dependent signaling by WNT
ligand antagonists

LRP5 SFRP1 LRP5 KREMEN1

Digestion of dietary carbohydrate SI MGAM
FCGR activation FGCR2A CD247

Role of phospholipids in
phagocytosis

Thyroxine biosynthesis DUOX2
Scavenging of heme from plasma

Role of LAT2/NTAL/LAB on
calcium mobilization

FCERI-mediated Ca+2 mobilization LCP2
CD22-mediated BCR regulation

FCGR3A-mediated IL10 synthesis FGCR2A CD247
Antigen activates B-Cell Receptor

(BCR), leading to the generation of
second messengers



Int. J. Mol. Sci. 2024, 25, 9322 7 of 24

2.3.2. Analysis of the Active IBS-D Module

Figure 3 shows the ST graph for IBS-D, generated by integrating Reactome path-
ways [23] and GEO data. The graph consists of 46 nodes and 45 edges. The 22 seed genes
corresponding to DEGs are highlighted in aquamarine, and the 24 connector nodes in white.
Bidirectional edges are represented in black.
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Figure 3. Steiner tree graph of IBS-D from Reactome and GEO data. Seed nodes are colored
aquamarine, connectors white, and bidirectional edges are colored black. The graph is drawn from
DEGs (seed genes) mapped on the Reactome interactome, i.e., the union of all Reactome pathways, in
relation to a weighting procedure based on Fisher’s r-to-z transformation.

Figure 4 illustrates the active IBS-D module, represented as the optimal IBS-D Directed
Acyclic Graph (DAG), derived using a fitting strategy based on Structural Equation Mod-
eling (SEM) and graph theory, as described in the methods section implemented in the
R/SEMgraph packages [25]. In this approach, we developed a data-driven model search
strategy, relying solely on data without validation against a reference network. Notably,
Figure 4 highlights the addition of two edges: LRP6 → CA4 and UBC → SFRP1.

Tables 5–7 present the results of the SEM fitting analysis. Notably, both the IBS-D and
control models yielded similar findings for the significant CA4 → DUOX2 effect (activation).
However, there were contrasting results regarding the significant/suggestive SLC9B1 →
CA4 effect—activation observed within IBS-D samples, while no activation was seen in the
control samples. Similarly, the SCNN1G → AKAP1 effect showed non-activation in IBS-D
samples but activation in control samples (see Table 5).

Regarding perturbation effects, CA4 (upregulated) and SFRP1 (downregulated) showed
significant changes, while UBC was upregulated in a suggestive manner (0.05 < p < 0.10)
(see Table 6).
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fitting strategy. Added edges are highlighted in green, while gray edges represent those retained
from the original IBS-D graph.

Table 5. Results of the SEM fitting: gene effects in the IBS-D and control group.

Gene Path Gene
IBS-D Model Control Model

β p-Value 95%CI
inf

95%CI
Sup A/NA β p-Value 95%CI

inf
95%CI
Sup A/NA

SLC9B1 → CA4 0.481 0.016 0.089 0.874 A −0.343 0.084 −0.732 0.046 NA
LRP6 → CA4 −0.251 0.21 −0.644 0.141 NA −0.383 0.054 −0.772 0.006 NA

MGAM → SLC5A1 0.023 0.926 −0.453 0.498 A 0.386 0.076 −0.041 0.812 A
UBC → SCNN1G 0.819 0 0.546 1.092 A −0.068 0.772 −0.529 0.393 NA
UBC → SFRP1 −0.331 0.149 −0.779 0.118 NA 0.078 0.74 −0.383 0.539 A
CA4 → DUOX2 0.457 0.034 0.034 0.88 A 0.808 0 0.536 1.08 A

SLC9B1 → AKAP1 −0.602 0 −0.875 −0.33 NA 0.227 0.167 −0.095 0.548 A
SLC5A1 → AKAP1 0.093 0.468 −0.159 0.345 A 0.619 0 0.28 0.959 A
SCNN1G → AKAP1 −0.409 0.004 −0.687 −0.131 NA 0.304 0.085 −0.042 0.649 A
SFRP1 → FZD1 0.533 0.009 0.131 0.935 A 0.356 0.106 −0.076 0.787 A

A: Activated; NA: not activated. Significant results (p < 0.05) are shown in bold, and suggestive results
(0.05 < p < 0.10) in italics. β: Effect. The standardized root mean-squared residual (SRMR) for the IBS-D
model was 0.212, compared to 0.224 for the control model.

Regarding edge differences between groups, the SLC9B1 → CA4 and UBC → SCNN1G
effects were significantly upregulated, whereas the SLC9B1 → AKAP1, SLC5A1 → AKAP1,
and SCNN1G → AKAP1 effects showed significant downregulation (see Table 7).

To better interpret the results of the SEM analysis, Figure 5 presents the three final
graphs of the active IBS-D module: one for IBS-D samples (Figure 5A), one for control
samples (Figure 5B), and a combined “node and edge perturbation” model illustrating the



Int. J. Mol. Sci. 2024, 25, 9322 9 of 24

differences between the groups (Figure 5C). In these graphs, edges are color-coded based
on their significance: significant direct effects (p-value < 0.05) in red (estimate > 0) or blue
(estimate < 0), In contrast, non-significant edges are shown in gray. In Figure 5C, nodes
are also color-coded, with pink nodes indicating activation and light-blue nodes indicating
inhibition. Notably, no changes in causal relationships were observed.

Table 6. Results of the SEM fitting: gene differences (i.e., node perturbation by “node and edge
perturbation” model) between the IBS-D and control group.

Source Path Gene b p-Value 95%CI inf 95%CI sup Up/Down

Group → SLC9B1 −0.177 0.288 −0.503 0.149 down-expressed
Group → LRP6 0.101 0.547 −0.228 0.431 upregulated
Group → MGAM 0.266 0.102 −0.053 0.586 upregulated
Group → UBC 0.271 0.096 −0.048 0.589 upregulated
Group → CA4 0.474 0.001 0.192 0.755 upregulated
Group → SLC5A1 0.221 0.185 −0.106 0.547 upregulated
Group → SCNN1G −0.247 0.11 −0.549 0.056 down-expressed
Group → SFRP1 −0.405 0.009 −0.71 −0.1 down-expressed
Group → DUOX2 0.098 0.471 −0.169 0.366 upregulated
Group → AKAP1 −0.039 0.788 −0.324 0.246 down-expressed
Group → FZD1 −0.081 0.62 −0.402 0.24 down-expressed

In bold, significant (p < 0.05) effects, and in italics suggestive results (0.05 < p < 0.10). b: effect. 95%CI: 95%
confidence interval. The SRMR of the model was equal to 0.218.

Table 7. Results of the SEM fitting: gene effect differences between the IBS-D and control group (i.e.,
edge perturbation, from “node and edge perturbation” model).

Gene Path Gene db p Value 95%CI inf 95%CI Sup Up/Down

SLC9B1 → CA4 0.825 0.003 0.272 1.377 upregulated
LRP6 → CA4 0.132 0.640 −0.421 0.684 upregulated
MGAM → SLC5A1 −0.363 0.265 −1.001 0.275 downregulated
UBC → SCNN1G 0.887 0.001 0.352 1.423 upregulated
UBC → SFRP1 −0.409 0.213 −1.052 0.234 downregulated
CA4 → DUOX2 −0.351 0.171 −0.854 0.151 downregulated
SLC9B1 → AKAP1 −0.829 0.000 −1.250 −0.407 downregulated
SLC5A1 → AKAP1 −0.526 0.015 −0.949 −0.103 downregulated
SCNN1G → AKAP1 −0.713 0.002 −1.156 −0.269 downregulated
SFRP1 → FZD1 0.178 0.555 −0.412 0.768 upregulated

In bold, the significant (p < 0.05) effects. Abbreviations: db: effect difference between IBS-D and control samples.
95%CI: 95% confidence interval. The SRMR of the model was equal to 0.218.

2.3.3. Gene Communities Detection

Regarding the gene community structure identified through clustering, eight topologi-
cal clusters (modularity = 0.668) were found in the Steiner tree graph (Figure 6A), and three
clusters (modularity = 0.455) were identified in the optimal DAG (Figure 6B). The genes
within the eight topological clusters of the Steiner tree are detailed in Table S3.

In the active module, the clusters are organized as follows: the first cluster includes
DUOX2, CA4, and LRP6; the second cluster comprises MGAM, SLC5A1, AKAP1, and
SLC9B1; and the third cluster consists of SCNN1G, UBC, SFRP1, and FZD1.

2.3.4. Characterization of the Gene Communities

The results of the characterization of the eight ST-related communities are presented
in Table 8 and Figure 7. For detailed information on the genes belonging to these eight
topological ST clusters, refer to Table S3.
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Figure 5. Final active IBS-D modules after SEM fitting. The final active IBS-D modules, derived from
structural equation modeling (SEM) fitting, are presented as follows: Nodes and Edges: pink nodes:
activated; light blue nodes: inhibited; Edges: red edges: significant direct effects (p-value < 0.05) with
a positive effect (b effect > 0). Blue edges: significant direct effects (p-value < 0.05) with a negative
effect (b effect < 0). Gray edges: non-significant effects. (A) IBS-D Module. This diagram represents
the IBS-D module, including only IBS-D samples. The module was obtained using SEM fitting
with constrained Gaussian graphical modeling (CGGM), utilizing a directed acyclic graph (DAG)
node-wise Lasso procedure and de-biasing asymptotic inference. In this module, the gene effects
are conditional, representing the expected normalized gene expression variation per unit increase of
the gene, while keeping other genes fixed. (B) Control module. This diagram illustrates the control
module, consisting solely of control samples. It was derived using the same SEM fitting method
as for the IBS-D module (CGGM with DAG node-wise Lasso and de-biasing asymptotic inference).
(C) Final active IBS-D module (node and edge perturbation). This module shows the final active
IBS-D network with node and edge perturbations. It was obtained using SEM fitting with CGGM,
incorporating node-wise Lasso and de-biasing asymptotic inference.



Int. J. Mol. Sci. 2024, 25, 9322 11 of 24

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 26 
 

 

0.05) with a positive effect (b effect > 0). Blue edges: significant direct effects (p-value < 0.05) with a 
negative effect (b effect < 0). Gray edges: non-significant effects. (A) IBS-D Module. This diagram 
represents the IBS-D module, including only IBS-D samples. The module was obtained using SEM 
fitting with constrained Gaussian graphical modeling (CGGM), utilizing a directed acyclic graph 
(DAG) node-wise Lasso procedure and de-biasing asymptotic inference. In this module, the gene 
effects are conditional, representing the expected normalized gene expression variation per unit 
increase of the gene, while keeping other genes fixed. (B) Control module. This diagram illustrates 
the control module, consisting solely of control samples. It was derived using the same SEM fitting 
method as for the IBS-D module (CGGM with DAG node-wise Lasso and de-biasing asymptotic 
inference). (C) Final active IBS-D module (node and edge perturbation). This module shows the 
final active IBS-D network with node and edge perturbations. It was obtained using SEM fitting 
with CGGM, incorporating node-wise Lasso and de-biasing asymptotic inference. 

2.3.3. Gene Communities Detection 
Regarding the gene community structure identified through clustering, eight topo-

logical clusters (modularity = 0.668) were found in the Steiner tree graph (Figure 6A), and 
three clusters (modularity = 0.455) were identified in the optimal DAG (Figure 6B). The 
genes within the eight topological clusters of the Steiner tree are detailed in Table S3. 

In the active module, the clusters are organized as follows: the first cluster includes 
DUOX2, CA4, and LRP6; the second cluster comprises MGAM, SLC5A1, AKAP1, and 
SLC9B1; and the third cluster consists of SCNN1G, UBC, SFRP1, and FZD1. 

 
Figure 6. The gene community structure obtained through clustering is illustrated as follows: genes 
are represented by circles, and community clusters are depicted by colored sets. The topological 
clustering procedure was performed by applying the walk-trap community detection algorithm 
(WTC), generating as many clusters as needed to cover the whole input network. (A) Clustering 
performed on the Steiner Tree graph. (B) Clustering performed on the optimal DAG obtained from 
SEMgraph fitting strategies. 

2.3.4. Characterization of the Gene Communities 
The results of the characterization of the eight ST-related communities are presented 

in Table 8 and Figure 7. For detailed information on the genes belonging to these eight 
topological ST clusters, refer to Table S3. 

Figure 6. The gene community structure obtained through clustering is illustrated as follows: genes
are represented by circles, and community clusters are depicted by colored sets. The topological
clustering procedure was performed by applying the walk-trap community detection algorithm
(WTC), generating as many clusters as needed to cover the whole input network. (A) Clustering
performed on the Steiner Tree graph. (B) Clustering performed on the optimal DAG obtained from
SEMgraph fitting strategies.

Table 8. Gene ontology results of ST communities. Abbreviations: BP: biological processes,
Term_name: GO term name, Term_id: GO term identification, adj p-value: adjusted p-value.

Community Source Term Name Term id adj_p-Value

1 GO:BP complement activation GO:0006956 1.38 × 10−2

2

GO:BP immune response-regulating cell surface receptor signaling pathway GO:0002768 2.48 × 10−4

GO:BP regulation of immune response GO:0050776 1.15 × 10−3

GO:BP regulation of immune system process GO:0002682 1.15 × 10−3

GO:BP immune response-activating signaling pathway GO:0002757 1.42 × 10−3

GO:BP immune response-regulating signaling pathway GO:0002764 1.87 × 10−3

GO:BP activation of immune response GO:0002253 2.72 × 10−3

GO:BP positive regulation of immune system process GO:0002684 3.28 × 10−3

GO:BP immune system process GO:0002376 3.82 × 10−3

GO:BP transmembrane receptor protein tyrosine kinase signaling pathway GO:0007169 5.63 × 10−3

3

GO:BP disaccharide catabolic process GO:0046352 4.11 × 10−5

GO:BP disaccharide metabolic process GO:0005984 4.52 × 10−4

GO:BP oligosaccharide catabolic process GO:0009313 7.19 × 10−4

GO:BP oligosaccharide metabolic process GO:0009311 1.51 × 10−2

4 - - - -

5 - - - -

6

GO:BP midbrain dopaminergic neuron differentiation GO:1904948 7.82 × 10−7

GO:BP dopaminergic neuron differentiation GO:0071542 1.83 × 10−5

GO:BP canonical Wnt signaling pathway GO:0060070 2.89 × 10−5

GO:BP Wnt signaling pathway involved in somitogenesis GO:0090244 1.09 × 10−4

GO:BP Wnt signaling pathway GO:0016055 1.40 × 10−4

GO:BP cell-cell signaling by wnt GO:0198738 1.43 × 10−4

GO:BP midbrain development GO:0030901 2.15 × 10−4

GO:BP negative regulation of canonical Wnt signaling pathway GO:0090090 7.02 × 10−4

GO:BP planar cell polarity pathway involved in neural tube closure GO:0090179 9.94 × 10−4

GO:BP regulation of establishment of planar polarity involved in neural tube
closure GO:0090178 1.19 × 10−3
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Table 8. Cont.

Community Source Term Name Term id adj_p-Value

7

GO:BP visual system development GO:0150063 3.51 × 10−4

GO:BP sensory system development GO:0048880 3.78 × 10−4

GO:BP tube morphogenesis GO:0035239 4.28 × 10−4

GO:BP Norrin signaling pathway GO:0110135 1.11 × 10−3

GO:BP tube development GO:0035295 1.60 × 10−3

GO:BP extracellular matrix-cell signaling GO:0035426 1.85 × 10−3

GO:BP Wnt signaling pathway, calcium modulating pathway GO:0007223 1.85 × 10−3

GO:BP retinal blood vessel morphogenesis GO:0061304 2.77 × 10−3

GO:BP blood vessel morphogenesis GO:0048514 2.96 × 10−3

GO:BP cellular response to retinoic acid GO:0071300 3.32 × 10−3

8

GO:BP complement activation GO:0006956 1.47 × 10−19

GO:BP humoral immune response GO:0006959 5.60 × 10−14

GO:BP complement activation, classical pathway GO:0006958 9.30 × 10−12

GO:BP humoral immune response mediated by circulating immunoglobulin GO:0002455 5.90 × 10−11

GO:BP immune effector process GO:0002252 5.40 × 10−10

GO:BP positive regulation of immune response GO:0050778 6.93 × 10−10

GO:BP regulation of immune response GO:0050776 4.37 × 10−9

GO:BP innate immune response GO:0045087 9.93 × 10−9

GO:BP positive regulation of immune system process GO:0002684 2.19 × 10−8

GO:BP synapse pruning GO:00998883 3.30 × 10−5

The active IBS-D module’s communities were characterized by inputting the list of
genes appertaining to the three communities; in this study, a ‘community number’ was
attributed to each community for its identification. Notably, in the active module, the first
community contained the DUOX2, CA4, and LRP6 genes; the second the MGAM, SLC5A1,
AKAP1, and SLC9B1 genes; and the third one included the SCNN1G, UBC, SFRP1, and
FZD1 genes. The results of the enrichment are shown in Figure 8 and Table 9.

Table 9. Gene ontology results of IBS-D module. Abbreviations: ‘community number’, BP: biological
processes, Term_name: GO term name, Term_id: GO term identification, adj_p-value: adjusted -value.

Communities Source Term_Name Term_id adj_p_Value

1 - - - -

2

GO:BP sodium ion transmembrane transport GO:0035725 3.20 × 10−2

GO:BP maltose catabolic processes GO:0090178 4.95 × 10−2

GO:BP starch metabolic processes GO:0090177 4.95 × 10−2

GO:BP starch catabolic processes GO:0090175 4.95 × 10−2

GO:BP dextrin catabolic processes GO:1904948 4.95 × 10−2

3

GO:BP planar cell polarity pathway involved in neural tube closure GO:0090179 9.94 × 10−4

GO:BP regulation of establishment of planar polarity involved in neural tube
closure GO:0090178 1.19 × 10−3

GO:BP establishment of planar polarity involved in neural tube closure GO:0090177 1.41 × 10−3

GO:BP regulation of establishment of planar polarity GO:0090175 1.90 × 10−3

GO:BP midbrain dopaminergic neuron differentiation GO:1904948 1.90 × 10−3

GO:BP establishment of planar polarity of embryonic epithelium GO:0042249 1.90 × 10−3

GO:BP establishment of tissue polarity GO:0007164 1.27 × 10−2

GO:BP establishment of planar polarity GO:0001736 1.27 × 10−2

GO:BP dopaminergic neuron differentiation GO:0071542 1.48 × 10−2

GO:BP Wnt signaling pathway, planar cell polarity pathway GO:0060071 2.21 × 10−2
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Figure 7. Gene ontology results of ST communities obtained with gprofiler tools. The genes in
communities 4 and 5 were not enriched in any GO term pathway. Abbreviations used: BP—biological
processes, Term name—GO term name, Term_id—GO term identification, adj p-value—adjusted
p-value.
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Figure 8. Gene ontology results of IBS-D module communities obtained with gprofiler tools. The
genes in the first community were not enriched in any GO term pathway. Abbreviations used are
BP—biological processes, Term_name—GO term name, Term_id—GO term identification, and adj
p-value—adjusted p-value.

3. Discussion

Research on IBS-D remains limited, and the biochemical, metabolic, functional, and
inflammatory mechanisms underlying this disorder are still not fully understood. Current
guidelines for managing IBS-D patients do not recommend endoscopic investigation with
biopsy sampling, which makes it challenging to conduct detailed tissue and molecular
investigations [35,36]. This study uses existing RNA-seq data to bridge these gaps and
highlights the importance of integrating complementary data using advanced statistical
methods. This approach aims to probe the functional and molecular mechanisms of IBS-D
pathophysiology and may potentially help to identify molecular targets for developing and
validating therapeutic strategies within a comprehensive, personalized treatment framework.

In biology and medicine, a significant challenge is posed by the need to identify crucial
relationships or disrupted disease modules. Greedy algorithms are vital to identify the
“active” disease module [35]. This study successfully identified and statistically matched
the active module of IBS-D through gene network analysis, which revealed changes in
molecular activity [35,37].

Using SEM to manage complex systems as multivariate networks, we combined net-
work analysis with causal inference. This approach ensures robustness and reproducibility
through a data-driven methodology [25]. Traditional statistical methods such as regression
modeling often struggle to simultaneously handle multivariate, inferential, and graph
theory aspects, while SEM effectively uncovers subtle gene dysregulations [25].

Our preliminary unsupervised PCA analysis of the 35 samples from GSE146853 indi-
cated that IBS-D status was not associated with transcriptomic variability, suggesting that
IBS-D is a functional disorder without significant structural or phenotypic alterations [1].
Topology-based enrichment analysis, a powerful method for identifying enrichment in
gene expression data [38], revealed a significant inhibition of seven pathways related to the
complement system. Notably, intestinal epithelial cells are the primary source of comple-
ment component production in the gastrointestinal tract [39], and the complement system
is crucial for systemic microbial defense [40]. This system plays a key role in detecting
and eliminating harmful bacteria, maintaining tissue homeostasis, and preventing infec-
tions [41]. Several studies have highlighted the interactions between intestinal microbiota
dysbiosis and innate immune system activation in IBS [42], leading to inflammation, in-
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creased intestinal permeability, and alterations in the neuroendocrine system [43]. Increased
levels of β-defensin-2 in IBS patients support the involvement of immune dysfunction in
IBS [44,45]. Dysbiosis, an imbalance in gut microbes, is strongly linked to intestinal inflam-
mation and GI disorders [46], particularly in IBS-D [47]. Elevated zonulin levels, indicative
of an increased intestinal permeability or “leaky gut”, facilitate bacterial translocation and
exacerbate IBS-D symptoms [47].

Although the role of the intestinal complement system in irritable bowel disease (IBD)
is well-documented [48], its direct impact on IBS-D remains uncertain. It is hypothesized
that, like in IBD, dysregulation of the complement system in IBS-D impairs intestinal barrier
function and contributes to dysbiosis. Understanding the interplay among gut microbiota,
the complement system, and zonulin activation could provide valuable insights into IBS-D
pathophysiology and highlight potential therapeutic targets [49]. Modulating the gut
microbiota through probiotics, prebiotics, or dietary interventions, along with targeting
the complement system and zonulin pathways, could offer novel strategies for managing
IBS-D and improving patient outcomes [50].

Regarding the DEG analysis, classical negative binomial analysis identified DUOX2
and SH2D6 as upregulated DEGs. DUOX2, which encodes dual oxidase 2, is involved in
hydrogen peroxide production, which is crucial for mucosal defense and gut microbiota
regulation. Elevated DUOX2 expression is associated with inflammatory conditions and
microbial imbalances in animal models [51]. SH2D6, or SH2 domain-containing protein
6, plays a role in immune signaling pathways and is a marker for immune CD45+ Tuft-2
cells with antibacterial function [52]. The overexpression of DUOX2 and SH2D6 observed
in IBS-D patients aligns with findings related to dysbiosis and complement pathways. The
complement system, a component of the innate immune response, is crucial for main-
taining gut homeostasis and controlling microbial populations in IBS-D patients, while
dysregulation leads to microbial imbalance [41].

In the active IBS-D module, a Steiner tree algorithm was used to discover the tran-
scriptomic network structure through a graph-based data-driven approach. This approach
compactly connected “seed” nodes with additional nodes [25], building a more complex
and causal network architecture. SEM fitting identified critical gene interactions and regu-
latory mechanisms, revealing two dysregulated genes: Carbonic Anhydrase 4 (CA4) and
Secreted Frizzled-Related Protein 1 (SFRP1). The SEM approach detected these dysregula-
tions, which were not identified using classical negative binomial analysis.

CA4, a zinc metalloenzyme, is involved in numerous physiological functions, includ-
ing respiration, pH balance, and metabolic processes [53]. In IBD animal models, CA4
inhibition mitigates visceral pain and protects against colon damage [54]. This suggests
that CA4 inhibitors could be potential treatments for visceral pain and colon protection
in IBS-D.

SFRP1, a Wnt pathway antagonist, is regulated by promoter hypermethylation in
colon and gastric tumors [55,56], and similar epigenetic regulation may occur in IBS-D,
affecting inflammatory processes [57].

Among the IBS-D active module genes, SLC9B1, SLC5A1, and SCNN1G are involved
in proton, electrolyte, and glucose transport. Disruptions in these processes can increase
macromolecule permeability [58,59], leading to mucosal inflammation and epithelial barrier
disruption, which may trigger innate immune responses and complement activation [50].
This suggests a water and electrolyte absorption disruption in IBS-D, resulting in increased
epithelial permeability.

The A-kinase anchoring protein 1 (AKAP1) was involved in three downregulated
effects (SLC9B1→ AKAP1, SLC5A1 → AKAP1, SCNN1G → AKAP1). AKAP1 recruits pro-
tein kinase A (PKA) and other signaling proteins to the external mitochondrial membrane,
playing a crucial role in mitochondrial function, metabolic homeostasis, and disease onset
and progression [60,61].
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The interaction between SLC9B1 (NHE1) and CA4 suggests potential pH regulation
alterations, while the interaction between UBC and SCNN1G involves ubiquitin C and
ENaC, affecting sodium ion transport and fluid reabsorption [62,63].

In summary, the reported disease module analysis highlights the complexity of IBS-D
pathology and suggests novel therapeutic strategies involving gut microbiota modulation,
Wnt pathways, complement system targeting, and the regulation of water and electrolyte
absorption. The methodology also identified biological sub-networks through pathway
visualization, revealing that three of the eight Steiner tree-related communities are involved
in the immune system. Notably, the complement pathway and the third community—
enriched in di- and oligosaccharide metabolic processes—were relevant to IBS symptom
management [64]. The sixth and seventh communities showed enriched Wnt signaling
pathways, with direct correlations to the gut-brain axis [65,66]. The fourth and fifth com-
munities were too small to offer any detailed explanation. Thus, concerning the IBS-D
active module, the second and third communities were involved in metabolic processes
and gut-brain axis correlations, by confirming the result from the Steiner tree communities
analysis. Overall, the two community analyses confirm the IBS-D complexity and the
involvement of both immune system and gut–brain axis.

4. Materials and Methods
4.1. Dataset Description and Study Workflow

To select RNA-Seq gene expression datasets from the public NCBI GEO, the query
‘(irritable bowel syndrome) AND (diarrhea OR IBS-D) AND (transcriptome OR RNA-
seq) AND biopsy AND Homo Sapiens’ was used (assessed on 13 May 2024). This query
yielded two bulk RNA-seq poly-A datasets, identified as GSE146853 and GSE166869. After
verifying that these datasets contained experimental case–control data and that the data
were generated using the Illumina sequencing platform (Illumina Inc., San Diego, CA,
USA), the raw paired-end Fastq files were downloaded. To obtain the IBS-D active module
and cluster communities, we followed the workflow depicted in Figure 9.

4.2. RNA-seq Pipeline and Dataset Quality Control Cut-Off

Fastq file coverage, expressed in millions of reads per sample, was assessed using
FastQC v0.11.8 [67]. For RNA-seq analysis of complex eukaryotic transcriptomes, achieving
20–30 million reads per sample is crucial for comprehensive coverage, accurate gene
expression quantification, and the detection of low-abundance transcripts [68,69]. A quality
control cutoff of greater than 30 million reads per dataset was established to exclude
datasets with insufficient coverage.

The ribosomal RNA (rRNA) percentage was computed using the Sequence Expression
Analyzer (Seal) from BBtools v39.01 [70]. Typically, rRNA constitutes 60–90% of total
RNA. A high rRNA content can negatively impact RNA-seq analysis by dominating the
sequencing output, reducing the effective depth of mRNA sequencing, and impeding
the detection of rare transcripts. Therefore, a quality control cutoff of less than 20% of
the average rRNA percentage per dataset was established to exclude datasets with high
rRNA content.

Subsequently, to remove sequencing adapters and low-quality bases, Illumina 50 bp
paired-end reads from the Fastq files were trimmed using Trim Galore v0.6.10 [71]. The
reads were then mapped to the GRCh38 primary assembly, downloaded from GENECODE
version 35 [72], using the STAR aligner (version 2.7.0f) [72,73]. The raw gene counts matrix
was obtained using Subread feature Counts (v2.0.2) [74], utilizing the GTF file from the
primary assembly. The complete RNA-seq pipeline is available at https://github.com/
MichelangeloAloisio/mRNAseq_pipeline (accessed on 2 January 2024) and the full matrix
containing gene counts for all the 35 samples, is available on request.

https://github.com/MichelangeloAloisio/mRNAseq_pipeline
https://github.com/MichelangeloAloisio/mRNAseq_pipeline
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4.3. DEGs Analysis and Reactome Enrichment Analysis

To preliminarily assess the raw variability of the data, we performed a principal
component analysis (PCA) on log-transformed count data, focusing on the top 500 most
variable features [65]. Disease status was also examined as a potential group factor to
evaluate its contribution to variation.

Subsequently, a differentially expressed genes (DEG) analysis was conducted compar-
ing IBS-D patients to healthy controls using a negative binomial approach. Based on the
median of ratios method, normalized counts were utilized, and genes with ≤10 counts per
sample were excluded. A volcano plot was employed to visually identify DEGs, applying a
log-fold change threshold of ±2 and a p-value cutoff of <0.05. Selected DEGs, identified by
ENSEMBL ID, were then used for pathway enrichment analysis via the Reactome Analysis
Tool v88 [23]. The options selected in the Reactome tool included projecting to humans and
including interactors. This analysis provided a list of pathways involving at least one DEG,
refined by the Reactome enrichment analysis.
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4.4. Statistical Analysis

To discover, manage, and fit the IBS-D active module (network), we employed a
combination of graph theory and structural equation modeling (SEM) to extract critical
relationships (edges) and perturbations (nodes).

Graph theory is widely used to model complex biological networks and has numerous
applications in medical and biological literature related to -omics data [33,34]. SEM is
a multivariate statistical approach that utilizes a system of simultaneous equations to
describe the path relationships that generate the data. In this framework, a given variable
(node or gene) can act as an explanatory variable in one or more equations, while serving
as an outcome variable in others [31].

In our study, the network was constructed based on notable genes, excluding newly
discovered transcripts from the RNA-seq analysis.

The process was carried out in two stages as follows: (i) SEM-based gene set analysis
(SEMgsa): we first used SEMgsa [25] to identify differential expression patterns; and
(ii) active module fitting: next, we fitted the active IBS-D module (network) [25] based on
these patterns.

Graph theory was applied to (i) learn causal architecture using the Reactome [23] data
to provide the active IBS-D module and (ii) search for network communities and paths,
exploring the structure and relationships within the network.

SEM was used to (i) perform differential expression analysis (SEMgsa) for initial gene
set analysis and (ii) fit the model for refining the active IBS-D network module.

It is important to note that graph theory also played a crucial role in the model-
searching phase during the model-fitting step.

4.4.1. SEMgsa

SEMgsa was performed to detect differential expression of individual genes between
IBS-D cases and controls and to infer their biological structure by pathways interrogation
of Reactome [75,76]. In this step, we followed a topology-based approach [77], which
incorporated the pathway structure, improving the performance [25]. The core of the
methodology is explained in Grassi et al. [25], and is based on the RICF (Residual Iterative
Conditional Fitting) algorithm [78,79].

To run this step, normalized gene expression data and the group variable (1 = IBS-
D, 0 = control) obtained by the GEO database (https://www.ncbi.nlm.nih.gov/geo/,
ID = GSE146853, accessed on 2 January 2024) were provided for the analysis. In this case, the
gene expression data were preliminarily transformed by a nonparanormal transformation
to complain the normality assumption required by SEM [25]. In addition, a list of pathways
was provided involving at least one DEG (differentially expressed gene) returned by the
bioinformatic analysis performed by the Reactome database. Briefly, the output returned
node-specific group effect p-values, and Brown’s combined p-values of node activation
and inhibition. Node-specific p-values were corrected for multiple comparisons (<a = 0.25),
by adjusting for the false discovery rate (FDR) used for DEGs identification. The phase
of DEGs identification was also carried out in SEM-GSA to account for the topological
structure of the considered pathways. The choice to set a = 0.25 was made because this work
is explorative, and the aim was to provide and fit an active IBS-D module including as much
a priori transcriptomic information as possible. In detail, SEMgsa returned two outputs
as follows: a table reporting (i) the number of nodes for each pathway, (ii) the number of
differential expression genes (DEGs) within the pathways, after multiple test corrections,
(iii) pathway perturbation status (activated vs. inhibited), (iv) Brown’s combined p-value of
pathway node activation, (v) Brown’s combined p-value of pathway node inhibition, (vi) the
Bonferroni combined p-value of activation and inhibition, expressed as 2× min(activation p-
value, inhibition p-value), (vii) the adjusted Bonferroni p-value of pathway perturbation; i.e.,
min(number of pathways x p-value in [vii]; 1), and (viii) a list with DEG names per pathway.

https://www.ncbi.nlm.nih.gov/geo/
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4.4.2. Analysis of the Active IBS-D Module

We constructed and fitted an SEM-based transcriptomic active IBS-D module us-
ing differentially expressed genes (DEGs) identified through SEMgsa analysis. Initially,
these DEGs, referred to as seed genes, were mapped onto the Reactome interactome—
representing the union of all Reactome pathways—through a graph weighting procedure
that utilized Fisher’s r-to-z transformation [80,81]. This approach tested for differences
between groups in the correlation coefficients of interacting gene pairs [25].

To generate a perturbed reduced graph, representing the active IBS-D module, we
applied a Steiner tree (ST) identification procedure based on Kou’s algorithm [82]. This
process connected the seed genes to other genes (referred to as connector genes) by mini-
mizing the total edge distance. For this purpose, the ST procedure transformed the p-values
obtained from the r-to-z Fisher transformation by converting them into the inverse of the
negative log(p-value), ensuring edge weights were reported within a positive continuous
range. In graph theory, the ST is an acyclic graph that connects seed genes to additional
nodes in the most compact manner possible [25].

After constructing the transcriptomic active IBS-D module, SEM was applied to the
gene expression data to quantify and verify perturbations (status group->gene) and effects
(gene-i->gene-j), denoted as β, among the genes within the module, comparing the differ-
ent groups [25]. The statistical significance of these effects was assessed using two-tailed
z-tests, with null hypothesis H0: β = 0, and significance was considered at an adjusted
p-value < 0.05 [31,83,84]. SEM fitting was performed using constrained Gaussian graphi-
cal modeling (CGGM), incorporating a DAG node-wise Lasso procedure and de-biasing
asymptotic inference [85].

Notably, the effects of gene-i or group perturbations on gene-j were represented as
regression coefficients, which were conditionally interpretable. This means that the coeffi-
cients reflect the expected normalized change in gene-j expression per unit increase in gene-i
expression (or the difference between cases and controls), holding other variables constant
within the transcriptomic active IBS-D module. Specifically, negative coefficients indicated
inhibition (non-activation), while positive coefficients indicated activation in regulatory
terms. Similarly, negative group effects signaled downregulation (lower expression levels
between cases and controls), whereas positive values indicated upregulation [83].

We fitted three models as follows: (i) Model A: the IBS-D model, evaluating edge
effects specifically in IBS-D data; (ii) Model B: the control model, evaluating edge effects in
controls; (iii) Model C: the node and edge perturbation model, evaluating both node and
edge perturbation effects.

For Model C, a two-step procedure was conducted as follows: (1) In the first step,
the group was modeled as an exogenous variable influencing all other graph nodes, and
(2) in the second step, the differences in beta coefficients (edges) between the groups were
estimated. This was akin to fitting separate models for cases and controls and assessing the
significance of edges (direct effects) based on these differences.

Within this framework, indirect effects were also explored to identify potential gene
mediators.

To enhance SEM fitting, we applied strategies such as extracting the optimal DAG
by balancing model adjustment and graph sparsity and using a de-confounding process
to minimize badness-of-fit measures while preserving the strongest perturbation signals
present in the original data [25]. Given the exploratory nature of this study, we did not
resize the DAG to exclusively reflect the biological structure of the disease based on data
alone. However, our goal remained to optimize SEM fitting by considering a balance
between model complexity, fitting, and perturbation.

A goodness-of-fit index, such as the standardized root mean-square residual (SRMR),
was calculated to assess the model fit of the transcriptomic active IBS-D module to the
data [24]. While this study is exploratory, an SRMR of less than 0.10 is generally considered
an adequate fit, and values below 0.05 suggest a good fit [86].
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Finally, we examined network edge changes to detect alterations in causal relationships
between gene regulatory networks under different conditions. This approach is crucial for
studying biological systems, as it sheds light on how gene networks shift across conditions,
providing a deeper understanding of complex diseases like IBDs [87].

4.4.3. Gene Communities Detection

Subsequently, a clustering procedure was carried out to identify topological gene
communities using the walk-trap community detection algorithm (WTC) [25,88]. This
algorithm generated the necessary number of clusters to encompass the entire input net-
work. To assess the effectiveness of the clustering, a modularity index was calculated,
which indicates the degree of separation between communities; a value close to 1 suggests
well-defined community structures. Clustering was applied to both the Steiner tree graph
and the optimal directed acyclic graph (DAG) obtained from the previously described
fitting strategies, allowing comparison of the outcomes.

Statistical analysis was conducted using R software (version 4.3.3, R Core Team, 2023)
with the SEMgraph [25], huge [80], and hgu95av2.db [89] packages (the R code is provided
in the Supplemental Materials). The R/SEMgraph package offers tools for modeling
complex biological systems as causal multivariate networks. The R/huge package was
employed for the non-paranormal transformation of gene expression data, while the
R/hgu95av2.db package was used for annotation purposes, specifically to convert Entrez
identifiers into gene symbols for graphical representation of the networks.

4.4.4. Communities’ Characterization

Finally, to biologically characterize the communities identified through topological
clustering of the Steiner Tree and active IBS-D module, we conducted a functional enrich-
ment analysis using the gProfiler bioinformatics tool [90]. Notably, the g: SCS algorithm [90]
was employed to account for multiple testing corrections.

5. Conclusions

In conclusion, this study comprehensively explores the pathophysiology of IBS-D
through advanced transcriptomic analysis and network-based bioinformatics approaches.
Our findings confirm that IBS-D is primarily a functional disorder characterized by per-
sistent gastrointestinal symptoms without evident structural alterations. We identified
dysregulation in the complement system, which plays a crucial role in immune defense
and maintaining intestinal homeostasis. This evidence underscores the importance of gut
microbiota and epithelial integrity in perpetuating disease symptoms.

This study highlights critical genes, such as DUOX2 and SH2D6, which are involved
in mucosal defense and immune signaling, as significant contributors to IBS-D pathophys-
iology. The network analysis revealed complex gene interactions and specific biological
pathways, suggesting potential therapeutic targets for modulating intestinal microbiota,
immune responses, and epithelial integrity.

Overall, these results advance our understanding of the molecular mechanisms under-
lying IBS-D and suggest promising directions for devising targeted therapeutic strategies.
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