Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. QSAR Model of Pyrimidine and Uracil Derivatives
2.2. Analysis of Molecular Descriptors
2.3. Validation and Applicability Domain
2.4. Synthesis of New Compounds
2.5. Antiproliferative Activity of Synthesized Compounds
2.6. Predicted Physicochemical, Pharmacokinetic, and Drug-Likeness Properties of Synthesized Compounds
3. Blind Validation of Model Applicability
4. Materials and Methods
4.1. Pyrimidine Derivatives
4.2. Computational Characterization of Pyrimidine Derivatives
4.3. Development of Quantitative Structure–Activity Relationships
4.3.1. Internal and External Validation of the Model
4.3.2. Blind Validation of the Model: Newly Synthesized Pyrimidine Derivatives
4.4. Availability of the Model
4.5. Chemistry
4.5.1. Synthesis
4.5.2. Elemental Analysis
4.5.3. NMR Spectra
4.5.4. Mass Spectra
4.6. In Vitro Testing of Antiproliferative Activity
4.7. ADME Predictions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumari, A. Pyrimidine Structure. In Sweet Biochemistry: Remembering Structures, Cycles, and Pathways by Mnemonics, 1st ed.; Academic Press: London, UK, 2018; pp. 99–100. [Google Scholar] [CrossRef]
- Pałasz, A.; Cież, D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity, and applications. Eur. J. Med. Chem. 2015, 97, 582–611. [Google Scholar] [CrossRef]
- Rani, J.; Kumar, S.; Saini, M.; Mundlia, J.; Verma, P.K. Biological potential of pyrimidine derivatives in a new era. Res. Chem. Intermed. 2016, 42, 6777–6804. [Google Scholar] [CrossRef]
- Selvam, T.P.; James, C.R.; Dniandev, P.V.; Valzita, S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm. 2012, 2, 1–9. [Google Scholar]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Choi, I.J.; Cha, M.S.; Park, E.S.; Han, M.S.; Choi, Y.; Je, G.H.; Kim, H.H. The efficacy of concurrent cisplatin and 5-flurouracil chemotherapy and radiation therapy for locally advanced cancer of the uterine cervix. J. Gynecol. Oncol. 2008, 19, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Prachayasittiku, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittiku, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of Pyridine and Pyrimidine Derivatives as Privileged Scaffolds in Anticancer Agents. Mini-Rev. Med. Chem. 2017, 17, 869–901. [Google Scholar] [CrossRef]
- Baraldi, P.G.; Romagnoli, R.; Guadix, A.E.; Pineda de las Infantas, M.J.; Gallo, M.A.; Espinosa, A.; Martinez, A.; Bingham, J.P.; Hartley, J.A. Design, Synthesis, and Biological Activity of Hybrid Compounds between Uramustine and DNA Minor Groove Binder Distamycin A. J. Med. Chem. 2002, 45, 3630–3638. [Google Scholar] [CrossRef]
- Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 18 March 2024).
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Munoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Okunade, K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020, 40, 602–608. [Google Scholar] [CrossRef]
- Ren, S.; Gaykalova, D.A.; Guo, T.; Favorov, A.V.; Fertig, E.J.; Tamayo, P.; Callejas-Valera, J.L.; Allevato, M.; Gilardi, M.; Santos, J.; et al. HPV E2, E4, E5 drive alternative carcinogenic pathways in HPV positive cancers. Oncogene 2020, 39, 6327–6339. [Google Scholar] [CrossRef]
- Skok, K.; Gradišnik, L.; Maver, U.; Kozar, N.; Sobočan, M.; Takač, I.; Arko, D.; Kavalar, R. Gynaecological cancers and their cell lines. J. Cell Mol. Med. 2021, 25, 3680–3698. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, M.; Li, X.; Yin, S.; Wang, B. An Overview of Novel Agents for Cervical Cancer Treatment by Inducing Apoptosis: Emerging Drugs Ongoing Clinical Trials and Preclinical Studies. Front. Med. 2021, 8, 682366. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Mathai, M.L.; Zulli, A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022, 8, e10608. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Marcus, S.; Garg, S.; Kansal, A. Redefining Role of 5-Fluorouracil and Exploring the Impact of Taxanes and Cisplatin in Locally Advanced and Recurrent Carcinoma Cervix in Concurrent Setting with Radiotherapy: A Literature Review. Cureus 2020, 12, e11645. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, S.; Bouchemal, K.; Ponchel, G. Oral delivery of anticancer drugs II: The prodrug strategy. Drug Discov. Today 2013, 18, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, D.; Vijayakumar, B.G.; Kannan, T. Therapeutic potential of uracil and its derivatives in countering pathogenic and physiological disorders. Eur. J. Med. Chem. 2020, 207, 112801. [Google Scholar] [CrossRef]
- Qin, W.W.; Sang, C.Y.; Zhang, L.L.; Wei, W.; Tian, H.Z.; Liu, H.X.; Chen, S.W.; Hui, L. Synthesis and biological evaluation of 2,4-diaminopyrimidines as selective Aurora A kinase inhibitors. Eur. J. Med. Chem. 2015, 95, 174–184. [Google Scholar] [CrossRef]
- Mahmoudian, M. Quantitative Structure–Activity Relationships (QSARs) of Pyrimidine Nucleosides as HIV-1 Antiviral Agents. Pharm. Res. 1991, 8, 43–46. [Google Scholar] [CrossRef]
- Goodarzi, M.; Freitas, M.P.; Jensen, R. Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl)uracil derivatives using MLR, PLS and SVM regressions. Chemom. Intell. Lab. Syst. 2009, 98, 123–129. [Google Scholar] [CrossRef]
- Putz, M.V.; Dudaş, N.A. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: Application on uracil derivatives’ anti-HIV action. Struct. Chem. 2013, 24, 1873–1893. [Google Scholar] [CrossRef]
- Viira, B.; García-Sosa, A.T.; Maran, U. Chemical structure and correlation analysis of HIV-1 NNRT and NRT inhibitors and database-curated, published inhibition constants with chemical structure in diverse datasets. J. Mol. Graphics Modell. 2017, 76, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhao, C.; Hu, X.; Xu, S.; Lan, Z.; Guo, Y.; Yang, Z.; Zhu, W.; Zheng, P. Design, synthesis and 3D-QSAR analysis of novel thiopyranopyrimidine derivatives as potential antitumor agents inhibiting A549 and Hela cancer cells. Eur. J. Med. Chem. 2020, 185, 111809. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, Y.; Duan, W.; Lin, G.; Cui, Y.; Li, B. Synthesis, antiproliferative activity, 3D-QSAR, and molecular docking studies of novel L-carvone-derived pyrimidine-urea compounds. J. Heterocycl. Chem. 2024, 61, 483–495. [Google Scholar] [CrossRef]
- Kraljević, T.G.; Ilić, N.; Stepanić, V.; Sappe, L.; Petranović, J.; Pavelić, S.K.; Raić-Malić, S. Synthesis and in vitro antiproliferative evaluation of novel N-alkylated 6-isobutyl- and propyl pyrimidine derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 2913–2917. [Google Scholar] [CrossRef]
- Meščić, A.; Harej, A.; Klobučar, M.; Glavač, D.; Cetina, M.; Pavelić, S.K.; Raić-Malić, S. Discovery of New Acid Ceramidase-Targeted Acyclic 5-Alkynyl and 5-Heteroaryl Uracil Nucleosides. ACS Med. Chem. Lett. 2015, 6, 1150–1155. [Google Scholar] [CrossRef]
- Gazivoda, T.; Sokčević, M.; Kralj, M.; Šuman, L.; Pavelić, K.; De Clercq, E.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M.; et al. Synthesis and Antiviral and Cytostatic Evaluations of the New C-5 Substituted Pyrimidine and Furo[2,3-d]pyrimidine 4′,5′-Didehydro-L-ascorbic Acid Derivatives. J. Med. Chem. 2007, 50, 4105–4112. [Google Scholar] [CrossRef]
- Kahriman, N.; Peker, K.; Serdaroğlu, V.; Aydın, A.; Usta, A.; Fandaklı, S.; Yaylı, N. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities. Bioorg. Chem. 2020, 99, 103805. [Google Scholar] [CrossRef]
- Kahriman, N.; Serdaroğlu, V.; Peker, K.; Aydın, A.; Usta, A.; Fandaklı, S.; Yaylı, N. Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives. Bioorg. Chem. 2019, 83, 580–594. [Google Scholar] [CrossRef]
- Tylińska, B.; Wiatrak, B.; Czyżnikowska, Ż.; Cieśla-Niechwiadowicz, A.; Gębarowska, E.; Janicka-Kłos, A. Novel Pyrimidine Derivatives as Potential Anticancer Agents: Synthesis, Biological Evaluation and Molecular Docking Study. Int. J. Mol. Sci. 2021, 22, 3825. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2009; Volume 41, pp. 27–37+714–726. [Google Scholar] [CrossRef]
- Liu, S.; Cao, C.; Li, Z. Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance-edge (MDE) vector λ. J. Chem. Inf. Comput. Sci. 1998, 38, 387–394. [Google Scholar] [CrossRef]
- Meščić, A.; Glavač, D.; Osmanović, A.; Završnik, D.; Cetina, M.; Makuc, D.; Plavec, J.; Ametamey, S.M.; Raić-Malić, S. N-alkylated and O-alkylated regioisomers of 5-(hydroxyalkyl)pyrimidines: Synthesis and structural study. J. Mol. Struct. 2013, 1039, 160–166. [Google Scholar] [CrossRef]
- Meščić, A.; Krištafor, S.; Novaković, I.; Osmanović, A.; Müller, U.; Završnik, D.; Ametamey, S.M.; Scapozza, L.; Raić-Malić, S. C-5 hydroxyethyl and hydroxypropyl acyclonucleosides as substrates for thymidine kinase of herpes simplex virus type 1 (HSV-1 TK): Syntheses and biological evaluation. Molecules 2013, 18, 5104–5124. [Google Scholar] [CrossRef] [PubMed]
- Kraljević, T.G.; Klika, M.; Kralj, M.; Martin-Kleiner, I.; Jurmanović, S.; Milić, A.; Padovan, J.; Raić-Malić, S. Synthesis, cytostatic activity and ADME properties of C-5 substituted and N-acyclic pyrimidine derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, R.; Kusunoki, M.; Yanagi, H.; Noda, M.; Furuyama, J.I.; Yamamura, T.; Hashimoto-Tamaoki, T. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: A novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res. 2001, 61, 1029–1037. [Google Scholar]
- Supek, F.; Kralj, M.; Marjanović, M.; Šuman, L.; Šmuc, T.; Krizmanić, I.; Žinić, B. Atypical cytostatic mechanism of N-1-sulfonylcytosine derivatives determined by in vitro screening and computational analysis. Investig. New Drugs. 2008, 26, 97–110. [Google Scholar] [CrossRef]
- Noll, S.; Kralj, M.; Šuman, L.; Stephan, H.; Piantanida, I. Synthesis of modified pyrimidine bases and positive impact of chemically reactive substituents on their in vitro antiproliferative activity. Eur. J. Med. Chem. 2009, 44, 1172–1179. [Google Scholar] [CrossRef]
- Kraljević, T.G.; Krištafor, S.; Šuman, L.; Kralj, M.; Ametamey, S.M.; Cetina, M.; Raić-Malić, S. Synthesis, X-ray crystal structure study and antitumoral evaluations of 5,6-disubstituted pyrimidine derivatives. Bioorg. Med. Chem. 2010, 18, 2704–2712. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Zdrazil, B.; Felix, E.; Hunter, F.; Manners, E.J.; Blackshaw, J.; Corbett, S.; de Veij, M.; Ioannidis, H.; Lopez, D.M.; Mosquera, J.F.; et al. The ChEMBL Database in 2023: A drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024, 52, D1180–D1192. [Google Scholar] [CrossRef]
- Baressi Šegota, S.; Lorencin, I.; Kovač, Z.; Car, Z. On Approximating the pIC50 Value of COVID-19 Medicines In Silico with Artificial Neural Networks. Biomedicines 2023, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W. PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Halgren, A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20, 720–729. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. Monte Carlo vs molecular dynamics for conformational sampling. J. Phys. Chem. 1996, 100, 14508–14513. [Google Scholar] [CrossRef]
- Mohamadi, F.; Richard, N.G.; Guida, W.C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.C. MacroModel—An integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 1990, 11, 440–467. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Karelson, M.; Petrukhin, R. Comprehensive Descriptors for Structural and Statistical Analysis; The Codessa Pro Project; University of Florida: Gainesville, FL, USA, 2005. [Google Scholar]
- Girgis, A.S.; Panda, S.S.; Farag, I.S.A.; El-Shabiny, A.M.; Moustafa, A.M.; Ismail, N.S.M.; Pillai, G.G.; Panda, C.S.; Hall, C.D.; Katritzky, A.R. Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids. Org. Biomol. Chem. 2015, 13, 1741–1753. [Google Scholar] [CrossRef]
- Zukić, S.; Maran, U. Modeling of antiproliferative activity measured in HeLa cervical cancer cells in a series of xanthene derivatives. SAR QSAR Environ. Res. 2020, 31, 905–921. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Maran, U.; Karelson, M.; Lobanov, V.S. Prediction of Melting Points for the Substituted Benzenes: A QSPR Approach. J. Chem. Inf. Comput. Sci. 1997, 37, 913–919. [Google Scholar] [CrossRef]
- Oja, M.; Sild, S.; Piir, G.; Maran, U. Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances. Pharmaceutics 2022, 14, 2248. [Google Scholar] [CrossRef]
- Moosus, M.; Maran, U. Quantitative Structure–Activity Relationship Analysis of Acute Toxicity of Diverse Chemicals to Daphnia Magna with Whole Molecule Descriptors. SAR QSAR Environ. Res. 2011, 22, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Aruoja, V.; Moosus, M.; Kahru, A.; Sihtmäe, M.; Maran, U. Measurement of Baseline Toxicity and QSAR Analysis of 50 Non-Polar and 58 Polar Narcotic Chemicals for the Alga Pseudokirchneriella Subcapitata. Chemosphere 2014, 96, 23–32. [Google Scholar] [CrossRef]
- Piir, G.; Sild, S.; Maran, U. Classifying Bio-Concentration Factor with Random Forest Algorithm, Influence of the Bio-Accumulative vs. Non-Bio-Accumulative Compound Ratio to Modelling Result, and Applicability Domain for Random Forest Model. SAR QSAR Environ. Res. 2014, 25, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Oja, M.; Maran, U. The permeability of an artificial membrane for wide range of pH in human gastrointestinal tract: Experimental measurements and quantitative structure-activity relationship. Mol. Inf. 2015, 34, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Käärik, M.; Maran, U.; Arulepp, M.; Perkson, A.; Leis, J. Quantitative Nano-Structure–Property Relationships for the Nanoporous Carbon: Predicting the Performance of Energy Storage Materials. ACS Appl. Energy Mater. 2018, 1, 4016–4024. [Google Scholar] [CrossRef]
- Zukić, S.; Veljović, E.; Špirtović-Halilović, S.; Muratović, S.; Osmanović, A.; Trifunović, S.; Novaković, I.; Završnik, D. Antioxidant, antimicrobial and antiproliferative activities of synthesized 2,2,5,5-tetramethyl-9-aryl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione derivatives. Croat. Chem. Acta 2018, 91, 1–9. [Google Scholar] [CrossRef]
- Zukić, S.; Oljacic, S.; Nikolic, K.; Veljović, E.; Špirtović-Halilović, S.; Osmanović, A.; Završnik, D. Quantitative structure-activity relationships of xanthen-3-one and xanthene-1,8-dione derivatives and design of new compounds with enhanced antiproliferative activity on HeLa cervical cancer cells. J. Biomol. Struct. Dyn. 2021, 39, 4026–4036. [Google Scholar] [CrossRef]
- Sild, S.; Piir, G.; Neagu, D.; Maran, U. Storing and using qualitative and quantitative structure–activity relationships in the era of toxicological and chemical data expansion. In Issues in Toxicology: Big Data in Predictive Toxicology; Neagu, D., Richarz, A.N., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 185–213. [Google Scholar] [CrossRef]
- Piir, G.; Kahn, I.; García-Sosa, A.T.; Sild, S.; Ahte, P.; Maran, U. Best practices for QSAR model reporting: Physical and chemical properties, ecotoxicity, environmental fate, human health, and toxicokinetics endpoints. Environ. Health Perspect. 2018, 126, 126001. [Google Scholar] [CrossRef]
- Ruusmann, V.; Sild, S.; Maran, U. QSAR DataBank—An approach for the digital organization and archiving of QSAR model information. J. Cheminf. 2014, 6, 25. [Google Scholar] [CrossRef]
- Ruusmann, V.; Sild, S.; Maran, U. QSAR DataBank repository: Open and linked qualitative and quantitative structure–activity relationship models. J. Cheminf. 2015, 7, 32. [Google Scholar] [CrossRef]
- QsarDB Repository. Available online: http://qsardb.org/ (accessed on 24 August 2024).
- Zukić, S.; Maran, U. Data for: Modelling of antiproliferative activity measured in HeLa cervical cancer cells in a series of xanthene derivatives. QsarDB Repository 2020, QDB.237. [Google Scholar] [CrossRef]
- Zukić, S.; Maran, U. Data for: Data driven modelling of substituted pyrimidine and uracil-based derivatives, and validation with newly synthesized and antiproliferative evaluated compounds. QsarDB Repository 2024, QDB.261. [Google Scholar] [CrossRef]
Compounds | MCF-7 | CFPAC-1 | HeLa | SW620 |
---|---|---|---|---|
40 | >100 | >100 | 80.2 | >100 |
41 | 5 | 8.77 | 4.24 | 6.17 |
42 | >100 | 81.31 | >100 | >100 |
43 | >100 | >100 | 55.67 | >100 |
Properties | Compound 40 | Compound 41 | Compound 42 | Compound 43 |
---|---|---|---|---|
Physicochemical | ||||
Mw (g/mol) | 280.06 | 225.50 | 170.60 | 216.66 |
Num. rotatable bonds | 3 | 3 | 0 | 5 |
Num. H-bond acceptors | 2 | 2 | 3 | 4 |
Num. H-bond donors | 2 | 1 | 0 | 0 |
Molar Refractivity | 55.23 | 51.43 | 41.19 | 54.39 |
TPSA (Å2) | 65.72 | 25.7 | 35.01 | 44.24 |
Log Po/w (iLOGP) | 1.41 | 2.36 | 1.89 | 2.73 |
Pharmacokinetics | ||||
GI absorption | High | High | High | High |
BBB permeant | No | Yes | Yes | Yes |
P-gp substrate | No | No | No | No |
Drug likeness | ||||
Lipinski | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation |
Ghose | Yes | No; 1 violation: #atoms < 20 | No; 1 violation: #atoms < 20 | Yes |
Veber | Yes | Yes | Yes | Yes |
Egan | Yes | Yes | Yes | Yes |
Muegge | Yes | Yes | No; 1 violation: MW < 200 | Yes |
Bioavailability Score | 0.55 | 0.55 | 0.55 | 0.55 |
Compound | Residuals | ||
---|---|---|---|
40 | 4.1 | 5.05808 | −0.958081 |
41 | 5.37 | 5.38919 | −0.0191896 |
42 | 4 | 6.63909 | −2.63909 |
43 | 4.25 | 3.7424 | 0.507605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukić, S.; Osmanović, A.; Harej Hrkać, A.; Kraljević Pavelić, S.; Špirtović-Halilović, S.; Veljović, E.; Roca, S.; Trifunović, S.; Završnik, D.; Maran, U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. Int. J. Mol. Sci. 2024, 25, 9390. https://doi.org/10.3390/ijms25179390
Zukić S, Osmanović A, Harej Hrkać A, Kraljević Pavelić S, Špirtović-Halilović S, Veljović E, Roca S, Trifunović S, Završnik D, Maran U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. International Journal of Molecular Sciences. 2024; 25(17):9390. https://doi.org/10.3390/ijms25179390
Chicago/Turabian StyleZukić, Selma, Amar Osmanović, Anja Harej Hrkać, Sandra Kraljević Pavelić, Selma Špirtović-Halilović, Elma Veljović, Sunčica Roca, Snežana Trifunović, Davorka Završnik, and Uko Maran. 2024. "Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds" International Journal of Molecular Sciences 25, no. 17: 9390. https://doi.org/10.3390/ijms25179390
APA StyleZukić, S., Osmanović, A., Harej Hrkać, A., Kraljević Pavelić, S., Špirtović-Halilović, S., Veljović, E., Roca, S., Trifunović, S., Završnik, D., & Maran, U. (2024). Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. International Journal of Molecular Sciences, 25(17), 9390. https://doi.org/10.3390/ijms25179390