Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Datasets
2.2. Results of MDeePred
2.3. Enrichment Analyses of the MDeePred Results
2.4. SwissADME and Molecular Docking Results
2.5. Literature-Based Validation of Novel DTI Predictions towards Drug Repurposing
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Data Preperation for MDeePred and Selection of the DTIs
4.3. In Silico Validation of Predicted Small Molecule Target HCC Transferases
4.4. Literature-Based Validation of Novel DTI Predictions towards Drug Repurposing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yates, P.; Charalambous, A.; Fennimore, L.; Nevidjon, B.; So, W.K.; Suh, E.E.; Woodford, E.; Young, A. Position statement on cancer nursing’s potential to reduce the growing burden of cancer across the world. Support. Care Cancer 2021, 29, 3435–3437. [Google Scholar] [CrossRef]
- Sarmiento-Salinas, F.L.; Perez-Gonzalez, A.; Acosta-Casique, A.; Ix-Ballote, A.; Diaz, A. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021, 284, 119942. [Google Scholar] [CrossRef]
- Lee, H.L.; Bae, S.H.; Lee, J.; Sung, P.S.; Lee, S.W.; Jang, J.W.; Lee, J.; Choi, J.Y.; Han, N.I.; Yoon, S.K. Effects of positive hepatitis B core antibody and metabolic disorders in hepatocellular carcinoma in an endemic area of hepatitis B virus. Cancer Control 2021, 28, 10732748211039758. [Google Scholar] [CrossRef]
- Mintz, K.J.; Leblanc, R.M. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188621. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Horvat, N.; de Oliveira, A.I.; Clemente de Oliveira, B.; Araujo-Filho, J.A.; El Homsi, M.; Elsakka, A.; Bajwa, R.; Martins, G.L.P.; Elsayes, K.M.; Menezes, M.R. Local-regional treatment of hepatocellular carcinoma: A primer for radiologists. Radiographics 2022, 42, 1670–1689. [Google Scholar] [CrossRef] [PubMed]
- Torimura, T.; Iwamoto, H. Treatment and prognosis of hepatocellular carcinoma in Asia. Liver Int. 2022, 42, 2042–2054. [Google Scholar] [CrossRef]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Yu, L.; Wang, M.; Yang, Y.; Xu, F.; Zhang, X.; Xie, F.; Gao, L.; Li, X. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLoS Comput. Biol. 2021, 17, e1008696. [Google Scholar] [CrossRef]
- Begley, C.G.; Ashton, M.; Baell, J.; Bettess, M.; Brown, M.P.; Carter, B.; Charman, W.N.; Davis, C.; Fisher, S.; Frazer, I.; et al. Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers. Sci. Transl. Med. 2021, 13, eabd5524. [Google Scholar] [CrossRef] [PubMed]
- Rifaioglu, A.S.; Cetin Atalay, R.; Cansen Kahraman, D.; Doğan, T.; Martin, M.; Atalay, V. MDeePred: Novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 2021, 37, 693–704. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Chen, Z.; Dong, Y.; Zhang, X.; Wang, J. TERT promoter mutations and somatic mutations of TERT and PIK3CA in hepatocellular carcinoma. J. Clin. Oncol. 2015, 33 (Suppl. S15), 11057. [Google Scholar]
- Villanueva, A.; Llovet, J.M. Tyrosine kinase inhibitors for hepatocellular carcinoma. Gastroenterology 2011, 140, 1410–1426. [Google Scholar] [CrossRef] [PubMed]
- Bedford, D.C.; Kasper, L.H.; Fukuyama, T.; Brindle, P.K. Tumor suppressor roles of the CBP and p300 transcriptional coactivators. Trends Cell Biol. 2010, 20, 611–617. [Google Scholar]
- Ogryzko, V.V.; Schiltz, R.L.; Russanova, V.; Howard, B.H.; Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996, 87, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Q.; Lou, X.; Cai, Y.; Zhang, J. SETD2 mutations are associated with worse prognosis in primary liver cancer. Oncotarget 2018, 9, 26226–26238. [Google Scholar]
- Chen, Z.; Gibson, T.B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M.H. Three decades of mitogen-activated protein kinase (MAPK) signaling: Regulation and deregulation. Cell. Mol. Life Sci. 2011, 68, 317–334. [Google Scholar]
- Cuevas, B.D.; Abell, A.N.; Johnson, G.L. Roles of MAP kinase signaling pathways in regulating cell growth, death, and differentiation. Oncogene 2007, 26, 3113–3126. [Google Scholar]
- Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30, 193–204. [Google Scholar] [CrossRef]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.M.; Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002, 14, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; Cosme, A.; Daniele, B.; Santoro, A.; Raoul, J.L.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005, 109, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 2003, 21, 4342–4349. [Google Scholar] [CrossRef]
- Lennartsson, J.; Rönnstrand, L. Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiol. Rev. 2012, 92, 1619–1649. [Google Scholar] [CrossRef]
- Zhang, J.; Kawakami, K.; Aoki, M. ErbB3/HER3 in cancer progression and therapeutic resistance. Cancer Metastasis Rev. 2015, 34, 489–504. [Google Scholar]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef]
- Krivtsov, A.V.; Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 2007, 7, 823–833. [Google Scholar] [CrossRef]
- Milne, T.A.; Briggs, S.D.; Brock, H.W.; Martin, M.E.; Gibbs, D.; Allis, C.D.; Hess, J.L. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 2002, 10, 1107–1117. [Google Scholar] [CrossRef]
- Vaishnavi, A.; Capelletti, M.; Le, L.P.; Arcila, M.E.; Sangiovanni, M.; Ramkissoon, S.H.; Buffon, A.; Lemmon, D.; Ross, K.; Stone, J.; et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 2013, 19, 1469–1472. [Google Scholar] [CrossRef]
- Zhang, W.; Budhu, A.; Forgues, M.; Wang, X.W. JAK/STAT3 signaling in liver diseases: Current knowledge and future perspectives. J. Gastroenterol. 2020, 55, 619–632. [Google Scholar]
- Carey, K.L.; Westwood, N.J.; Smith, A.G. Activin A receptor type 2A signaling regulates cell adhesion and migration. J. Biol. Chem. 2016, 291, 24173–24188. [Google Scholar]
- Segers, V.F.; Lee, R.T. Protein therapeutics for cardiac regeneration after myocardial infarction. J. Cardiovasc. Transl. Res. 2010, 3, 469–477. [Google Scholar] [CrossRef]
- Shen, T.; Zhang, P.; Huang, X. Protein kinase A activity controls metabolism and viability of human hepatocellular carcinoma cells. J. Clin. Investig. 2013, 123, 3056–3069. [Google Scholar]
- Çetin Atalay, R. Molecular biology of liver cancer. Rev. Cell Biol. Mol. Med. 2015, 1, 206–243. [Google Scholar]
- Das, S.; Bhuyan, R.; Goswami, A.M.; Saha, T. Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene 2021, 780, 145530. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Nikolić, K.; Gagić, Ž.; Agbaba, D. Molecular modeling and analysis of the 3D pharmacophore structure of the selective PI3K-α inhibitors as antitumor agents. Arh. Farm. 2018, 68, 860–873. [Google Scholar] [CrossRef]
- Janssen, A.P.; Grimm, S.H.; Wijdeven, R.H.; Lenselink, E.B.; Neefjes, J.; van Boeckel, C.A.; van Westen, G.J.; van der Stelt, M. Drug discovery maps, a machine learning model that visualizes and predicts kinome–inhibitor interaction landscapes. J. Chem. Inf. Model. 2018, 59, 1221–1229. [Google Scholar] [CrossRef]
- Tian, S.; Chen, Y.; Zhang, Y.; Xu, X. Clinical value of serum AFP and PIVKA-II for diagnosis, treatment and prognosis of hepatocellular carcinoma. J. Clin. Lab. Anal. 2023, 37, e24823. [Google Scholar] [CrossRef]
- Attia, Y.M.; Ewida, H.; Ahmed, M.S. Successful stories of drug repurposing for cancer therapy in hepatocellular carcinoma. In Drug Repurposing in Cancer Therapy; To, K.W., Cho, W.C., Eds.; Academic Press: Brookline, MA, USA, 2020; pp. 213–219. [Google Scholar]
- Pan, X.; Lin, X.; Cao, D.; Zeng, X.; Yu, P.S.; He, L.; Nussinov, R.; Cheng, F. Deep learning for drug repurposing: Methods, databases, and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1597. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Krook, M.A.; Reeser, J.W.; Ernst, G.; Barker, H.; Wilberding, M.; Li, G.; Chen, H.Z.; Roychowdhury, S. Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer 2021, 124, 880–892. [Google Scholar] [CrossRef]
- Schultheis, A.M.; Bos, M.; Schmitz, K.; Wilsberg, L.; Binot, E.; Wolf, J.; Büttner, R.; Schildhaus, H.U. Fibroblast growth factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer. Mod. Pathol. 2014, 27, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Song, J.; Zhang, D.; Wu, F.; Tu, J.; Ji, J. Oxysophocarpine suppresses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib. Life Sci. 2021, 264, 118642. [Google Scholar] [CrossRef]
- Adnan, M.; Koli, S.; Mohammad, T.; Siddiqui, A.J.; Patel, M.; Alshammari, N.; Bardakci, F.; Elasbali, A.M.; Hassan, M.I. Searching for novel anaplastic lymphoma kinase inhibitors: Structure-guided screening of natural compounds for a tyrosine kinase therapeutic target in cancers. OMICS 2022, 26, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.W.; Fu, S.; Wang, F.; Shao, Q.; Huang, H.B.; Shao, J.Y. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma. World J. Gastroenterol. 2014, 20, 183–190. [Google Scholar] [CrossRef]
- Kahraman, D.C.; Kahraman, T.; Cetin-Atalay, R. Targeting PI3K/Akt/mTOR pathway identifies differential expression and functional role of IL8 in liver cancer stem cell enrichment. Mol. Cancer Ther. 2019, 18, 2146–2157. [Google Scholar] [CrossRef]
- Durmaz, I.; Guven, E.B.; Ersahin, T.; Ozturk, M.; Calis, I.; Cetin-Atalay, R. Liver cancer cells are sensitive to lanatoside C induced cell death independent of their PTEN status. Phytomedicine 2016, 23, 42–51. [Google Scholar] [CrossRef]
- Aydin, M.M.; Bayin, N.S.; Acun, T.; Yakicier, M.C.; Akcali, K.C. Role of FLT3 in the proliferation and aggressiveness of hepatocellular carcinoma. Turk. J. Med. Sci. 2016, 46, 572–581. [Google Scholar] [CrossRef]
- Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef]
- Abdullahi, M.; Adeniji, S.E. In-silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chem. Aff. 2020, 3, 989–1000. [Google Scholar] [CrossRef]
- El-Nashar, H.A.; El-Labbad, E.M.; Al-Azzawi, M.A.; Ashmawy, N.S. A new xanthone glycoside from Mangifera indica L.: Physicochemical properties and in vitro anti-skin aging activities. Molecules 2022, 27, 2609. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Dege, N. (E)-N-(3-chlorophenyl)-1-(5-nitro-2-(piperidin-1-yl)phenyl)methanimine: X-ray, DFT, ADMET, boiled-egg model, druggability, bioavailability, and human cyclophilin D (CypD) inhibitory activity. J. Mol. Struct. 2022, 1250, 131744. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of noctanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Model. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Moriguchi, I.; Shuichi, H.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 1992, 40, 127–130. [Google Scholar] [CrossRef]
- Moriguchi, I.; Shuichi, H.; Nakagome, I.; Hirano, H. Comparison of reliability of log P values for drugs calculated by several methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef]
- Henning, N.; Kannigadu, C.; Aucamp, J.; van Rensburg, H.D.J.; David, D.D. Probing benzothiadiazine-1,1-dioxide ethylene glycol derivatives against Leishmania: Synthesis and in vitro efficacy evaluation. Res. Sq. 2023, 1, 1–14. [Google Scholar] [CrossRef]
- Yağlıoğlu, A.Ş.; Gürbüz, D.G.; Dölarslan, M.; Demirtaş, İ. First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm. Turk. J. Chem. 2022, 46, 169–183. [Google Scholar]
- Ranjith, D.; Ravikumar, C. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. J. Pharmacogn. Phytochem. 2019, 8, 2063–2073. [Google Scholar]
- Iwaloye, O.; Elekofehinti, O.O.; Olawale, F.; Chukwuemeka, P.O.; Babatomiwa, K.; Folorunso, I.M. Fragment-based drug design, 2D-QSAR and DFT calculation: Scaffold S of 1,2,4-triazolo[1,5-a]pyrimidin-7-amines as potential inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Lett. Drug Des. Discov. 2022, 19, 317–334. [Google Scholar] [CrossRef]
- Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706. [Google Scholar] [CrossRef]
- Moharana, M.; Maharana, P.C.; Pattanayak, S.K.; Khan, F. Effect of temperature on hepatitis A virus and exploration of binding mode mechanism of phytochemicals from Tinospora cordifolia: An insight into molecular docking, MM/GBSA, and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2024, 2, 598–614. [Google Scholar] [CrossRef]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B.; Llovet, J.M.; Cheng, A.L. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J. Hepatol. 2020, 72, 442–460. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Zhu, A.X.; Kudo, M. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomized phase 3 non-inferiority trial. Lancet 2022, 391, 1163–1173. [Google Scholar]
- European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Llovet, J.M.; Villanueva, A.; Lachenmayer, A.; Finn, R.S. Advances in targeted therapies for hepatocellular carcinoma in the era of personalized oncology. Nat. Rev. Clin. Oncol. 2015, 12, 408–424. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B. Tyrosine kinase inhibitors in hepatocellular carcinoma: Molecular targets, pharmacology, and clinical evidence. Front. Pharmacol. 2020, 11, 402. [Google Scholar]
- Carvalho-Silva, D.; Pierleoni, A.; McAuley, E.J.; Thompson, M.; Gowthaman, R.; Furnham, N. Open Targets Platform: New developments and updates two years on. Nucleic Acids Res. 2019, 47, D1056–D1065. [Google Scholar] [CrossRef]
- Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Gonzalez-Uriarte, A.; Malangone, C.; Miranda, A.; Fumis, L.; Carvalho-Silva, D.; Spitzer, M.; et al. Open Targets Platform: Supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 2021, 49, D1302–D1310. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, P.; Kofia, V.; Maru, A.; Freeman, M.; Ho, C.; El-Hachem, N.; Adam, G.A.; Ba-alawi, W.; Safikhani, Z.; Haibe-Kains, B. PharmacoDB: An integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res. 2018, 46, D994–D1002. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef]
- Rifaioglu, A.S.; Nalbat, E.; Atalay, V.; Martin, M.J.; Cetin-Atalay, R.; Doğan, T. DEEPScreen: High performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem. Sci. 2020, 11, 2531–2557. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Kulyyassov, A. UniProt database-universal information resource of protein sequences. Eurasian J. Appl. Biotechnol. 2022, 1, 3–13. [Google Scholar] [CrossRef]
- Jin, B.; Wang, W.; Du, G.; Huang, G.Z.; Han, L.T.; Tang, Z.Y.; Fan, D.G.; Li, J.; Zhang, S.Z. Identifying hub genes and dysregulated pathways in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 592–601. [Google Scholar]
- Khachatryan, H.; Olszowy, B.; Barrero, C.A.; Gordon, J.; Perez-Leal, O. Identification of inhibitors of tubulin polymerization using a CRISPR-edited cell line with endogenous fluorescent tagging of β-tubulin and histone H1. Biomolecules 2023, 13, 249. [Google Scholar] [CrossRef] [PubMed]
Genes | ChEMBL ID | Genes Name |
---|---|---|
ACVR2A | CHEMBL5616 | Activin receptor type-2A |
AKT1 | CHEMBL4282 | Serine/threonine-protein kinase AKT |
ALK | CHEMBL4247 | ALK tyrosine kinase receptor |
ATM | CHEMBL3797 | Serine-protein kinase ATM |
CREBBP | CHEMBL5747 | CREB-binding protein |
ERBB3 | CHEMBL5838 | Receptor tyrosine-protein kinase erbB-3 |
FGFR1 | CHEMBL3650 | Fibroblast growth factor receptor 1 |
FLT3 | CHEMBL1974 | Tyrosine-protein kinase receptor FLT3 |
FLT4 | CHEMBL1955 | Vascular endothelial growth factor receptor 3 |
JAK3 | CHEMBL2148 | Tyrosine-protein kinase JAK3 |
KDR | CHEMBL279 | Vascular endothelial growth factor receptor 2 |
KIT | CHEMBL1936 | Stem cell growth factor receptor |
KMT2A | CHEMBL1293299 | Histone-lysine N-methyltransferase MLL |
MAP3K1 | CHEMBL3956 | Mitogen-activated protein kinase kinase kinase 1 |
MET | CHEMBL3717 | Hepatocyte growth factor receptor |
NTRK1 | CHEMBL2815 | Nerve growth factor receptor Trk-A |
PIK3CA | CHEMBL4005 | PI3-kinase p110-alpha subunit |
PRKACA | CHEMBL4101 | cAMP-dependent protein kinase alpha-catalytic subunit |
RET | CHEMBL2041 | Tyrosine-protein kinase receptor RET |
ROS1 | CHEMBL5568 | Proto-oncogene tyrosine-protein kinase ROS |
SETD2 | CHEMBL3108647 | Histone-lysine N-methyltransferase SETD2 |
TERT | CHEMBL2916 | Telomerase reverse transcriptase |
Ligand (Drug/Compound) | Molecular Formula of Ligands | 2D Structure of Ligands | Target Protein |
---|---|---|---|
CHEMBL388978 (Staurosporine) | C28H26N4O3 | Tyrosine-protein kinase receptor FLT3 (FLT3) | |
CHEMBL1615189 | C20H14ClFN4O3S2 | PI3-kinase p110-alpha subunit (PIK3CA) | |
CHEMBL328029 | C17H16N2O | Fibroblast growth factor receptor 1 (FGFR1) | |
CHEMBL1165499 | C24H26F2N6 | ALK tyrosine kinase receptor (ALK) | |
CHEMBL1773581 | C20H17N5O3S2 | Serine/threonine-protein kinase AKT (AKT1) | |
CHEMBL1773601 | C22H19N3O4S2 | Serine/threonine-protein kinase AKT (AKT1) |
Drug Candidate Compounds | Lipinski | Ghose | Veber | Egan | Muegge | Bioavailability Score |
---|---|---|---|---|---|---|
CHEMBL388978 | Yes; 0 violation | No; 1 violation: MR > 130 | Yes | Yes | No; 1 violation: #rings > 7 | 0.55 |
CHEMBL1615189 | Yes; 0 violation | No; 1 violation: WLOGP > 5.6 | Yes | No; 2 violations: WLOGP > 5.88, TPSA > 131.6 | Yes | 0.55 |
CHEMBL328029 | Yes; 0 violation | Yes | Yes | Yes | Yes | 0.55 |
CHEMBL1165499 | Yes; 0 violation | No; 1 violation: MR > 130 | Yes | Yes | Yes | 0.55 |
CHEMBL1773581 | Yes; 0 violation | Yes | No; 1 violation: TPSA > 140 | No; 1 violation: TPSA > 131.6 | No; 1 violation: TPSA > 150 | 0.55 |
CHEMBL1773601 | Yes; 0 violation | Yes | Yes | No; 1 violation: TPSA > 131.6 | Yes | 0.55 |
Lenvatinib | Yes; 0 violation | Yes | Yes | Yes | Yes | 0.55 |
Regorafenib | Yes; 0 violation | No; 2 violations: MW > 480, WLOGP > 5.6 | Yes | No; 1 violation: WLOGP > 5.88 | Yes | 0.55 |
Sorafenib | Yes; 0 violation | No; 1 violation: WLOGP > 5.6 | Yes | No; 1 violation: WLOGP > 5.88 | Yes | 0.55 |
Ligand (Drug/Compound) | Target Protein | Vina Score | Cavity Volume (Å3) | Contact Residues |
---|---|---|---|---|
CHEMBL328029 | FGFR1 | −8.7 | 543 | ILE19 GLN24 LYS51 LEU54 PHE55 GLY58 GLN59 ILE61 MET62 VAL75 PHE91 VAL93 HIS96 ILE99 TYR100 |
CHEMBL1165499 | ALK | −9.6 | 6263 | VAL131 ASP133 GLU135 VAL136 ASN426 ILE427 ASN428 MET441 ALA442 LEU443 TRP446 VAL461 THR462 GLY463 SER464 LYS468 LEU639 LYS640 GLU642 GLN643 LEU645 THR679 VAL680 SER681 GLN682 ARG683 |
CHEMBL1773601 | AKT1 | −7.8 | 110 | LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 TYR26 ARG41 VAL90 GLU91 GLU95 TRP99 |
CHEMBL1773581 | AKT1 | −7.4 | 110 | LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 HIS89 VAL90 GLU91 GLU95 TRP99 |
CHEMBL388978 | FLT3 | −9.6 | 1932 | GLY1121 LEU1122 GLY1123 HIS1124 GLY1125 VAL1130 ALA1148 LYS1150 VAL1180 LEU1196 GLU1197 LEU1198 MET1199 GLY1202 ASP1203 ARG1253 ASN1254 LEU1256 GLY1269 ASP1270 |
CHEMBL1615189 | PIK3CA | −9.6 | 904 | LEU484 GLY485 VAL492 ALA512 LYS514 GLU531 MET535 ILE545 VAL561 GLU562 TYR563 ALA564 GLY567 LEU630 ALA640 ASP641 |
Lenvatinib | FGRF1 | −9.1 | 8731 | ARG576 ARG577 PRO578 LEU595 SER596 SER597 LEU600 TRP691 PHE694 THR695 LEU696 GLY698 SER699 TYR701 PRO702 HIS717 ARG718 MET719 ASP720 LYS721 PRO722 SER723 ASN724 TYR730 ARG577 PRO578 LEU595 LEU600 TRP691 PHE694 THR695 LEU696 GLY697 GLY698 SER699 PRO700 TYR701 PRO702 HIS717 ARG718 MET719 ASP720 LYS721 PRO722 SER723 ASN724 ASN727 |
Lenvatinib | ALK | −9.0 | 1932 | ARG1120 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126 VAL1130 GLU1132 ALA1148 VAL1149 LYS1150 VAL1180 LEU1196 GLU1197 LEU1198 MET1199 ALA1200 GLY1201 GLY1202 ASP1203 LYS1205 SER1206 ASP1249 ARG1253 ASN1254 CYS1255 LEU1256 GLY1269 ASP1270 GLY1272 MET1290 |
Lenvatinib | AKT1 | −6.7 | 110 | VAL7 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 ARG25 TYR26 ARG41 HIS89 VAL90 GLU91 GLU94 GLU95 GLU98 TRP99 |
Lenvatinib | FLT3 | −8.5 | 832 | TYR572 GLU573 SER574 GLN575 TYR589 TYR591 PHE621 ALA657 ARG810 ASP811 ASN816 ASP829 PHE830 GLY831 LEU832 ARG834 ILE836 TYR842 ARG845 GLY846 ASN847 ALA848 ARG849 LEU850 PRO851 MET855 SER859 LEU860 PHE861 GLU862 GLY863 ILE864 TYR865 |
Lenvatinib | PIK3CA | −8.9 | 6263 | GLU127 MET130 VAL131 LYS132 ASP133 PRO134 GLU135 VAL136 ASN426 ILE427 ASN428 PHE430 ASP431 TYR432 THR435 LEU436 VAL437 SER438 MET441 ALA442 LEU443 TRP446 VAL461 THR462 GLY463 SER464 ASN465 PRO466 LYS468 LYS640 GLU642 GLN643 TYR644 LEU645 THR679 VAL680 GLN682 ARG683 |
Regorafenib | FGRF1 | −9.9 | 8731 | GLN574 ARG577 PRO578 TRP691 PHE694 THR695 LEU696 GLY698 SER699 PRO700 TYR701 PRO702 VAL704 HIS717 ARG718 MET719 ASP720 LYS721 PRO722 SER723 ASN724 TYR730 ARG577 PRO578 LEU595 SER597 LEU600 TRP691 PHE694 THR695 LEU696 GLY697 GLY698 SER699 PRO700 TYR701 PRO702 VAL704 LEU712 GLU715 GLY716 HIS717 ARG718 MET719 ASP720 LYS721 PRO722 SER723 ASN724 ARG734 |
Regorafenib | ALK | −9.6 | 1932 | ARG1120 GLY1121 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126 VAL1130 GLU1132 GLN1146 ALA1148 LYS1150 VAL1180 LEU1196 GLU1197 LEU1198 MET1199 ALA1200 GLY1201 GLY1202 ASP1203 LYS1205 SER1206 ASP1249 ARG1253 ASN1254 CYS1255 LEU1256 GLY1269 ASP1270 GLY1272 MET1273 MET1290 |
Regorafenib | AKT1 | −7.2 | 110 | ILE6 VAL7 LYS8 GLU9 GLY10 TRP11 LEU12 HIS13 PRO24 ARG25 TYR26 LYS39 GLU40 ARG41 HIS89 VAL90 GLU91 GLU95 GLU98 TRP99 THR101 ALA102 THR105 |
Regorafenib | FLT3 | −8.6 | 832 | TYR572 GLU573 SER574 GLN575 LEU576 GLN577 MET578 TYR589 TYR591 VAL592 ASP593 PHE594 ARG595 PHE621 LEU646 ARG655 GLU656 ALA657 SER660 GLU661 MET664 ARG810 ASP811 ASN816 ASP829 PHE830 GLY831 LEU832 ARG834 ILE836 TYR842 ASN847 ALA848 ARG849 LEU850 PRO851 MET855 SER859 LEU860 GLU862 GLY863 TYR865 |
Regorafenib | PIK3CA | −10.0 | 2313 | TYR165 VAL166 TYR167 PRO168 ASN170 VAL196 ILE197 TYR250 LYS253 VAL254 CYS257 ASP258 GLU259 TYR260 LYS271 TYR272 SER275 MET286 LEU287 MET288 ALA289 SER292 SER295 GLN296 LEU297 PRO298 GLN661 ARG662 HIS665 PHE666 MET697 TYR698 HIS701 GLY750 PHE751 LEU752 ASN756 PRO757 ALA758 HIS759 GLN760 LEU761 GLY762 PRO786 ASP787 ILE788 LEU793 PHE794 |
Sorafenib | FGRF1 | −9.9 | 348 | LEU484 GLY485 GLU486 GLY487 ALA488 PHE489 GLY490 GLN491 VAL492 ALA512 VAL513 LYS514 MET515 LEU516 ASP524 ASP527 LEU528 GLU531 MET535 ILE545 VAL559 VAL561 GLU562 TYR563 ALA564 GLY567 ASN568 ARG570 GLU571 ARG627 ASN628 LEU630 ILE639 ALA640 ASP641 PHE642 LEU644 ALA645 THR657 THR658 ASN659 |
Sorafenib | ALK | −8.9 | 1932 | ARG1120 LEU1122 GLY1123 HIS1124 GLY1125 ALA1126 VAL1130 GLU1132 ALA1148 VAL1149 LYS1150 VAL1180 LEU1196 GLU1197 LEU1198 MET1199 ALA1200 GLY1202 ASP1203 LYS1205 SER1206 GLU1210 ASP1249 ARG1253 ASN1254 LEU1256 GLY1269 ASP1270 GLY1272 MET1273 |
Sorafenib | AKT1 | −7.0 | 152 | LYS14 ARG15 GLY16 GLU17 TYR18 ILE19 LYS20 ARG23 LEU52 ASN53 ASN54 PHE55 THR65 GLU66 ARG67 PRO68 THR72 ILE74 ARG76 GLN79 THR82 VAL83 ILE84 GLU85 ARG86 THR87 |
Sorafenib | FLT3 | −10.3 | 832 | TYR572 GLU573 SER574 GLN575 LEU576 GLN577 MET578 TYR591 VAL592 ASP593 PHE594 ARG595 PHE621 GLU656 ALA657 SER660 GLU661 MET664 ARG810 ASP811 ASN816 ASP829 PHE830 GLY831 LEU832 ARG834 ILE836 TYR842 ARG845 GLY846 ASN847 ALA848 ARG849 LEU850 PRO851 MET855 SER859 LEU860 GLU862 GLY863 ILE864 TYR865 |
Sorafenib | PIK3CA | −10.3 | 2313 | TYR165 VAL166 TYR167 PRO168 PRO169 ASN170 ASP258 GLU259 TYR260 MET288 SER292 LEU293 GLN296 LEU297 PRO298 ASP300 GLN661 ARG662 HIS665 CYS695 GLY696 MET697 TYR698 LYS700 HIS701 GLY750 PHE751 LEU752 ASN756 PRO757 ALA758 GLN760 |
Ligand (Drug/ Compound) | Target Protein | Experimental Bioactivity | Reference |
---|---|---|---|
CHEMBL328029 | Fibroblast growth factor receptor 1 (FGFR1) | IC50: 10,500 nM | [37] |
CHEMBL1165499 | ALK tyrosine kinase receptor (ALK) | IC50: 33 nM | [38] |
CHEMBL1773601 | Serine/threonine-protein kinase AKT (AKT1) | IC50: 1160 nM | [39] |
CHEMBL1773581 | Serine/threonine-protein kinase AKT (AKT1) | IC50: 1260 nM | [39] |
CHEMBL388978 (Staurosporine) | Tyrosine-protein kinase receptor FLT3 (FLT3) | IC50: 1 nM | [40] |
CHEMBL1615189 | PI3-kinase p110-alpha subunit (PIK3CA) | IC50: 6.3 nM | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baser, T.; Rifaioglu, A.S.; Atalay, M.V.; Atalay, R.C. Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 9392. https://doi.org/10.3390/ijms25179392
Baser T, Rifaioglu AS, Atalay MV, Atalay RC. Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2024; 25(17):9392. https://doi.org/10.3390/ijms25179392
Chicago/Turabian StyleBaser, Tugce, Ahmet Sureyya Rifaioglu, Mehmet Volkan Atalay, and Rengul Cetin Atalay. 2024. "Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma" International Journal of Molecular Sciences 25, no. 17: 9392. https://doi.org/10.3390/ijms25179392
APA StyleBaser, T., Rifaioglu, A. S., Atalay, M. V., & Atalay, R. C. (2024). Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 25(17), 9392. https://doi.org/10.3390/ijms25179392