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Abstract: Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood
pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity,
hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2).
Both isoforms have similar structures and mediate numerous effects on the cardiovascular system.
Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction
between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic
in the future. Noninvasive imaging techniques such as positron emission tomography and single
photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2
expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the
mechanism of the infection process and the potential roles of ACE2 in homeostasis and related
diseases. Together, this information can aid in the identification of potential therapeutic drugs for
infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the
state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological
properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also
discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.

Keywords: renin angiotensin system; angiotensin-converting enzymes 2; SARS-CoV-2; COVID-19;
molecular imaging; radiotracer; positron emission tomography; single photon emission computed to-
mography

1. Introduction

The renin-angiotensin system (RAS) plays a crucial role in the physiology and patho-
physiology of cardiovascular diseases [1]. Furthermore, RAS is essential in regulating
the function of multiple organs, including the lung, kidney, liver, and heart, as well as
involvement in inflammatory responses [2]. Angiotensin-converting enzyme (ACE) and its
newly identified homolog, angiotensin-converting enzyme-2 (ACE2), are two key signaling
enzymes in the RAS, while ACE2 mediates vasorelaxation and counterbalances the role of
ACE, which promotes vasoconstriction.

ACE2 receives increasing research attention due to its critical role in the SARS pan-
demic. In 2003, ACE2 was identified as a functional receptor for the SARS coronavirus [3].
Furthermore, ACE2 also has been found to be the SARS-CoV-2 entry receptor through
computational modeling and viral infection experiments [4–9]. The SARS-CoV-2 virus
enters human cells through the ACE2 receptor and replicates within the cells. Moreover,
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cryogenic electron microscopy experiments showed that SARS-CoV-2 had 10 times greater
affinity for ACE2 than SARS-CoV, which may explain the global outbreak and much higher
liability of SARS-CoV-2 infection [10]. The COVID-19 pandemic caused by SARS-CoV-2
has upended the daily lives of individuals around the world, with historic numbers of
cases and deaths. According to early reports, COVID-19 caused acute respiratory distress
syndrome and led to high morbidity and mortality in some patients [11]. It is clear that
COVID-19 is not a simple viral pneumonia but presents with unusual pathophysiological
effects. Our understanding of COVID-19 is constantly progressing, giving better insight
into the heterogeneous nature of its acute and long-term effects. While the World Health
Organization announced that COVID-19 is no longer a public health emergency of interna-
tional concern on 5 May 2023, post-COVID-19 is still impacting many people’s daily lives.
Many individuals endure persistent, debilitating symptoms over months after an initial
infection with SARS-CoV-2 (called long COVID) [12–18]. Also, the numerous virus variants
have contributed to variable pathological manifestations and symptom severity [19,20].
The magnitude and direction of these effects are currently unknown. Very recently, the
National Institutes of Health (NIH) opened the long COVID clinical trials to investigate
potential treatments for the long-term symptoms after COVID-19 infection, including the
worsening of symptoms following physical or mental exertion known as post-exertional
malaise, sleep disturbances, and exercise intolerance [21].

In addition to the membrane-bound ACE2 serving as a potential therapeutic target
for infectious disease [22–24], ACE2 is also a diagnostic and prognostic biomarker in other
diseases, including pancreatic cancer [25], breast cancer [26], gallbladder cancer [27], non-
small cell lung cancer [28], renal cell carcinoma [29], and hepatocellular carcinoma [30].
Furthermore, ACE2 dysfunction has been implicated in cardiovascular diseases [31], neu-
rodegenerative diseases [32], infertility [33], inflammation [34], and liver diseases [35].
Therefore, drug development targeting ACE2 may find widespread clinical applications.

Positron emission tomography (PET) and single photon emission computed tomog-
raphy (SPECT) are noninvasive and highly sensitive molecular imaging techniques that
allow in vivo quantification of biochemical and pharmacological processes under healthy
or diseased conditions [36–38]. By using radiotracers, in vivo, imaging can be achieved at
the molecular level to obtain quantitative information on target engagement and the degree
of receptor occupancy at a given drug dose. Accordingly, many clinical achievements
have been made with several promising radiotracers in the past decades [39–41]. Several
radioligands have been developed for “visualizing” the biomarker distribution and ex-
pression of the RAS system in physiological and/or pathological conditions [42]. Recently,
new molecular probes targeting ACE2 have substantially advanced our understanding
of COVID-19. While reviews on molecular imaging techniques for the RAS components,
such as ACE or angiotensin II type 1 receptor (AT1R), have emerged [43–48], to the best
of our knowledge, a comprehensive review article gathering past and present advance-
ments regarding noninvasive molecular imaging of ACE2 by using radiotracers is very
limited in the literature [49]. For this review, articles were searched using the databases
PubMed Central and SciFinder, with the latest search date being June 2024. The keywords
“angiotensin-converting enzyme 2” or “ACE2”, “radiotracers” or “radiopharmaceutical”,
and “renin-angiotensin system” or “RAS” were entered in the search engines. This article
mainly reviews the recent progress in the bench-to-bedside development of radiotrac-
ers targeting ACE2 with PET or SPECT imaging modality, particularly highlighting the
radiochemical aspects and imaging outcomes.

2. The Renin-Angiotensin System

For over a century, since Tigerstedt et al. discovered renin in 1898 [50], the function of
RAS has been known. The general knowledge of RAS has already been covered by many
comprehensive reviews [51–54]. Figure 1 outlines the historical timeline for discoveries of
the major components in the RAS system [55]. Studies in the 1940s revealed that constriction
of the renal artery contributed to hypertension, prompting the investigation into angiotensin
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(hypertension and angiotonin) [56,57]. Following purification, angiotensin (Ang) was
subsequently separated into two distinct forms: Ang I and Ang II [58,59]. The existence
of a converting enzyme, ACE, responsible for Ang I to Ang II conversion, was predicted
and subsequently isolated and characterized in 1956 [60]. The Mas receptor (MasR) and its
activator Ang-(1–7) were discovered in 1986 [61] and 1988 [62,63], respectively. Angiotensin
II type 2 receptor (AT2R), and MasR are involved in vasodilatory and anti-inflammatory
responses. Both are part of the protective arm of the RAS and largely counteract the effects
of the inflammation-promoted AT1R arm. Following this major discovery, Ang II receptors
were identified as a functional entity in 1970 [64]. The instability of the solubilized receptor
molecule makes for a relatively low abundance of the Ang II receptors in Ang II target
tissues. AT1 and AT2 receptors were cloned in 1991 [65,66] and 1993 [67,68], respectively.
In 2000, almost half a century after the discovery of ACE, ACE2 was discovered by two
independent research groups [69,70]. The cardioprotective effects of ACE2 were validated
in 2002 [71], shortly after the first discovery of ACE2 [69,70]. ACE2 was identified as the
host receptor for SARS-CoV during the first coronavirus epidemic in 2003 [3,72]. More
than 10 years later, ACE2 has garnered widespread interest as the cellular receptor of
SARS-CoV-2.
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A chronology of radiotracer for the RAS system is shown in Figure 1. Fluorine-18, 
labeled fluorocaptopril (18FCAP), was used to probe the ACE distribution in rats and hu-
mans in 1991 [75]. The carbon-11 labeled radiotracer MK-996, a potent nonpeptide for 
AT1R, was reported in 1995 by Mathews [76]. Since then, several carbon-11 [77–84] or flu-
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Figure 1. Historical timeline of discoveries and molecular imaging for the major renin-angiotensin
system (RAS) system components. Discoveries of RAS components are shown in blue. Discoveries of
radiotracers for RAS components are shown in purple. Discoveries of the role of ACE2 in RAS are
shown in green. Coronavirus pandemics are shown in brown. ACE, angiotensin-converting enzyme;
ACE2, angiotensin-converting enzymes 2; Ang, angiotensin; AT1R, angiotensin type 1 receptor; AT2R,
angiotensin type 2 receptor; MasR, Mas receptor.

The increasing understanding of RAS and the development of selective inhibitors of
corresponding components also inspired the development of radiotracers for RAS. Many
selective inhibitors have been discovered for RAS system components in the past. ACE
inhibitors have been shown to effectively reduce high blood pressure and exert renal and
cardioprotective effects. Most peptide-based inhibitors for ACE were discovered from nat-
ural resources [73,74]. The well-known small molecule ACE inhibitors, captopril, lisinopril,
and enalaprilat, have proved to be clinically effective in the treatment of hypertension and
congestive heart failure, but they are not inhibitors of ACE2.

A chronology of radiotracer for the RAS system is shown in Figure 1. Fluorine-18,
labeled fluorocaptopril (18FCAP), was used to probe the ACE distribution in rats and
humans in 1991 [75]. The carbon-11 labeled radiotracer MK-996, a potent nonpeptide for
AT1R, was reported in 1995 by Mathews [76]. Since then, several carbon-11 [77–84] or
fluorine-18 [85–90] AT1R selectively labeled PET tracers have been reported. In 2010, three
carbon-11 labeled nonpeptide AT2R selective PET tracers using [11C] carbon monoxide as
the labelling agent via palladium-mediated aminocarbonylation of the aryl iodide substrate
were reported by Åberg [91]. The first-in-human ACE2 radiotracer was developed in 2021,
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over 20 years after ACE2 was discovered, to study ACE2 expression levels and distribution
in healthy volunteers and a SARS-CoV-2 recovered patient (Figure 1) [92,93].

3. Role of ACE2 in RAS

The human ACE2 (hACE2) is a carboxypeptidase that shares 42% sequence homology
with its homolog of ACE [70]. The ACE2 sequence indicates the presence of a possible
signal peptide at the N-terminal and a hydrophobic region near the C-terminal, which
probably functions as an anchor to the cell membrane. This results in ACE2 possessing
a topology similar to ACE, which is characteristic of a type-I integral membrane protein.
Unlike ACE, which has two isoforms, ACE2 has a single species of protein formed. The
C-terminal region of ACE2 shows 48% sequence identity with collectrin, a kidney-specific
transmembrane glycoprotein, and this domain does not share homology with ACE [94].
The N-terminal fragment of ACE2, which contains the zinc metallopeptidase catalytic site,
faces the extracellular space, and this orientation makes ACE2, like ACE, an ectoenzyme
capable of hydrolyzing circulating peptides. Importantly, a different in-tissue expression
has been observed. ACE2 is primarily expressed in endothelial cells, arterial smooth muscle,
oral mucosa, and non-vascular cells like astroglial cells and neuronal cell bodies.

Figure 2 shows a simplified view of ACE2 in the RAS. In the RAS, renin as a proteinase
hydrolyzes angiotensinogen to Ang I, which is further cleaved by ACE to form Ang II.
ACE2 not only hydrolyzes Ang I to Ang-(1–9) but also cleaves Ang II into Ang-(1–7).
Compared with Ang I, Ang II is the preferred substrate of ACE2. The central role of ACE2
in RAS was consolidated a few years after its discovery by the identification of Mas as the
receptor for Ang-(1–7) [95]. It is now generally accepted that the RAS comprises two arms,
with ACE and ACE2 serving as the counterbalancing enzymes responsible for producing
Ang II and Ang-(1–7), respectively. The classical arm encompasses ACE/Ang II/AT1R,
whereas the alternative or protective arm consists of ACE2/Ang-(1–7)/Mas, which is
implicated in numerous beneficial effects across various diseases. Also, AT2R is also an
important part of the RAS protective axis [96–98]. Ang-(1–7) primarily exerts effects on the
Mas receptor and, to a lesser degree, also on the AT2 receptor (shown in the dashed line in
Figure 2).
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From a functional perspective, ACE2 contributes to counterbalancing the effect of
ACE [99]. Similar to ACE, ACE2 also plays significant roles in other biological processes
and diseases. ACE2 provides protection against several chronic diseases, including cardio-
vascular diseases, lung injury, and diabetes [100,101].
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4. Tissue Distribution of ACE2 Protein

The expression levels of ACE2 differ between men and women due to regulation
by a gene located on the X chromosome (Xp22.2), supporting the hypothesis of greater
ACE2 expression in women [70]. Also, ACE2 tissue levels are regulated by oestrogens
that can increase the presence of ACE2 receptors [102]. In addition, sex-based differences
in attitudes and behavior may also explain the disparities in COVID-19 severity and
fatality [103]. Furthermore, ACE2 mRNA is known to be present in virtually all organs,
and its protein expression has become clearer over the years [104–106]. Figure 3 shows the
ACE2 expression in human organs [107]. Recently, the highest expression of ACE2 in liver
cholangiocytes, followed by hepatocytes, has been reported [108].
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5. ACE2-Targeting Radiotracers

Radiotracers are radiolabeled compounds that are used for either diagnostic or thera-
peutic applications in vivo. In the case of diagnostic applications, PET and SPECT are the
two major diagnostic imaging modalities in the fields of nuclear medicine and molecular
imaging [109]. Both are used to visualize and diagnose diseases at the molecular and
cellular levels, providing valuable information about the whole-body functional processes.
The use of diagnostic radiopharmaceuticals allows for noninvasive imaging of internal
organs, tissues, and bones, providing information that can be used to diagnose, stratify, and
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monitor the progression of diseases, such as neurological disorders and cancers [110–114].
The radiotracers are designed to selectively bind to specific targets in the body, allowing for
visualization and quantification of their distribution and activity inside a living organism.
The rational design and synthesis of selective targeted inhibitors is crucial in the devel-
opment of radiotracers. Typically, radiotracer development with various radionuclides is
initially inspired by existing inhibitors but aims to improve selectivity and in vivo prop-
erties. Unlike the well-known nonradioactive pharmaceuticals, diagnostic radiotracers
contain very small doses of the active ingredients and often show minimal pharmacological
effects. Sometimes, a good target-specific inhibitor is not necessarily a good radiotracer
for clinical translations since many factors, including binding affinity, selectivity, target
density, metabolic profile, pharmacokinetics, in vivo toxic effect, and dosimetry data, all
contribute to decisions for further translations. Therefore, when developing new radio-
tracers, modification of the lead compound structures, and test-retest studies are usually
carried out.

Due to the structural similarity between ACE and ACE2, the development of highly
selective inhibitors is very challenging. Since ACE2 was first discovered in 2000, there
have been limited ACE2-selective inhibitors reported so far [115]. Thus, the progress in
developing radiotracers that specifically target ACE2 has been stalled. In 2002, Dales
et al. reported a rational design approach to identify selective small-molecular ACE2
inhibitor MLN-4760 with a high binding affinity (Ki = 0.44 nM) and selectivity (>100 fold)
against ACE [116]. In 2003, Huang et al. reported a novel ACE2-specific peptide inhibitor,
DX600 (also known as cyc-DX600), which was identified by screening peptides from
libraries displayed on M13 filamentous phage [117]. DX600 is a 26-amino acid cysteine
disulfide-constrained peptide with a high binding affinity (Ki = 2.8 nM) toward ACE2.
Moreover, DX600 does not inhibit ACE activity at concentrations over 100 µM. DX600
was derived from the CXPXRXXPWXXC motif with an acetylated N-terminal and amidated
C terminal. The three-dimensional structure of the DX600 in water has been elucidated
by proton nuclear magnetic resonance [118]. A central closed loop is formed by the
constraints imposed by the intramolecular disulfide bridge. There is a basic amino acid,
arginine, lying between the two prolines in the DX600. These features lead the peptide
to bind ACE2 with high affinity and specificity. In addition, DX600 is chemically stable
and does not hydrolyze with ACE2. Hence, it is suitable to develop micro-dose nuclear
medicine molecular imaging probes by using DX600 or its analogs. In 2023, Harman
et al. reported a series of constrained bicyclic peptide ACE2 inhibitors, and one of the
peptides, BCY20862 (Ki = 0.22 nM), showed >81,000-fold selectivity for ACE2 inhibition
over ACE [119]. Cyclic peptides may exhibit improved biological properties compared with
linear analogs, including enhanced receptor selectivity, binding affinity, and proteolytic
stability [120], because of their conformational rigidity and improved plasma stability, thus
allowing for further clinical application [121–123]. Based on these pioneering discoveries
and lead structures, we summarize recent progress for ACE2-targeted radiotracers. Within
each section, we further subclassify different ACE2-specific radiotracers according to the
developed imaging modalities.

5.1. PET Tracers Targeting ACE2

PET has emerged as a noninvasive and translational imaging technique to visualize
and quantify in vivo biochemical processes in real-time. Compared with other medical
imaging techniques, PET features unlimited tissue penetration, high sensitivity, better
quantification, and facile animal-to-human translatability [124–127].

The design of ACE2-targeted PET radiotracers has attracted tremendous efforts due to
the COVID-19 pandemic. To date, most of the reported radiotracers were derivatized from
DX600 (Figure 4). These radiotracers were synthesized by conjugating different chelators
to the N-terminus of DX600. The studies focus on using different linkers and a variety of
PET radionuclides (18F, 64Cu, 67Ga, 68Ga).
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Figure 4. DX-600-based radiopharmaceuticals. DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid. NOTA: 1,4,7-triazacyclononane-1,4,7-triacetic acid. HYNIC: hydrazinonicotinic
acid. NODAGA: 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid. HBED-CC: N,N′-bis-[2-
hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid.

In 2021, Wilson et al. reported the first ACE2-specific PET radiotracers (68Ga-NOTA-
PEP) derived from DX600 [92]. Six NOTA-conjugated peptides derived from the DX600
sequence were synthesized and screened for ACE2 inhibition. Linkers are important for
radiometal-based radiotracers, as the lipophilicity and stability of the linker will affect
the binding affinity and selectivity of the modified peptides, and a direct coupling be-
tween the chelator and parent peptides may result in the reduction of receptor affinity.
Furthermore, the linker can be utilized to adjust the pharmaceutical properties of the
tracer to affect in vivo imaging results [128]. NOTA-modified cyclic peptides with various
linkers showed retained or even higher ACE2 inhibition compared with parent peptide
DX600 (IC50 = 118.2 nM with a commercially available ACE2 inhibition assays). However,
NOTA-modified linear peptides without cyclic disulfide bonds showed significantly re-
duced activity toward ACE2. The NOTA-conjugated cyclic peptides NOTA-PEP4 with
the best inhibitory activity (IC50 = 67.6 nM) were labeled with 68Ga with more than 99%
radiochemical purity. The decay correction radiochemical yield of 68Ga-NOTA-PEP4 was
63.2 ± 6.4% (n = 8) with an approximate molar activity greater than 15.6 GBq/µmol. Trans-
genic K18-hACE2 mice expressing human ACE2 were used to validate 68Ga-NOTA-PEP4.
An organ-specific time-activity curve demonstrated prompt clearance from the blood
pool with radiotracer accumulation in the kidneys. A biodistribution and blocking study
demonstrated that 68Ga-NOTA-PEP4 can specifically bind in the heart, liver, lungs, and
intestine—organs known to be affected in SARS-CoV-2 infection (Table 1).

In the same year, Zhu et al. reported two DX600-based radiotracers labeled with 64Cu
and 68Ga (64Cu-HZ20 and 68Ga-HZ20) [93]. 64Cu-HZ20 exhibited lower binding affinity
toward ACE2 at 37 ◦C (143 ± 1 nM) than the parent DX600 (100 nM), which showed a higher
affinity at 4 ◦C (66 ± 1 nM). In mouse models, both tracers showed a high accumulation
in the human embryonic kidney HEK293-hACE2 xenograft mice and exhibited favorable
pharmacokinetic properties in hACE2 transgenic mice. A first-in-human evaluation of
68Ga-HZ20 was completed in 2022 (NCT04422457). The representative PET images of
68Ga-HZ20 in male and female healthy volunteers are shown in Figure 5. The renal cortex,
corpus luteum, and testis showed relatively high accumulation (the standardized uptake
value maximum; SUVmax > 2.5 at 90 min post-injection). As expected for a peptide-based
ligand, 68Ga-HZ20 cannot cross the blood-brain barrier, resulting in low accumulation of
activity in the brain. Rapid elimination from the thyroid, lung, liver, spleen, adrenal gland,
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pancreas, and uterus suggests relatively low ACE2 expression levels, and the radioactivity
gradually clears from the blood pool. However, low uptake in the lung was observed in
the healthy volunteers, while the lung is one of the most critical organs for SARS-CoV-2
infection. The expression of ACE2 in the breasts of female volunteers is strongly correlated
with their age, with young volunteers showing higher levels than their older counterparts.

Table 1. Radiotracers that target the ACE2.

Radioligand Imaging
Modality

Preclinical
/Clinical Experimental Model Binding

Affinity
Radiochemical

Yield
Specific/Molar

Activity Stability Reference

Al18F-DX600-
BCH PET Clinical Healthy volunteers NR

20.4 ± 5.2%
(non-decay
corrected)

3.7–18.5
GBq/µmol

(n = 15)

Stable in saline
up to 4 h

Ding 2021
[129,130]

68Ga-HZ20
(68Ga-cyc-

DX600)
PET Clinical

Recovered SARS-CoV-2
infection patients, patients

with tumor, healthy
volunteers, ACE2
expressing HepG2

tumor-bearing mice,
HEK293 xenograft mice,

HEK293T/hACE2
xenograft mice, hACE2
mice, ACE2-KO mice,

pigeon, rabbit

Kd = 66 ±
1 nM (4 ◦C),
143 ± 1 nM

(37 ◦C)

59.9 ± 3.9%
(non-decay
corrected,

n = 10)

6.0 × 104

GBq/mmol
(n = 3)

Stable in 0.01 M
PBS solution at

37 ◦C up to
120 min

Zhu 2021
[93,131–

135]

64Cu-HZ20 PET Preclinical
HEK293-hACE2 xenograft

mice, hACE2 transgenic
mice

Kd = 100.0 nM NR NR NR Zhu 2021
[93]

68Ga-NOTA-
PEP4 PET Preclinical K18-hACE2 transgenic

mice IC50 = 67.6 nM

63.2 ± 6.4%
(decay

corrected,
n = 8)

Up to 15.6
GBq/µmol NR Parker

2021 [92]

68Ga-Nb1159 PET Preclinical SARS-CoV-2 RBD
administered mice

Kd = 25.53 nM
(RBD)

49.48 ± 3.12%
(non-decay
corrected)

2.74–10.99
MBq/nmol

Stable in 0.01 M
PBS solution and
5% HSA up to 8 h

Liu 2022
[136]

124I-RBD PET Preclinical HepG2ACE2+

tumor-bearing mice Kd = 75.7 nM

83.9 ± 4.6%
(non-decay
corrected,

n = 10)

25.3–28.9
GBq/nmol

Stable in saline
and 5% HSA up

to 120 h

Li 2022
[137]

67Ga-HBED-
CC-DX600 SPECT Preclinical HEK-ACE2/HEK-ACE

xenograft mice
Kd = 113 ±

17 nM NR 60 MBq/ nMol
Stable in human
blood plasma up

to 24 h

Beyer
2023 [138]

67Ga-DOTA-
DX600 SPECT Preclinical HEK-ACE2/HEK-ACE

xenograft mice
Kd = 98 ±

10 nM NR 20 MBq/nmol

A release of
gallium-67 was

observed in
mouse blood
plasma (~4%
after 3 h and

>50% after 24 h)

Beyer
2023 [138]

67Ga-
NODAGA-

DX600
SPECT Preclinical HEK-ACE2/HEK-ACE

xenograft mice
Kd = 83 ±

19 nM NR 20 MBq/nmol
Stable in human
blood plasma up

to 24 h

Beyer
2023 [138]

125I-CoV SPECT Preclinical hACE2 mice, ACE2-KO
mice NR 35.1 ± 2.5% NR

Stable in 0.01 M
PBS at 4 ◦C up to

72 h

Li 2022
[139]

99mTc-HYNIC-
DX600 SPECT Preclinical HEK293T/hACE2

xenograft mice NR NR NR NR Zhou 2024
[140]

177Lu-HZ20

Beta
radionu-

clide
therapy

Preclinical HepG2ACE2+

tumor-bearing mice NR 84.71 ± 9.75%
(n > 10)

(17.85 ± 1.62)
× 106

GBq/mmol

Stable in saline
up to 100 min

Zhang
2023 [132]

ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzymes 2; hACE2, humanized ACE2;
HEK, human embryonic kidney; HSA, human serum albumin; KO, knockout; NR, not reported; PBS, phosphate-
buffered saline; PET, positron emission tomography; RBD, receptor-binding domain; SPECT, single photon
emission computed tomography.
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It is worth mentioning that a recovered COVID-19 patient was evaluated for 68Ga-
HZ20 uptake (Figure 6) [93]. Results show that the 68Ga-HZ20 accumulation in the 
gallbladder and testis was higher than in a control group of healthy volunteers. However, 
the renal cortex showed much lower uptake than healthy male and female volunteers. The 
findings in the recovered patient suggest that ACE2 regulation is associated with post-
COVID-19 physiological changes. 

Figure 5. Representative positron emission tomography images of 68Ga-HZ20 in male and female
volunteers. (A) Radioactivity uptake in a 38-year-old male volunteer at 90 min post-injection. 1: nasal
mucosa, 2: gallbladder, 3: renal cortex, 4: small intestine, 5: testis. (B) Radioactivity uptake in a 34-
year-old female volunteer at 90 min post-injection. 1: nasal mucosa, 2: breast, 3: gallbladder, 4: renal
cortex, 5: left ovary. White arrows indicate regions of interest in (A,B). (C) Immunohistochemistry
analysis of angiotensin-converting enzyme-2 expression in normal human organs (10×). Image from
Zhu, H.; Zhang, H.; Zhou, N.; Ding, J.; Jiang, J.; Liu, T.; Liu, Z.; Wang, F.; Zhang, Q.; Zhang, Z.; et al.
Molecular PET/CT profiling of ACE2 expression in vivo: implications for infection and outcome
from SARS-CoV-2. Adv. Sci. 2021, 8, e2100965 is licensed under CC BY 4.0 (http://creativecommons.
org/licenses/by/4.0) [93].

It is worth mentioning that a recovered COVID-19 patient was evaluated for 68Ga-
HZ20 uptake (Figure 6) [93]. Results show that the 68Ga-HZ20 accumulation in the gallblad-
der and testis was higher than in a control group of healthy volunteers. However, the renal
cortex showed much lower uptake than healthy male and female volunteers. The findings
in the recovered patient suggest that ACE2 regulation is associated with post-COVID-19
physiological changes.

Additional clinical trials are being conducted with 68Ga-HZ20 to gain a better under-
standing of the disease progression and functional recovery related to COVID-19 [133],
anemia [133], and malignancies [131–133]. 68Ga-HZ20 was evaluated in healthy volunteers
and patients with various disorders by Li et al. [133]. Twelve healthy volunteers without
underlying diseases were recruited for whole-body PET/magnetic resonance (MR) imag-
ing. Results showed high tracer uptake was observed in RAS-related organs (liver, spleen,
and cardiac chambers). A 36-year-old man with acute COVID-19 infection underwent a
PET/MR scan on the first day after symptom relief to evaluate the virus-induced changes.
Compared with imaging results prior to infection, a lower ACE2 expression was observed
in the liver, spleen, and testis. However, a high ACE2 expression was recorded in the upper
respiratory tract, aorta, cardiac chamber, and pancreas. In post-COVID patients, diffuse
higher uptake in bilateral testis was observed, which can provide molecular evidence for
the current research findings that SARS-CoV-2 infection could lead to hypogonadism and
testicular atrophy [141].

http://creativecommons.org/licenses/by/4.0
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the high expression level of ACE2 in the nose. 

ACE2 is also a promising target for evaluating the efficacy of COVID-19 vaccine. PET 
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sponse post-vaccination. The high number of mutations in the viral spike protein might 
evade antibodies previously induced by vaccination; therefore, a broad spectrum of 
COVID-19 vaccines covering diverse strains is also being developed [146,147]. 68Ga-cyc-
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[148]. Results showed 68Ga-cyc-DX600 accumulation was rebounded in the liver and 
spleen after a downward uptake, while the downward accumulation was not reversed in 
the heart, testis, and bone marrow. 

Figure 6. Representative positron emission tomography (PET) images of 68Ga-HZ20 in a volunteer
recovered from COVID-19 infection. (A) The whole-body PET image and (B–D) axial PET/computed
tomography (CT) (top panel: CT, middle panel: PET) images of nasal, lung, and testis, respectively,
at 90 min post-injection were shown. (E) kidney uptake of 68Ga-HZ20 in a patient recovered from
COVID (P), a healthy male (M), and a female (F) volunteer at 90 min post-injection. Arrows indicate
regions of interest in (B–E). Image from Zhu, H.; Zhang, H.; Zhou, N.; Ding, J.; Jiang, J.; Liu, T.; Liu,
Z.; Wang, F.; Zhang, Q.; Zhang, Z.; et al. Molecular PET/CT profiling of ACE2 expression in vivo:
implications for infection and outcome from SARS-CoV-2. Adv. Sci. 2021, 8, e2100965 is licensed
under CC BY 4.0 is licensed under CC BY 4.0 (http://creativecommons.org/licenses/by/4.0) [93].

Compared with 68Ga positron-emitting radioisotopes, the 18F is among the most
frequently used due to its unique and ideal properties [142–144]. Peptides can undergo
direct labeling with 18F via Al18F chelation, enabling their utilization in both preclinical
and clinical investigations and leveraging the accumulated knowledge and expertise from
established radiometal-based PET tracers [145]. The Al18F-labeled Al18F-DX600-BCH
was synthesized by Zhu et al.’s team and is currently under clinical trials (NCT04542863,
expected completion in September 2024) [129,130]. It is worth noting that the uptake of
Al18F-DX600-BCH in the lung and heart is low but is high in the nasal mucosa, possibly
due to the high expression level of ACE2 in the nose.

ACE2 is also a promising target for evaluating the efficacy of COVID-19 vaccine. PET
imaging can provide a more comprehensive and visual understanding of the host response
post-vaccination. The high number of mutations in the viral spike protein might evade
antibodies previously induced by vaccination; therefore, a broad spectrum of COVID-
19 vaccines covering diverse strains is also being developed [146,147]. 68Ga-cyc-DX600
was utilized to study the effectiveness of the COVID-19 vaccine in a rabbit model [148].
Results showed 68Ga-cyc-DX600 accumulation was rebounded in the liver and spleen after
a downward uptake, while the downward accumulation was not reversed in the heart,
testis, and bone marrow.

It has been shown that recombinant human ACE2 (rhACE2), as a soluble supplement
for human ACE2, can effectively block SARS-CoV-2 infection [149]. In 2023, Wang et al.
used 68Ga-HZ20 to study the in vivo distribution of rhACE2 in different rhACE2 tissue
and organ with in situ mouse models [135]. Imaging results showed the specific uptake of
68Ga-HZ20 at the rhACE2 injection site, which means this radiotracer can locate regions
with different rhACE2 expression levels and reveal the distribution of rhACE2.

Spike protein is the essential envelope protein of coronavirus, which includes two
subunits, S1 and S2. S1 is mainly comprised of the receptor binding domain (RBD) [150].
In the human body, the RBD binds to ACE2 on respiratory epithelial cells. The RBD
could serve as an ACE2-specific binding site for radio imaging. Li et al. synthesized
124I-RBD to investigate ACE2 expression and distribution [137]. The PET imaging in the
HepG2ACE2+ model nude mice showed high uptake in the lung, stomach, and thyroid.
Radiolabeled nanobody 68Ga-Nb1159 has also been used for imaging the distribution of
ACE2 in vivo [151].
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Receptor recognition is an important factor determining host range and cross-species
infection of viruses. The key binding site of the ACE2 receptor in pigeons has the highest
coincidence (75%) with humans [152]. Therefore, pigeons were used as an animal model to
explore the distribution of ACE2 in birds by using 68Ga-HZ20 [153]. The highest uptake in
the kidney (SUVmax = 6.95) and lung (SUVmax = 1.11) was observed at 20 min post-injection.
Immunohistochemical results showed high expression of ACE2 in the kidneys and small
intestine, which may provide possible evidence for acute kidney injury and fecal-oral
transmission of SARS-CoV-2. The lung is the primary organ infected by SARS-CoV-2.
However, the probes demonstrated minimal accumulation in the lung tissue, resulting in
a low SUV value, probably due to the existence of alveoli and other cavities within the
lung tissue.

In addition to COVID-19-related research targeting ACE2 for aiding diagnosis, de-
veloping therapeutics, and monitoring treatment response, reduced ACE2 activity has
been detected in many cancers when compared with healthy individuals [154]. The
ACE2/Ang(1–7)/MasR axis in the RAS system has antitumor effects by inhibiting cancer cell
proliferation and metastasis, tumor-associated angiogenesis, and epithelial-mesenchymal
transition [155]. Subsequently, further research based on 68Ga-cyc-DX600 radiotracer
was focused on different tumor models. A xenograft tumor model was used to evaluate
68Ga-HZ20 radiotracer [131,132]. For a patient with liver metastases from rectal cancer,
18F-fluorodeoxyglucose PET/CT and 68Ga-cyc-DX600 PET/MR imaging were conducted
successively [133]. Comparatively, a significantly lower uptake of 68Ga-cyc-DX600 in the
liver (SUVmax = 3.12) than its surrounding normal liver tissue (SUVmax = 9.34) on PET/MR
imaging was observed at 75 min post-injection. The different performances between 18F-
fluorodeoxyglucose and 68Ga-cyc-DX600 demonstrated the correlation of tumor activity
and ACE2 expression and further validated the findings that lower ACE2 expression could
be associated with higher aggressiveness of the tumor.

Very recently, Wang et al. reported two MLN-4760-based 18F-labeled radiotracers
(Figure 7) [156]. The ACE2-binding affinities of non-radioactive reference compounds
F-MLN-4760 and F-Aza-MLN-4760 were determined using HEK-ACE2 cells, with IC50
values of 150 nM and 387 nM, respectively. The relative ACE2-binding affinities of F-
MLN-4760 and F-Aza-MLN-4760 were three-fold and seven-fold lower compared with
the lead compound, MLN-4760 [116]. [18F]F-MLN-4760 was synthesized by Cu-mediated
radiofluorination of a toxic arylstannane precursor with radiochemical purities of over 99%
and a decay-corrected radiochemical yield of 5.3%. Molar activities of [18F]F-MLN-4760
ranged from 21 to 38 GBq/µmol (n = 5) at the end of the synthesis. [18F]F-Aza-MLN-4760
was obtained from chlorinated precursors by a halogen exchange reaction. Subsequent
nucleophilic replacement of the chlorine group by [18F]fluoride under a high temperature
(195 ◦C), followed by the hydrolysis of the ester moieties, afforded [18F]F-Aza-MLN-4760
in a radiochemical purity of over 99% with a decay-corrected radiochemical yield of up to
1.2%. Molar activities of [18F]F-Aza-MLN-4760 ranged from 78 to 81 GBq/µmol (n = 3) at
the end of the synthesis, which is higher than that of [18F]F-MLN-4760. Both radiotracers
were metabolically stable in murine and human blood plasma for up to 3 h. Similar to that
previously reported by the authors, HEK-ACE2 and HEK-ACE xenograft mice were used to
evaluate these tracers [138]. No radioactivity accumulation was observed in the HEK-ACE
xenograft mice. Compared with the previously developed DX600-based radiopeptides, a
relatively high retention of activity was seen in the gall bladder and intestinal tract in the
mouse model, which could be ascribed to the rather lipophilic properties of MLN-4760-
based radiotracers.
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5.2. SPECT Tracers Targeting ACE2

SPECT imaging employs radionuclides that emit gamma rays directly, including
iodine-123 and technetium-99m, which generally have lower energy and resolution than
those used in PET. Generally, PET systems are more sensitive than SPECT systems. How-
ever, SPECT is more commonly used in clinics than PET because SPECT scanners are more
affordable and widely available compared with PET [157].

In 2023, Beyer reported the DOTA, NODAGA, or HBED-CC conjugated cyclic DX600
peptides for 67Ga (T1/2 = 3.26 d) chelation [138]. The selectivity of the radiolabeled peptides
over ACE2 was assessed by using ACE2/ACE-transfected HEK cells and HEK-ACE2/HEK-
ACE xenograft mouse model (Table 1). The labeling efficiency suggests that 67Ga-HBED-CC
(60 MBq/nmol; radiochemical purity: 96%) has an advantage over other macrocyclic chela-
tors, such as NODAGA and DOTA when preparing radiopeptides with high molar activities.
The physicochemical properties of the three 67Ga labeled radiopeptides (hydrophilicity and
stability) were not significantly affected by the chelators. In vitro experiments confirmed
the anticipated ACE2-specific binding and uptake of these 67Ga-labeled radiopeptides.
Biodistribution studies in HEK-ACE2 or HEK-ACE xenograft mice demonstrated similar
accumulation of radioactivity in HEK-ACE2 xenografts of all three DX600-based peptides
while only negligible accumulation in HEK-ACE xenografts. In normal tissues and organs,
negligible accumulation of the DX600-based radiopeptide was observed in both models,
which was likely attributed to the low affinity of DX600 to the murine ACE2 protein [158].
In SPECT imaging studies, results showed high radiopeptide uptake in the HEK-ACE2
xenografts at 1 h and 3 h post-injection (Figure 8). 67Ga-HBED-CC-DX600 demonstrated
a more favorable tissue distribution profile than the other two radiopeptides with high
activity accumulation in HEK-ACE2 xenografts but fast washout kinetics in the kidneys.
Due to the escalating signal-to-background contrast observed over time for in vivo imaging,
the acquisition at a later time point would be suitable for assessing ACE2 expression. In this
regard, however, the use of the short-lived 68Ga (T1/2 = 68 min) may not be ideal; therefore,
67Ga (T1/2 = 3.26 d) would enable SPECT imaging at later time points.

The eyes are another entry site where viruses enter the body in addition to the upper
respiratory tract [159]. The ocular symptoms might be the first sign of early SARS-CoV-
2 infection. Li et al. reported a 125I-labeled pseudovirus (125I-CoV) used for imaging
the process of viral transocular infection [139]. The labeling yield of the 125I-CoV was
35.1 ± 2.5%, with radiochemical purity over 95%. ACE2-specific binding affinity has been
revealed to be one of the most important factors determining the infectivity of SARS-
CoV-2 [160]. The transfection efficiency of the enhanced green fluorescent protein (EGFP)
gene into ACE2-expressing HEK293T cells showed no statistical difference, indicating that
I-125 labeling pseudovirus has a negligible impact on the virus’s ability to bind to the
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targeted ACE2 proteins. Due to the inefficient binding of SARS-CoV and SARS-CoV-2
to mouse ACE2, numerous hACE2-transgenic mouse models have been developed in
past years and employed for evaluation of vaccine and therapeutic drugs as well as to
elucidate the mechanisms of the SARS-CoV-2 infection process [161]. The CAG-hACE2
and ACE2-knock out (KO) mouse models were used for SPECT/computed tomography
(CT) imaging by transocular inoculation of the pseudovirus, 125I-CoV, in the unilateral
eye. The in vivo metabolism of radiotracer was dramatically different between the two
animal models. A much faster metabolic clearance rate of 125I-CoV in ACE2-KO mice was
observed. Biodistribution studies of 125I-CoV showed the genital glands, liver, and lungs
had the highest virus concentrations. Interestingly, the genital glands had the highest unit
uptake at the end of the study (72 h). This is probably due to the high expression of ACE2
in the male genital system [162]. The imaging results are helpful in understanding the
transocular infection path of SARS-CoV-2, which could provide new insights into CNS
symptoms ascribed to COVID-19.
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In addition to the ACE2-targeting strategy using SPECT to study COVID-19-related
diseases, ACE2 also serves as a promising biomarker in cancer research with SPECT imag-
ing. Pancreatic cancer, which is associated with high morbidity and mortality rates, is one of
the most aggressive malignancies. Early studies have demonstrated that ACE2 was sparsely
expressed in the pancreas and was widely downregulated or absent in pancreatic cancer
tissues and cells compared with the normal pancreas [25]. Very recently, Zhou et al. used
DX600 peptide to conjugate it with the linker hydrazinonicotinic acid (HYNIC), followed
by radiolabeling with the SPECT nuclide technetium-99m (99mTc-HYNIC-DX600) [140].
The radiolabeled peptide was used to evaluate ACE2 expression with pancreatic tumor
aggressiveness and growth. In the subcutaneous cell-derived xenograft models, the high
tumor uptake (6.74 ± 0.31% ID/mL at 1.5 h post-injection; 3.14 ± 0.31% ID/mL at 4.5 h
post-injection) was observed in the pancreas of ACE2-positive HEK293T/hACE2 mice
compared with ACE2-negative HEK293T mice (1.83 ± 0.26% ID/mL at 1.5 h post-injection;
1.16 ± 0.15% ID/mL at 4.5 h post-injection).

5.3. Radiotherapeutics Targeting ACE2

Targeted radionuclide therapy is a novel therapeutic method for cancer. The β−

particle-emitting radionuclide 177Lu (T1/2 = 159 h) is a powerful radionuclide ideal for
targeted radiotherapy [163]. The success of clinical applications has been the driving
force behind the development of 177Lu radiotracers [164,165]. 177Lu also possesses an
imageable γ-emission, allowing quantitative SPECT imaging to determine biodistribution
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and radiation dosimetry. Therefore, the SPECT/CT imaging in the HepG2ACE2+ tumor-
bearing mice model and HepG2WT tumor-bearing mice were performed to evaluate 177Lu-
HZ20 (Figure 9) [132]. The pharmacokinetics study of 177Lu-HZ20 showed that it had fast
clearance rates through the kidney in Kunming mice (the half-lives of the biodistribution
phase and elimination phase were 3.97 and 34.59 min, respectively). 177Lu-HZ20 showed
low uptake in the brain (from 0.036 ± 0.01% ID/g at 0.5 h post-injection to 0.004 ± 0.0004%
ID/g at 48 h post-injection). The radiation dosimetry of 177Lu-HZ20 in a male adult was
estimated based on the biodistribution data in normal male mice. The dose absorbed
by each organ was notably low, with the effective dose of 177Lu-HZ20 determined to be
6.96 × 10−2 mSv/MBq.
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Figure 9. Micro-single photon emission computed tomography/computed tomography imaging
of 177Lu-HZ20 in (B1) HepG2ACE2+, (B2) blocked HepG2ACE2+ and (B3) HepG2WT tumor-bearing
mice 60 min post-injection. The yellow arrow (T) indicates the tumor xenograft, the white arrow
(K) indicates the kidney, (B) indicates the bladder, (H) indicates the heart, and (G) indicates the
gallbladder. Image adapted from Zhang, Q.; Liu, T.; Ding, J.; Zhou, N.; Yu, Z.; Ren, Y.; Qin, X.;
Du, P.; Yang, Z.; Zhu, H. Evaluation of (68)Ga- and (177)Lu-labeled HZ20 angiotensin-converting
enzyme 2-targeting peptides for tumor-specific imaging. Mol. Pharm. 2022, 19, 4149–4156. Used with
permission from The American Chemical Society [132].

6. Conclusions and Future Perspectives

The outbreak of SARS-CoV-2, with its high fatality rate in early pandemics, has sparked
worldwide concern and was officially declared a global pandemic by the World Health
Organization in 2020 until 2023. The rapid climb in new infections and continuing mutation
of the virus prompted scientists worldwide to prioritize the discovery and advancement of
novel treatments for COVID-19. Significant progress has been made in the diagnosis and
treatment of COVID-19 and preventative vaccine development to adapt to the evolving
variants. However, new methods of battling SARS-CoV-2 variants and long COVID are
still needed in the future.

ACE2 is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-
CoV-2 infection. Molecular imaging for ACE2 has emerged as a valuable tool for better
understanding the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in
homeostasis and diseases, and to identify potential therapeutic modulators in ACE2-related
diseases. The application of both imaging and radiotherapy holds significant potential for
targeting sites of diseases that overexpress ACE2.

The ongoing research still shows some limitations. First, very few ACE2-targeting
probes have moved from bench to clinical investigation, which may stall drug development
in ACE2-related diseases. Second, most imaging probes are based on a cyclic peptide,
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DX600, scaffold. A more diverse molecular lead, such as small molecules, antibodies, and
aptamers, is urgently needed, particularly when researchers aim to develop imaging probes
to study the impact of COVID-19 on the central nervous system (CNS). Radiolabeled DX600
and its derivatives cannot cross the blood-brain barrier and typically show negligible brain
uptake regardless of COVID-19 status. Therefore, small molecule-based imaging probes,
such as MLN-4760 analogs, may circumvent the limitations of studying post-COVID-19
sequela in the CNS and other ACE2-related CNS disorders. In 2023, we reported the
design and synthesis of fluorinated ACE2 inhibitors based on MLN-4760 as leads to PET
radioligands [166]. Concomitant with preparing this manuscript, two 18F-labeled MLN-
4760-based PET tracers were reported [156]. These emerging examples in recent years
will likely stimulate more research in developing small molecular ACE2 radiotracers and
further evaluating the imaging agents in animal models. Third, due to limited scaffold
targeting ACE2, few studies have developed computational modeling strategies to inves-
tigate the structure-activity relationship of the new probes toward ACE2. The lack of a
valid method for drug design for the relatively new ACE2 target makes the translational
pathway more tedious. Our team is working on small molecule-based imaging probes
targeting ACE2, and our strategy may overcome these previously discussed limitations. We
believe more emerging imaging probes will be available to the research community soon
for this critical ACE2 target in the RAS for developing predictive, preventive, personalized,
and participatory nuclear medicine.
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