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Abstract: The identification of odorant-binding proteins (OBPs) involved in host location by
Oides leucomelaena (O. leucomelaena Weise, 1922, Coleoptera, Galerucinae) is significant for its biological
control. Tools in the NCBI database were used to compare and analyze the transcriptome sequences
of O. leucomelaena with OBP and other chemosensory-related proteins of other Coleoptera insects. Sub-
sequently, MEGA7 was utilized for OBP sequence alignment and the construction of a phylogenetic
tree, combined with expression profiling to screen for candidate antennae-specific OBPs. In addition,
fumigation experiments with star anise volatiles were conducted to assess the antennae specificity of
the candidate OBPs. Finally, molecular docking was employed to speculate on the binding potential of
antennae-specific OBPs with star anise volatiles. The study identified 42 candidate OBPs, 8 chemosensory
proteins and 27 receptors. OleuOBP3, OleuOBP5, and OleuOBP6 were identified as classic OBP family
members specific to the antennae, which was confirmed by volatile fumigation experiments. Molecular
docking ultimately clarified that OleuOBP3, OleuOBP5, and OleuOBP6 all exhibit a high affinity for
β-caryophyllene among the star anise volatiles. We successfully obtained three antennae-specific OBPs
from O. leucomelaena and determined their high-affinity volatiles, providing a theoretical basis for the
development of attractants in subsequent stages.

Keywords: Oides leucomelaena; odorant-binding protein; plant volatile organic compounds; molecular
docking

1. Introduction

Star anise (Illicium verum Hook. F.) is a species belonging to the Anise genus of the
Magnoliaceae family. It is renowned for its diverse medicinal attributes such as antioxidant,
antibacterial, anti-inflammatory, insecticidal, and antiviral effects [1]. This plant plays a
significant role in East Asian traditional medicine, with China recognized as its primary
region of cultivation [2,3]. However, the growth of star anise is highly susceptible to
Oides leucomelaena (O. leucomelaena Weise, 1922, Coleoptera, Galerucinae), which causes
huge losses to the regional economy [3]. It is reported that the larvae and adults of
O. leucomelaena feed on the leaves and young shoots of anise trees, causing withering of
branches, lack of fruits, and even death of the whole plant [4,5]. At present, the control of
this insect mainly relies on chemical control, which is fast but harmful to the environment
and negatively impacts natural enemies, which is not conducive to the sustainable control of
the insect pest [6]. O. leucomelaena inhabits a complex and chemically diverse environment,
and essential to its survival is the need to recognize host plant odors in the environment in
search of hosts. Therefore, interfering with the search for hosts by O. leucomelaena may be a
viable option.

During coevolution with their hosts, insects have developed a unique olfactory system
enabling them to distinguish volatile substances in host plants from other environmental
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odors. Insect olfactory systems are known for their remarkable sensitivity and the ability to
integrate odorant blends through distributed specificity of receptor tuning profiles. The
olfactory systems of insect perception of host plants may help reveal the co-evolutionary
relationship between insects and plants, and provide a theoretical basis for the development
of ecological pest control techniques [7,8]. And insects’ perception of host plant volatiles
usually depends on their chemoreceptors. Odorant-binding proteins (OBPs) are essential
molecules for host localization. Previous studies have shown that the process by which
insects perceive external odors mainly involves the binding, release and inactivation of
odor molecules [9]. First, hydrophobic odor molecules enter the hemolymph through
the micropores of the sensors as well as the pore microtubules and are then bound by
OBPs and chemosensory proteins (CSPs). The stable and compact structures of OBPs and
CSPs make them multifunctional soluble proteins relevant for signal transduction of small-
molecule hydrophobic compounds such as pheromones and odors, as the hydrophobic
odor molecules become soluble due to the binding of the hydrophobic odor molecules
to the OBPs. Subsequently, OBPs transport odor molecules to the dendritic membranes
of olfactory receptor neurons to activate receptors. Afterwards, the receptors convert the
chemical signals into electrophysiological signals, which are transmitted via axonal nerves
to the central nervous system, where the brain generates commands to the insect based
on the signals, guiding its behavior [10,11]. The research value of OBPs as the first step in
insect odor recognition cannot be overstated.

Insect OBPs are small, globular, water-soluble proteins whose protein sequences include
highly conserved cysteines, which in turn have a specific number of amino acid residues
between them. For example, the classical OBP consists of six conserved cysteine residues,
of which Coleoptera are divided into the following two patterns: C1-X23-44-C2-X3-C3-X36-
43-C4-X8-12-C5-X8-C6 and C1-X21-68-C2-X3-C3-X21-46-C4-X8-28-C5-X8-9-C6 [12,13]. The
classical OBP’s three-dimensional structure consists of six α-helical structural domains that
form a hydrophobic cavity. In addition, the six conserved cysteines form three interlocking
disulfide bonds and fold to form a tight and stable hydrophobic binding cavity, which
increases the structural stability of the OBP to a certain extent [14]. The stable sequence
structure of OBPs plays an important role in maintaining their functions. Studies on odor-
binding proteins of Coleoptera have mainly focused on bark beetles, and few studies on
leaf beetles have been reported [15,16]. As a pest that is very harmful to O. leucomelaena,
green science must be urgently used to control O. leucomelaena. In the last decade, emerging
evidence suggests that OBPs play an important role in decontaminating the surrounding
perceptron space from harmful xenobiotics, including plant volatiles and pesticides, which
may facilitate adaptations to xenobiotics such as host localization, acclimation and pesticide
resistance [8]. In this study, we identified the chemosensory-related proteins of O. leucomelaena
by sequencing the transcriptome of different tissue parts of O. leucomelaena, and focused on
the correlation analysis of OBPs, with a view to clarifying the key role of the antennal-specific
OBPs of O. leucomelaena in the host localization on the octocarp, and to provide the theoretical
basis for the subsequent biocontrol of O. leucomelaena.

2. Results
2.1. Library Assembly

As a result of sequencing Illumina MiSeq-paired libraries of male and female tissues
of O. leucomelaena, we obtained a total of 749,085,848 clean reads, a GC percentage of
34.76–42.88%, and Q20 percentage of 96.86–98.08% (Supplementary Table S1). The reads
from the paired libraries were assembled in 374,907 sequences, with a mean length of 855 bp
and N50 length of 1134 bp. After cleaning redundancies, 171,155 unigenes were obtained,
with a mean length of 802 bp and N50 of 1004 bp (Supplementary Table S1). All read data
are available in the NCBI BioProject database under the project ID PRJNA1123008.
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2.2. Transcript Annotation

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG)
databases were used for transcript annotations, with 53,017 unigenes in at least one of the
three GO terms (Supplementary Table S2). Biological processes were the most representative
corresponding to cellular processes and metabolic processes. A total of 12 terms in molecular
functions were found, with binding being the most representative subcategory, followed by cat-
alytic activity, transport, and biological regulation. Then, five categories were assigned cellular
components, with the most represented subcategories being cellular anatomical entity and in-
tracellular (Figure 1A). Meanwhile, the annotations of unigenes in KEGG showed that the most
enriched entries for genetic information processing contain 8421 unigenes, and 4002 unigenes
were enriched in the signaling and cellular processes term (Supplementary Table S3). The uni-
genes were enriched in the sensory system and nervous system entries (Figure 1B). Currently,
there is limited research on the chemosensory-related proteins of O. leucomelaena, but through
unigene enrichment analysis, it is not difficult to find that there are chemosensory-related genes
within its body that are in urgent need of exploration.
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2.3. Chemosensory-Related Proteins

We identified 42 unigenes encoding OBPs with an open reading frame (ORF) in
length from 49 to 200 amino acids (aa) in the O. leucomelaena. The BLAST matches of
these OBPs with other OBPs of insects with 27.84–80.60% percentage identity, mainly
with a member of the same genera Galeruca daurica (Joannis, 1865), followed by others
Coleoptera Curculionidae: Diabrotica virgifera virgifera (LeConte,1868), Apriona germarii
(Hope, 1831), and Pyrrhalta aenescens (Fairmaire, 1878), among which OleuOBP3, OleuOBP5,
and OleuOBP6 showed greater than 60% homology similarity (Supplementary Table S4).

In addition to OBP, a total of eight CSPs were identified, with sequence similarity
between 51.14 and 78.79% and ORF lengths between 83 and 250 aa, and most of the
CSPs have high homology with Ophraella communa (LeSage, 1986). In addition, we also
identified 19 odorant receptors (ORs), three ionotropic receptors (IRs), and five gustatory
receptors (GRs). The similarity of ORs was between 26.97 and 90.81%, and both GRs and
IRs have high similarity with the related receptors of Diorhabda carinulata (Desbrochers,
1869) (Supplementary Table S5).

Expression analysis of chemosensory-related proteins obtained from the O. leucomelaena
heatmap showed that OleuOBP1, OleuOBP2, OleuOBP3, OleuOBP5, OleuOBP6, OleuOBP9,
OleuOBP17 and OleuOBP29 had clear antennal specificity, and OBP26 was highly expressed in
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all tissues (Figure 2A). OleuCSP1, as well as most of OleuOR, were highly expressed in the
antenna (Figure 2B,C). In addition, the IR of O. leucomelaena was expressed in various tissues,
while OleuGR exhibits a broad pattern of low expression (Supplementary Figure S1A). Insect
antennae, as an important sensory organ where chemoreceptors are located, have a greater
research value, and the antennal-specific OleuOBPs in our study were used as the focus of the
study to carry out the next step of analysis.
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Figure 2. Expression profiles of chemosensory-related genes in O. leucomelaena. (A): OleuOBPs;
(B): OleuCSPs; (C): OleuORs. OL: O. leucomelaena. FOLw: female wing; MOLw: male wing; FO-
Lat: female antenna; MOLat: male antenna; FOLh: female head; MOLh: male head; FOLx: female thorax;
MOLx: male thorax; FOLl: female leg; MOLl: male leg; FOLab: female abdomen; MOLab: male abdomen.
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2.4. Sequence Comparison and Phylogenetic Tree Analysis of OBPs

OBP sequence comparisons of O. leucomelaena revealed that two OBP subfamilies
were annotated in O. leucomelaena based on the conserved cysteine (Cys) pattern. Seven
correspond to the classic OBPs (OleuOBP3, OleuOBP5, OleuOBP6, OleuOBP7, OleuOBP13,
OleuOBP19 and OleuOBP37, with six conserved Cys (Figure 3), and twenty-seven as-
signed to the Minus-C OBP, with four conserved Cys and the absence of C2 and C5
(Supplementary Figure S1B).
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Figure 3. Alignment of the identified classic OleuOBPs. Conserved cysteine residues are selected and
highlighted on a red background.

The OBP sequences of O. leucomelaena and other Coleoptera insects were integrated for
the construction of a phylogenetic tree of homologous species and the comparative analysis
removed the shorter four OleuOBPs (OleuOBP8, OleuOBP9, OleuOBP17, OleuOBP39)
sequences and retained 38 sequences OleuOBPs with 82 sequences of other insect OBP for
the construction of phylogenetic tree (Figure 4). The phylogenetic tree showed that the OBPs
of O. leucomelaena were classified into two major families; this result was consistent with the
result of the comparison analysis. OleuOBP3 and OleuOBP5 as classical OBP families have
some homology with those of Diorhabda carinulata (bootstrap > 0.73). In addition, OleuOBP6
was homologous to the Tribolium castaneum (Herbst, 1797) OBP sequence (bootstrap > 0.59).
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Figure 4. Neighbor-joining tree of candidate OBPs. Bootstrap values after 1000 replications. Oleu,
Oides leucomelaena; Paen, Pyrrhalta aenescens; Pmac, Pyrrhalta maculicollis; Aeug, Anthonomus eugenii;
Dcar, Diorhabda carinulata; Cbow, Colaphellus bowringi; Tcas, Tribolium castaneum; Malt, Monochamus
alternatus; Dvir, Diabrotica virgifera virgifera; Gdau, Galeruca daurica; Pmac, Pyrrhalta maculicollis; Sbif,
Semanotus bifasciatus; Msal, Monochamus saltuarius; Xqua, Xylotrechus quadripes. Red represents the
classic OBP family and green represents the Minus-C OBP family.

2.5. Antennal-Specific OBP

Olfactory fumigation experiments indicated that under the treatment condition of
70 uL of the mixture, the mortality rates of the three groups of insects were 53%, 46%, and
56%, respectively, reaching the LC50 for O. leucomelaena (Figure 5). The qRT-PCR results of
the antennae showed that the expression levels of OleuOBP3, OleuOBP5, and OleuOBP6 in
the treatment group were significantly higher than those in the control group. In contrast,
qRT-PCR results from other tissues showed no expression of OleuOBP3, OleuOBP5, and
OleuOBP6 in either group, further confirming OleuOBP3, OleuOBP5, and OleuOBP6 as
antennae-specific OBPs in O. leucomelaena (Figure 6A–C).
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Figure 6. Analysis of OleuOBP gene expression after compound treatment. The standard error is
represented by the error bar, and the ** indicates a very significant difference, and *** indicates an
extremely significant difference. (A): OleuOBP3; (B): OleuOBP5; (C): OleuOBP6.

2.6. β-Caryophyllene Is a Molecule with High Affinity for Antennae-Specific Proteins

Molecular docking simulations were conducted using the four compounds from the
fumigation experiment with antennae-specific OBPs. The results of the molecular docking
indicated that OleuOBP3, OleuOBP5, and OleuOBP6 all exhibited high affinity for the
four compounds, with β-caryophyllene showing the strongest binding affinity for all three
OleuOBPs (binding energy < −21 kJ/mol, Table 1). Visualizing the protein–ligand docking
structures revealed the following binding active sites: β-caryophyllene bound to OleuOBP3
at site TYR-105 (Figure 7A), to OleuOBP5 at site TYR-79 and HIS-33 (Figure 7B), and to
OleuOBP6 at site TRP-116 (Figure 7C).
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Table 1. Docking binding energy of OleuOBP to chemical compound molecules.

Protein Ligand Binding Energy (kJ/mol)

OleuOBP3 (Z)-anethole −17.40544
OleuOBP5 (Z)-anethole −20.69296
OleuOBP6 (Z)-anethole −21.10336
OleuOBP3 β-caryophyllene −24.12168
OleuOBP5 β-caryophyllene −21.03352
OleuOBP6 β-caryophyllene −31.7984
OleuOBP3 3-carene −22.5936
OleuOBP5 3-carene −17.9912
OleuOBP6 3-carene −25.5224
OleuOBP3 4-allylanisole −23.012
OleuOBP5 4-allylanisole −16.736
OleuOBP6 4-allylanisole −16.736
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3. Discussion

In this study, transcriptome sequencing of various tissues of O. leucomelaena was
performed to identify OBPs associated with beetle host location. Other than that, it was
only clear that β-caryophyllene from anise volatiles is a molecule with high affinity for
antennal-specific OBPs of O. leucomelaena.

After analyzing the transcriptomes of different tissues of O. leucomelaena, it was found
that the annotated unigenes were enriched in pathways related to genetics and signal
processing. Kang Le and others identified insect-specific proteins through the analysis of
genomic information from insects with different metamorphosis types [16]. These proteins
are related to environmental adaptation and information exchange, demonstrating the
uniqueness of insects in the process of adapting to the environment and evolving [17,18].
The study found that most insect-specific proteins have a low mutation rate during the
evolutionary process, indicating that insect genetic information plays an important role in
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providing a stable protein composition [16,19]. At the same time, the genetic diversity of
insects is considered to be the result of their adaptation to the environment and long-term
evolution, and insect-specific proteins are an important characteristic that distinguishes
insect species differentiation and behavioral habits from other organisms [20,21]. In addi-
tion, insects control signal transduction to perceive changes in the external environment
through specific proteins, such as plant volatiles, temperature changes, humidity, etc. The
genes of these proteins are crucial for insects to find food sources, choose breeding sites,
and avoid adverse environments [22].

The number of chemosensory genes varies among insect taxa due to differences in
evolutionary processes, including the acquisition and loss of genes and genetic mutations.
Such differences among insects are thought to be related to specific lifestyles and adapta-
tions to the environment and may ultimately lead to species divergence. The amount of
OBP genes in an insect genome can vary greatly among species, ranging from as low as 7
in Ceratosolen solmsi to as high as 111 in Aedes aegypti [8]. Predictions based on literature
reports combined with our results suggest that host-specific insects will possess more
chemosensory-related genes compared to polyphagous species [7,23,24]. In this study, a
total of 42 OBPs, 19 CSPs, and 27 receptors were identified. Currently, there is limited
research on OBPs in Chrysomelidae insects, which provides few references. The research
by Yinliang Wang and colleagues identified 15 OBPs in Ambrostoma quadriimpressum [22].
L Li obtained 29 candidate OBPs in the study of Galeruca daurica [25]. Meanwhile, the
homology comparisons in our results were not entirely satisfactory, which partly explains
the differences in the number of gene identification results. Additionally, the specific
living environments of various insects in the Chrysomelidae family are also one of the
reasons for the differences in the number of chemosensory genes. In contrast, reports of
chemosensory-associated proteins against other insects are not uncommon. For example,
Qing-Feng Tang and his team identified 41 candidate OBPs in their study of Sitophilus
zeamais, which were divided into the dimeric OBP subfamily, minus-C OBP subfamily, and
classic OBP subfamily, with most OBPs being highly expressed in the antennae and head.
Martin N Andersson and his colleagues obtained 86 ORs, 60 GRs, 57 IRs, 36 OBPs, and
11 CSPs in their research on Dendroctonus ponderosae, and 47 ORs, 30 GRs, 31 IRs, 12 OBPs,
and 14 CSPs in their research on Agrilus planipennis [26]. As a polyphagous insect, Agrilus
planipennis has a reduced gene pool compared to Chrysomelidae insects like Dendroctonus
ponderosae and O. leucomelaena. It is hypothesized that there is a correlation between the
content of chemosensory genes in beetles and their host specificity [27].

In the analysis of the expression profile of O. leucomelaena, it was found that the
expression of chemosensory-related genes has certain tissue specificity, with OBPs showing
clear tissue specificity (antennal specificity). Of course, some chemosensory-related genes
(OBPs, CSPs, ORs, GRs, IRs) are expressed in a wide range of tissues. In recent years, the
identification and study of insect chemosensory-related genes have shown that these genes
have a broad tissue expression pattern [28,29]. However, most OBPs in insects exhibit
antennal specificity [30,31]. The antennae contain a large number of chemoreceptors, and
the discovery and functional analysis of antennal-specific OBPs indicate that they are key
proteins for binding odor substances and transmitting information in the chemosensory
system [28,32]. The value of clarifying the antennal-specific OBP is that it can be used as a
basis to explore whether it plays a role in insect host localization. The sequence alignment
of OBPs revealed that the existing OBP of the O. leucomelaena is mainly divided into the
classic OBP family and the minus-C OBP family. In the construction of the phylogenetic
tree for the classic OBP family, it is clear that species with closer phylogenetic relationships
have higher bootstrap values and higher sequence homology. This suggests that there is a
certain degree of variation in the evolutionary process of insects, while also indicating that
sequences among closely related species retain conservation [33,34].

In our study, it was confirmed that star anise volatiles significantly affect the OBPs
of O. leucomelaena. Under conditions treated with volatiles, the expression of antennal
OleuOBP3, OleuOBP5, and OleuOBP6 in O. leucomelaena was significantly increased, further
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establishing the key value of these three proteins in the host location for O. leucomelaena.
Molecular docking experiments performed on these three OBPs also confirmed their high
affinity for important volatile components in star anise. Among them, β-caryophyllene has
the highest affinity for OBPs. β-caryophyllene is the main chemical component in star anise
and is synthesized in the plant as part of the plant’s defense mechanism to help defend
against insect pests [35]. Research indicates that β-caryophyllene can influence the behavior
of pests, for instance, by disrupting their feeding, reproduction, or the ability to locate
host plants. Given its potential impact on pests, β-caryophyllene is being investigated as
an alternative or supplementary approach in pest management, especially in the search
for environmentally friendly pest control strategies [36,37]. β-caryophyllene may exhibit
synergistic effects with other compounds, such as other plant volatiles or pheromones,
potentially enhancing its efficacy in pest control and its efficacy may be a new idea for
O. leucomelaena prevention and treatment [35].

4. Materials and Methods
4.1. Insect Collection

In June 2023, we collected adult O. leucomelaena in Funing County, Wenshan Prefec-
ture, Yunnan Province, and separated and dissected the male and female adult insects in
the Biological Science laboratory. We isolated and obtained the antennae, head, thorax,
abdomen, legs, and wings of O. leucomelaena and preserved them in liquid nitrogen for
subsequent RNA sequencing. In May 2024, we collected adult O. leucomelaena in Funing
County, Wenshan Prefecture, Yunnan Province, China, for use in olfactory fumigation
experiments with O. leucomelaena involving anise-related compounds.

4.2. RNA Sequencing and Annotation

We utilized the NEBNext UltraTM RNA Library Prep Kit (New England Biolabs,
Ipswich, MA, USA) to create sequencing libraries, employing AMPure XP beads (Beckman
Coulter, Beverly, MA, USA) for the purification of cDNA fragments and PCR to enrich
them. Subsequently, these cDNA libraries were prepared for paired-end sequencing on
the Illumina Novaseq6000 platform at Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China). Initial raw sequence reads underwent meticulous quality control to remove
substandard reads based on base calling accuracy. The clean reads were then assembled
de novo using Trinity (version 2.4.0) and clustered to streamline the transcriptome data,
eliminating redundant data with the aid of Corset (version 1.0.5) [38]. For functional
annotation, we leveraged the GO and KEGG databases. GO term enrichment was executed
with the blast2go software suite (version 2.5), while pathway analysis within the KEGG
database was conducted using hmmscan from the HMMER 3 package [39,40]. Read counts
for each mapped gene were normalized by TMM and used to calculate gene expression
levels according to the FPKM (fragments per kilobase of transcript sequence per millions
base) method.

4.3. Gene Identification and Sequence Analysis

To identify candidate chemosensory-related genes from O. leucomelaena, chemosensory-
related gene families from other coleoptera species were selected as queries to search the
new stand-alone transcriptome of this beetle. TBLASTN was used to search and identify
candidate chemosensory-related genes against the O. leucomelaena transcriptome, with an E-
value cutoff of 1 × 10−5 [41]. Further, these identified genes were verified using TBLASTX
against the NCBI non-redundant protein sequence database. ORFs were identified using the
ORF Finder in NCBI (https://www.ncbi.nlm.nih.gov/orffinder/ (accessed on 10 January
2024)). In the set of trees, a multiple sequence alignment was performed using the Muscle
method in MEGA7.0 [42]. An Neighbor-Joining tree of OBP was constructed by iTOL
v5 [43]. Accession numbers of all protein sequences from other coleoptera species used in
the phylogenetic analysis are listed in Supplementary Materials.

https://www.ncbi.nlm.nih.gov/orffinder/
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4.4. Compound Fumigation Experiment

Laboratory-cultured unmedicated anise leaves were fed to O. leucomelaena for 3 days
and then grouped for chemical fumigation experiments. Using fumigation toxicity tests,
30, 50, 70, 90, and 110 µL of the mixture (solvent: n-hexane, (Z)-anethole 900 µg/mL,
β-caryophyllene 30 µg/mL, 4-allylanisole 3 µg/mL, and 3-carene 2 µg/mL, in a ratio of
653:23:2:1) were added to culture dishes (150 × 25 mm), respectively. Each group consisted
of 30 adult O. leucomelaena (15 females, 15 males) placed in culture dishes lined with
filter paper. The treated culture dishes were placed in a refrigerator at 6 ◦C for one hour.
After 1 h, the dishes were taken out of the refrigerator and left to stand for 30 min. The
O. leucomelaena was removed for observation and examined under an in stereo microscope
(Nikon AZ100, Tokyo, Japan) with a clean brush and tweezers; no response to touch was
considered dead. The survival rate of O. leucomelaena was then reported, and the mortality
rate was calculated.

In total, 30 adult O. leucomelaena were placed in culture dishes (150 × 25 mm) lined
with filter paper. Dry filter paper was placed on top of the culture dish. The compound
(lethal concentration 50, LC50) was added to the top filter paper, and the culture dish was
immediately sealed with plastic wrap. Each group was replicated three times, and the
control group was added with an equal volume of n-hexane. The treated culture dishes
were placed in a refrigerator at 6 ◦C for one hour. After treatment with the compound, the
survival of O. leucomelaena was observed under a binocular microscope. Live beetles were
selected for dissection, antennae, head, thorax, abdomen, foot, and wings were taken for
RNA extraction, and the targeted OBP genes were analyzed by qRT-PCR.

4.5. Specific Expression of OBP Genes

Total RNA was isolated from samples using the TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). Subsequently, the synthesis of the first-strand cDNA was carried out with the aid
of the PrimeScript™ RT reagent Kit (TaKaRa, Tokyo, Japan), adhering to the manufacturer’s
protocol. To evaluate the tissue-specific expression profiles of OleuOBPs, quantitative
real-time PCR (qRT-PCR) was utilized. This process was conducted on the ABI PRISM 7500
platform (Applied Biosystems, Foster City, CA, USA). The PCR mix included 10 µL of SYBR
Premix Ex TaqTM II (TaKaRa, Tokyo, Japan), 1 µL each of the primers at a concentration of
10 µmol/L, 2 µL of the cDNA template, 0.4 µL of the Rox Reference Dye II, and 5.6 µL of
nuclease-free water to complete the volume. The thermal cycling conditions initiated with
a denaturation step at 95 ◦C for 30 s, followed by 40 cycles of denaturation at 95 ◦C for 5 s
and annealing/extension at 60 ◦C for 34 s.

The primers for OleuOBPs were designed using GenScript online (Supplementary Table S6).
The β-actin gene of O. leucomelaena was used as the reference gene. All samples were tested
with three biological replicates. Relative quantification was performed using the 2−∆∆CT

method. The differences in the transcription levels of the two OBPs groups were compared
using Tukey’s test, and the bar chart shows the differences in the mRNA expression levels
of OleuOBPs among the different groups.

4.6. Molecular Docking

The three-dimensional structure of OBP, more than 30% homology with the OBP templates
in protein database,1 was modeled by program SWISS-MODEL [44] (Supplementary Table S7).
AutoDock 4 (version 1.5.7) was selected to analyze the binding mode between the OBPs and
compounds of O. leucomelaena with the default parameters [45]. The top ranked binding
mode was evaluated according to the docking score, and visually analyzed by PyMOL
(version 2.5.4; http://www.pymol.org/, accessed on 28 May 2024).

5. Conclusions

Our research has identified candidate chemosensory-related genes in O. leucomelaena
and clarified three antennae-specific proteins, providing a theoretical basis for the biological
control of this pest. However, the study of the chemosensory system in the O. leucomelaena

http://www.pymol.org/
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is not comprehensive. Future research will focus on exploring the molecular mechanisms
of the chemosensory system in the O. leucomelaena, with the aim of developing new control
methods for this species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms25179436/s1.
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