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Abstract: Colorectal cancer (CRC) represents a significant global health burden, with high incidence
and mortality rates worldwide. Recent progress in research highlights the distinct clinical and
molecular characteristics of colon versus rectal cancers, underscoring tumor location’s importance in
treatment approaches. This article provides a comprehensive review of our current understanding
of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also
present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis.
Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma—
carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which
proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC
subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized
therapy implications.
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1. Introduction

Over the past decade, significant advances have been made to our understanding
of cellular and molecular processes supporting CRC pathogenesis. This has been largely
due to experimental animal models, patient-derived resources, and advanced techniques
(i.e., organoids/xenografts). These advances have provided invaluable contributions to
decipher intratumoral heterogeneity and cancer subtype nomenclature. Globally, this
knowledge has paved the way to current screening, prevention programs, and intervention
(i.e., surgical, chemotherapeutic, and emerging targeted /immunotherapy) management
strategies. The following Sections of this review will encompass current knowledge on CRC
biology, pathogenesis, and mechanistic networks while emphasizing strategic approaches
and ongoing research for improving patient outcome and personalized therapy.

1.1. Colorectal Cancer around the World: Burden, Risks, and Management

Colorectal cancer (CRC) poses a major global health challenge [1]. It is one of the most
commonly diagnosed cancers worldwide and a leading cause of cancer-related mortality in-
ternationally [1,2]. In 2022, CRC accounted for over 1.9 million new cases and 904,019 deaths
globally according to estimates from the Global Cancer Observatory (GLOBOCAN) [3].
As shown in Table 1, the incidence and mortality rates vary substantially between world
regions where developed nations report higher CRC burden [3].

Various lifestyle and hereditary risk factors influence CRC development [4-11]. Age is
the predominant risk factor, as the majority of cases are diagnosed after the age of 60 [4].
Compounding behavioral risks include smoking, heavy alcohol use, physical inactivity, and
diets rich in red /processed meats [5,6]. Medical risks encompass family history of CRC [7]
or adenomatous polyps [8,10], personal history of inflammatory bowel disease [9], and
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genetic syndromes like familial adenomatous polyposis (FAP) [11]. In fact, it is estimated
that up to 20% of CRC may be attributed to modifiable lifestyle habits [5,12].

Table 1. GLOBOCAN estimates incidence and mortality worldwide of colorectal cancer [3].

World Region Incidence Rate Number of Mortality Rate Number of

(ASR per 100,000) New Cases (ASR per 100,000) Deaths

Africa 8.2 70,428 5.6 46,087

Asia 15.6 966,399 7.1 462,252

Europe 30.5 538,262 12.1 247,842

Latin America and Caribbean 16.9 145,120 8.2 73,647

Northern America 27.2 183,973 8.2 66,155
Oceania 311 22,243 9.2 8036

Total 18.4 1,926,425 8.1 904,019

ASR: Age-Specific Rates.

Screening has shown to play a critical role in mitigating CRC burden [13,14]. It
allows for early detection of precancerous polyps which can be removed before developing
into cancer [13,14]. Regular screening starting at age 50 is recommended for average-
risk individuals by major health organizations [15]. Common screening tests include
colonoscopy, fecal immunochemical testing, and flexible sigmoidoscopy [16-18]. Screening
guidelines may start earlier or occur more frequently for those with elevated familial or
medical risks [19].

Treatment options depend on the cancer stage, location, and patient risk factors.
Surgical resection remains the mainstay for early-stage colon and rectal cancers [20,21].
Advanced cases may require more extensive surgeries like colectomies [22]. Chemotherapy
regimens following or preceding surgery are standard for intermediate and high-risk
patients [23]. Targeting drug and immunotherapies are being increasingly utilized as
well [24,25]. However, radiation therapy has proven worthy mainly for rectal cancers [26].
Palliative care is still common practice and aims to improve quality of life for metastatic
cases [27,28]. Studies show that lifelong surveillance after primary treatment greatly reduces
recurrence risks [7,29]. Overall, implementation of organized screening programs coupled
with multidisciplinary management approaches have led to declining CRC mortality in
developed nations over the past few decades [30-32].

1.2. Structure and Function of Colon Crypts in Health and CRC Disease

The normal colon epithelium consists of structures called crypts of Lieberkiihn or
colonic crypts [33]. These crypts are small invaginations or pits located in the lining of the
colon (large intestine) [34]. They play a vital role in the functioning of the colon [35-38].
The cells within the crypts are responsible for various functions, including absorption,
secretion, and protection of the colon [35]. The main types of cells found in colonic crypts
include absorptive cells (enterocytes), goblet cells, enteroendocrine cells, Paneth cells, and
stem cells [39,40]. Enterocytes are the most abundant cells in the colon epithelium [41].
They have microvilli on their surface, which increase the surface area for absorption of
water, electrolytes, and nutrients [42]. The goblet cells are specialized cells secrete mucus,
which helps lubricate the intestinal lining and protects it from the abrasive action of fecal
matter [43]. They are responsible for the production of mucus that forms the protective
mucus layer in the colon [44]. Enteroendocrine cells produce and release various hormones
into the bloodstream [45]. These hormones play a role in regulating digestion, nutrient
absorption, and other physiological processes [36]. Paneth cells are primarily found in
the base of the crypts in the small intestine, but they can also be present in the crypts of
the colon [46]. Paneth cells secrete antimicrobial peptides, enzymes, and growth factors
that help maintain the intestinal barrier and protect against pathogens [37]. Stem cells
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are found at the bottom of the colonic crypts and continuously divide and differentiate to
replace the cells that are shed from the surface of the colon [38]. These stem cells are crucial
for the regeneration and maintenance of the colonic epithelium [47]. These different cell
types work together to maintain the normal structure and function of the colon epithelium,
ensuring proper absorption, secretion, and protection of the colon [35-38,44].

1.3. Deciphering Colon and Rectal Cancers: Location-Specific Differences in Behavior and Management

The location of cancer along the colon and rectum tract can have a significant impact
on clinical outcomes and drug responsiveness [48]. Given that the colon and rectum are
distinct anatomical tissues of the gastrointestinal tract, they are characterized with unique
physiological features [49]. As a result, tumors that arise in these regions exhibit differences
in behavior (i.e., aggression and malignancy) and response to treatment [50]. As a result,
metastasis and disease progression represent key factors contributing to the variability in
colon and rectum cancers clinical outcomes [51].

Interestingly, tumors located in the right side of the colon (ascending colon and cecum)
tend to have a different biological behavior compared to those in the left side (descending
colon, sigmoid colon, and rectum) [52]. This difference can be attributed to several factors
beyond just anatomical variations. The right and left colon have distinct embryological
origins (midgut and hindgut, respectively), leading to different genetic and epigenetic
profiles [53]. Additionally, the microbiome composition and mucosal immune environment
vary between the two sides, influencing tumor development and progression [54-56].
Specifically, right-sided colon cancers are often only detected in later stages and have a
higher likelihood of metastasis at the time of diagnosis [57]. They also tend to be associated
with worse prognostic features, such as poorly differentiated tumors [58] and characterized
with specific genetic alterations such as BRAF mutations [59]. Right-sided tumors are more
likely to be microsatellite instability-high (MSI-H) and have the CpG island methylator
phenotype (CIMP) [60,61], while left-sided tumors more frequently exhibit chromosomal
instability (CIN) and mutations in genes like APC, KRAS, and TP53 [60,62,63]. In addition,
evidence suggests that tumors in different locations of the colon and rectum differentially
respond to drug therapies [41,64]. This may be partly due to the distinct metabolic functions
and gene expression patterns observed between the right and left colon [65,66]. For example,
cancers arising in the right side of the colon have been found to be less responsive to certain
targeted therapies, such as anti-epidermal growth factor receptor (EGFR) antibodies (i.e.,
cetuximab and panitumumab) [67,68]. On the other hand, these therapeutic approaches
show better efficacy in treating tumors located in the left side of the colon and rectum [69].
The varying exposure to carcinogens due to differences in transit time between the right
and left colon may also contribute to these distinct biological behaviors and treatment
responses [70].

Rectal cancers are located in the lower part of the large intestine, near the anus [71].
Due to its proximity to other organs and structures, such as the sphincter muscles and the
pelvic bones, the surgical removal of rectal tumors can be challenging [72]. In order to
facilitate successful surgery and improve patient outcome, neoadjuvant therapy is often
used for rectal cancers [73]. Neoadjuvant therapy involves administering chemotherapy
and radiation therapy prior to surgery to shrink the tumor and reduce the risk of recur-
rence [74]. This approach helps to increase the chances of complete tumor removal and
preserve the sphincter function, which is crucial for bowel control [75]. On the other hand,
colon cancers, which are located in the upper part of the large intestine, present more space
and are relatively more accessible for surgical intervention [76,77]. Although neoadjuvant
therapy is less commonly used for colon cancers [78], chemotherapy may be administered
in some cases after surgery (adjuvant therapy) to help destroy any remaining cancer cells
and reduce the risk of recurrence [79]. Nevertheless, it is important to note that treatment
approaches always vary based on the cancer profile and individual patient factors [80]. The
decision on the most appropriate treatment plan for a specific patient is typically made by
a multidisciplinary team of healthcare professionals, including surgeons, oncologists, and
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radiologists, taking into account various factors, including tumor location, staging, and
patient-specific characteristics (e.g., age and health) [81].

2. CRC Development through Genetic and Epigenetic Changes

CRC development is a complex process that involves the accumulation of genetic
and epigenetic alterations in the cells lining the colon or rectum [82]. While there are
various pathways through which CRC can develop, the most common pathway involves
the progression from an aberrant crypt to a benign adenomatous polyp and ultimately to
sporadic CRC [82]. The process begins with the formation of an aberrant crypt, which is an
abnormal glandular structure within the lining of the colon or rectum [83]. Aberrant crypts
can arise due to genetic mutations or environmental factors that lead to cellular changes [84].
Over time, some of these aberrant crypts can grow and develop into benign adenomatous
polyps [84]. Adenomatous polyps are characterized by the presence of dysplastic or
abnormal cells [85]. These polyps have the potential to progress further and become
cancerous if left untreated [86]. The transformation from a benign adenomatous polyp to
sporadic CRC involves the accumulation of additional genetic and epigenetic alterations,
which can disrupt normal cellular function and lead to uncontrolled cell growth [51].
Nevertheless, it is important to note that not all adenomatous polyps will progress to
cancer [87]. However, certain factors such as the size, number, and degree of dysplasia
of the polyps can increase the risk of progression to CRC [88]. Other factors, such as
family history, inflammatory bowel disease, and lifestyle choices like smoking and diet,
can also contribute to the development of sporadic CRC [89,90]. The understanding of
the progression from aberrant crypts to benign adenomatous polyps and eventually to
sporadic CRC has helped in the development of screening and prevention strategies [14].
Regular screening tests, such as colonoscopies, can detect and remove adenomatous polyps
before they become cancerous, thus reducing the risk of developing CRC [91].

2.1. The Conventional Adenoma—Carcinoma Sequence Model of CRC Progression

The conventional adenoma—carcinoma sequence is a widely accepted model that
explains the development of CRC from benign polyps called adenomas [92]. It describes a
stepwise progression from normal colorectal tissue to adenomas and ultimately to invasive
carcinoma (Figure 1) [92]. The process begins with the normal lining of the colon or
rectum [93]. Genetic mutations occur within the cells of the colorectal tissue [94]. These
mutations are often acquired due to various factors such as environmental exposures
(i.e., diet, smoking) or inherited genetic predispositions [95]. The initiated cells begin to
undergo abnormal growth and form benign polyps called adenomas which can vary in size
and shape [96]. Over time, some adenomas may progress to a stage called dysplasia [97].
Dysplasia refers to the presence of abnormal cells within the adenoma, which have acquired
additional genetic alterations [98]. High-grade dysplasia indicates a more advanced stage
with a greater likelihood of becoming cancerous [99]. If left untreated, some dysplastic
adenomas can transform into invasive carcinoma, where the abnormal cells invade through
the layers of the colon or rectum and potentially spread to nearby lymph nodes or distant
organs [100].

The conventional adenoma—carcinoma—metastasis phenotypic transitions are asso-
ciated with the accumulation of specific genetic alterations [51]. These events are often
referred to as the “APC-KRAS-TP53” pathway or the Vogelstein model [101,102]. The Vogel-
stein model is named after Dr. Bert Vogelstein, a prominent cancer researcher who proposed
this model to explain the stepwise progression of CRC [101,102]. According to this model
(Figure 2), the development of CRC involves the sequential acquisition of genetic alterations
in three key genes: APC (adenomatous polyposis coli), KRAS, and TP53 [101-103]. The
process is initiated by the inactivation of the APC gene [101-103], which normally functions
as a tumor suppressor to regulate cell growth and division [104]. Mutation or loss of the
APC gene function consequentially leads to uncontrolled cell growth and the formation
of benign adenomatous polyps [105]. The next genetic alteration commonly observed in
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Hyperproliferation

CRC is mutation in the KRAS gene [101-103], which is a potent oncogene regulating sig-
naling pathways supporting cell proliferation [106]. KRAS mutation results in continuous
activation of pathways promoting cell growth and survival, leading to the transition from
adenoma to carcinoma [107]. The final genetic alteration in the Vogelstein model is the
inactivation of the TP53 gene, which is another tumor suppressor gene commonly referred
to as the “guardian of the genome” [108]. TP53 plays a critical role in DNA repair, cell cycle
regulation, and apoptosis [109]. Mutation or loss of TP53 function allow cells with accumu-
lated genetic abnormalities to survive and proliferate, thus facilitating the development of
invasive carcinoma and potential metastasis [110]. While the Vogelstein model specifically
focuses on CRC, similar genetic alterations in the APC, KRAS, and TP53 genes are observed
in other cancer types, thus highlighting the broader relevance of these genes in cancer
progression [111,112]. It is worth noting that the Vogelstein model represents a simplified
framework for understanding the genetic events involved in cancer progression, and that
additional genetic alterations and complex interactions among various genes and pathways
can support CRC pathogenesis [112]. Some examples of these alternative processes will be
discussed below.

Benign and Malignant Colorectal Cancer

Adenomatous Severe

: Adenocarcinoma Cancer
polyps dysplasia

Abnormal
cell growth

Benign Malignant

Figure 1. Conventional adenoma—carcinoma sequence pathway of colorectal cancer development.
(A) The first stage involves hyperproliferation, where there is an increased rate of cell division and
growth within the colonic epithelium. This is depicted as a slight thickening of the epithelial lining.
(B) As the process progresses, small adenomatous polyps begin to form. These polyps are benign
growths protruding into the colonic lumen and are represented as small, spherical structures attached
to the epithelial lining. (C) Over time, some of these small polyps can grow larger, forming large
adenomatous polyps. These are shown as larger spherical masses connected to the colonic wall.
(D) Within these larger polyps, severe dysplasia occurs, characterized by abnormal cell growth
and organization. This stage is visually depicted by the presence of an irregular, yellow-colored
growth within the polyp structure. (E) The dysplastic cells in the polyp can then transform into
an adenocarcinoma, which is an invasive malignant tumor. This stage is represented by a large,
irregularly shaped mass protruding into the colonic lumen, with a distinct boundary separating it
from the surrounding normal tissue. (F) In the final stage, the adenocarcinoma has progressed to a
full-blown colorectal cancer. This is depicted as a large, irregular mass filling a significant portion of
the colonic lumen, indicating advanced tumor growth and invasion. Figure created using BioRender
(https:/ /www.biorender.com/ accessed on 29 July 2024).
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Figure 2. The Vogelstein model of colorectal cancer progression. This model was proposed by
Bert Vogelstein and his colleagues at Johns Hopkins University in the early 1990s, based on their
groundbreaking research on the genetic alterations involved in colorectal cancer (CRC). The initial
stage shows a normal epithelium, representing a healthy colon lining with no visible abnormalities.
(A) The first genetic event leads to the formation of a small benign growth polyp. This is a consequence
of the inactivation of the APC gene, a critical tumor suppressor gene. (B) The next stage is associated
with the progression from a small polyp to a large benign growth (early adenoma). The activation of
the KRAS oncogene, a key driver of cellular proliferation, contributes to the growth and expansion
of the adenomatous polyp. (C) This is followed by the loss of tumor suppressor gene DCC, which
contributes to the development of a late adenoma or large benign growth. (D) The next step is the
transition from a late adenoma to an invasive malignant tumor or carcinoma by the loss of tumor
suppressor gene TP53. (E) The final stage represents a full-blown CRC, depicting an advanced,
invasive malignant tumor mass. This stage may involve additional genetic alterations beyond the
core events highlighted in the Vogelstein model. Figure created using BioRender.

2.2. Alternative Pathways of CRC Development: The Serrated Neoplasia Route

Although the conventional adenoma—carcinoma sequence is widely accepted path-
way [113], not all CRCs develop through this sequence. To encompass CRC cases that
arise from different mechanisms, additional models have been proposed such as the ser-
rated pathway lesions [113] or inherited genetic mutations [114]. The serrated neoplasia
pathway (Figure 3) is an alternative multistep process of CRC development that is distinct
from the conventional adenoma—carcinoma sequence [115]. Approximately 15% to 20% of
CRCs are thought to evolve through this pathway [116], which encompasses two differ-
ent progression presentations: the sessile serrated pathway and the traditional serrated
pathway [117]. The sessile serrated pathway is characterized by the development of sessile
serrated adenomas (SSAs) [118] or sessile serrated lesions (SSLs) [119]. SSAs are typically
flat or sessile polyps with serrated or sawtooth-like features on the surface [120]. They are
predominantly found in the right colon [121] and are associated with certain molecular
characteristics, such as mutations in the BRAF gene combined with DNA methylation ab-
normalities [122]. Over time, some SSAs can progress to dysplastic serrated lesions (DSLs)
and eventually develop into CRC [123]. The traditional serrated pathway involves the
progression from traditional serrated adenomas (TSAs) to CRC [124]. TSAs have a distinct
histological appearance, characterized by tall columnar cells with abundant eosinophilic
cytoplasm, serrated glands, and a characteristic “sawtooth” appearance [124,125]. They are
often found in the proximal colon and are associated with mutations in the BRAF gene, as
well as abnormalities in DNA methylation [126,127]. Another molecular feature associated
with serrated neoplasms is increased CIMP [128]. CIMP refers to the hypermethylation of
CpG islands in the promoter regions of specific genes [129]. As a result, gene expression
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is silenced and therefore contributes to the inactivation of tumor suppressor genes [129].
Serrated neoplasms, particularly sessile serrated adenomas/polyps (SSA/Ps), often exhibit
a high degree of DNA methylation and subsequent CIMP, which may contribute favorably
to their pathogenesis [128]. The presence of activating mutations in BRAF and KRAS,
along with increased CIMP, helps distinguish serrated neoplasms from other colorectal
polyps and contribute to CRC progression [130]. Both the sessile serrated pathway and the
traditional serrated pathway are recognized as important paths to colorectal carcinogene-
sis [131]. Understanding these pathways is crucial for accurate diagnosis, management,
and surveillance of patients at risk for CRC, particularly those with a family history of
serrated lesions or Lynch syndrome, a hereditary condition associated with an increased
risk of CRC [132].
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MGMT
GC,HP Methylation ! . ‘ PR
/’\ /\ g /.,_. MSI-L | I
- E 1 ZTE T OMPL e
—— TSA ! TSA-HGD —> SAC : | . N
KR:AS E i E D: geeum k. '=L =4 .. 4 Sigmoid colon:
Mutation J C : MSS ! Appendi — Y 1 i
. y 0 ! ] £ =
Othér TSG : 5 CMP-L 3 Ao -
Methylation : ‘
oywlsss | ademome | oon o eshecdon
: : ; - |
: : ' -8
: MLHT
M\‘:HP M eth:-jl ation Duodenum

——> SSL
BRAF
Mutation

/\ /——» MSI-L S —
(B ; ! CMP-H : - i

SSL-HGD —— SAC |

Descending colon

i | lou . -
: ’ o NIy
'\\:_j : &b ; mn:'.“ %J‘} Y~ Talii o Sigmold colon
H ' - MSI-H : Appendix e
Other TSG CMP-H Anal canal L
Methylation

Sessile Serrated Pathway

Figure 3. The serrated neoplasia routes. (A) The traditional serrated pathway begins with a KRAS
mutation in normal colonic mucosa, leading to the formation of a traditional serrated adenoma
(TSA). Further MGMT methylation and other TSG (tumor suppressor gene) methylation events
promote the progression to TSA-HGD (traditional serrated adenoma-high grade dysplasia). Subse-
quent accumulation of genetic alterations results in the development of serrated adenocarcinoma
(SAC), which can exhibit either an MSI-L/CMP-L (microsatellite instability-low /CpG island methy-
lator phenotype-low) or MSS/CMP-L (microsatellite stable/CpG island methylator phenotype-low)
molecular profile, indicative of invasive colorectal cancer (CRC). (B) The sessile serrated pathway
initiates with a BRAF mutation in normal colonic mucosa, leading to the formation of sessile ser-
rated lesions (SSL). Further MLHI methylation and other TSG methylation events promote the
progression to SSL-HGD (sessile serrated lesion-high grade dysplasia). Subsequent accumulation of
genetic alterations results in the development of serrated adenocarcinoma (SAC), which can exhibit
either an MSI-L/CMP-H (microsatellite instability—low /CpG island methylator phenotype-high) or
MSI-H/CMP-H (microsatellite instability—high/CpG island methylator phenotype-high) molecular
profile, indicative of invasive CRC. Figure created using BioRender.
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2.3. Colitis-Associated Cancer: Inflammation-Driven CRC in Inflammatory Bowel Disease

Colitis-associated cancer (CAC) is another specific form of CRC that is closely associ-
ated with chronic inflammation of the colon, particularly in patients with inflammatory
bowel disease (IBD) [133]. Patients with long-standing or severe ulcerative colitis (UC) also
have an increased risk of developing CAC [134]. The chronic inflammation that occurs
in the colon due to IBD can lead to genetic and molecular changes in the cells lining the
colon, increasing the likelihood of cancer development [135]. The risk of developing CAC
is directly proportional to the duration and extent of inflammation [136]. Patients with ex-
tensive and long-standing UC, especially those affecting the entire colon, are at the highest
risk [137]. However, it is important to note that the majority of patients with IBD do not
develop CAC, while it accounts for approximately 2% of all CRC cases [138]. The specific
mechanisms underlying the transition from IBD to CAC are complex and multifactorial
(Figure 4), involving various molecular pathways and interactions between genetic and
environmental factors [139]. CAC exhibits a unique pattern of genetic alterations compared
to sporadic or familial CRC [140]. Inflammation-associated molecular pathways, such as
NEF-«B (nuclear factor kappa-light-chain-enhancer of activated B cells), play a prominent
role in CAC development [141]. Additionally, mutations in TP53, APC, and KRAS genes are
also involved in inflammation pathways observed in CAC [142,143]. Moreover, alterations
in DNA mismatch repair genes, such as MLH1 and MSH2 have been associated with CAC
although less common in comparison to sporadic CRC [144,145]. The management of
CAC requires a multidisciplinary approach that considers both the underlying IBD and
the associated cancer [146]. Treatment options for CAC may include surgical resection,
chemotherapy, radiation therapy, and targeted therapies. However, the presence of IBD
poses unique challenges in the treatment of CAC [134]. For example, in some cases, colec-
tomy (removal of the colon) may be necessary to eliminate the source of inflammation and
reduce the risk of cancer recurrence [147].
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Figure 4. Model of the colitis-associated cancer pathway in inflammatory bowel disease. The

figure depicts the multistage process by which chronic intestinal inflammation can lead to colorectal
carcinoma development in the context of inflammatory bowel disease. The pathway is initiated
by recurrent episodes of mucosal injury and inflammation in conditions such as ulcerative colitis
(UC) or Crohn’s disease (CD). Prolonged inflammatory cell infiltration and cytokine/growth factor
release results in accumulation of DNA damage and mutations in genes such as tumor suppressors
(e.g., TP53) and oncogenes involved in Wnt/3-catenin signaling. Epigenetic alterations including
DNA methylation changes also occur. This contributes to dysregulated epithelial proliferation and
dysplasia. Inmune system modulation favors an immunosuppressive microenvironment conducive
to tumor growth. Through additional genetic and epigenetic changes, low- and high-grade dysplasia
may develop, eventually progressing to adenocarcinoma, squamous cell carcinoma, or small cell
carcinoma subtypes—the colitis-associated cancers (CAC). Figure created using BioRender.

3. Molecular Classification of CRC: The Consensus Molecular Subtypes

To better characterize the heterogeneity of CRC, researchers have classified tumors
into four consensus molecular subtypes (CMS) [148]. These subtypes, designated CMS1
to CMS4, represent distinct molecular and clinical features of CRC [148]. As shown in
Table 2, each subtype is associated with specific genetic alterations, gene expression profile,
and clinical outcomes [148,149]. CMS1 CRC tumors are characterized by high levels of
microsatellite instability (MSI) and immune cell infiltration [150,151]. These tumors often
display a strong immune response and are associated with favorable clinical outcomes [148].
CMS2 tumors exhibit classical molecular features of CRC, including activation of the Wnt
signaling pathway and epithelial differentiation [152]. These tumors are the most common
subtype and are associated with intermediate clinical outcomes [149]. CMS3 tumors are
characterized by metabolic dysregulation and are often associated with obesity [153]. They
display altered metabolic gene expression signatures and have distinct clinical features and
outcomes [148,153,154]. CMS4 tumors exhibit prominent stromal infiltration and activation
of pathways involved in epithelial-mesenchymal transition (EMT) typically associated
with cancer malignancy [155,156]. These tumors have poor clinical outcomes and are
often resistant to standard treatments [156]. The classification of CRC into these consensus
molecular subtypes has provided a framework for understanding the heterogeneity of the
disease and has implications for prognosis and treatment [157].



Int. . Mol. Sci. 2024, 25, 9463

10 of 124

Table 2. Summarizing the prevalence, molecular characteristics, and clinical outcomes of the four
consensus molecular subtypes in colorectal cancer [148,149].

Conset;slllbst}lt/ll;élecular Prex(z;l;:nce Molecular Characteristics Clinical Outcomes
0
. . . s Best Prognosis
° High Microsatellite Instability :
CMS1 (MSI Immune) 14 . Strong Immune Cell Infiltration . Responsive to Immune

Checkpoint Blockade

CMS2 (Canonical)

e Activation of Wnt and Myc
37 Signaling Pathways . Intermediate Prognosis
e Chromosomal Instability

CMS3 (Metabolic)

Poor Prognosis
Resistance to Standard 5-FU
Chemotherapy

e Dysregulation of Metabolic Pathways
13 ° Obesity-Related Molecular Alterations

CMS4 (Mesenchymal)

. Activation of TGF-b and EMT
23 Transcriptional Programs
. Stromal Infiltration

. Poorest Prognosis
Aggressive Clinical Course
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Experimental Models for Interrogating Intratumoral Heterogeneity in CRC Subtypes

The study of CRC subtypes encompasses various approaches to capture their versatile
features (Figure 5). These approaches involve the utilization of different model systems,
including chemically induced and genetically engineered mouse models [158], patient-
derived cell lines [159], organoids [159], and xenografts [160]. Each of these study models
offers distinct advantages and allows researchers to explore specific aspects attributable
to CRC subtypes [160-162]. Chemically induced mouse models involve the manipulation
of mice through chemical carcinogenic agents such as azoxymethane (AOM) [163-166]
or dextran sulfate sodium (DSS) [166,167] to induce CRC [158]. Similarly, genetically
engineered mouse models (GEMMs) are created by introducing specific genetic alterations
relevant to CRC development [168]. These models are more physiologically relevant to
CRC and enable researchers to study the fundamental mechanisms driving cancer initiation,
progression, and response to treatment [158].

Patient-derived cancer cell lines also provide valuable tools for studying CRC sub-
types in vitro [169]. These cell lines are often established from primary tumor tissues
or metastatic lesions and can be maintained and propagated in laboratory settings [170].
Researchers can use these cell lines to investigate various aspects of CRC, including its
molecular characteristics, drug sensitivity, and mechanisms of resistance [169,170]. Al-
though they do not represent a multi physiological setting (i.e., animal model), they serve
as a renewable resource of CRC cells for toxicity assays and elucidating the underlying
biology of CRC subtypes at the cellular level [170,171]. Organoids are three-dimensional
cultures of epithelial cells that can recapitulate the characteristics and architecture of the
original tissue [172]. In the case of CRC, organoids can be generated from tumor tissue
or normal colon epithelial cells [173]. These organoid models allow researchers to study
the behavior of CRC subtypes in a more physiologically relevant environment [174]. They
can also be used to investigate tumor growth, invasion, drug response, and personalized
medicine approaches [175].

Finaly, xenograft models involve the transplantation of human CRC cells or tissues
into immunodeficient (humanized) mice [176,177]. These models allow the study of tumor
behavior and response to therapy in an in vivo setting [178]. Patient-derived xenografts
(PDX) are created by implanting patient tumor tissues (biopsies) directly into mice [179].
PDX models retain the heterogeneity and molecular characteristics of the original tumor,
making them valuable tools for studying CRC subtypes and testing therapeutic interven-
tions in a physiological environment [180]. By employing a combination of these diverse
model systems, researchers can gain a comprehensive understanding of CRC subtypes,
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unravel their molecular features, and explore potential treatment strategies [181]. Each
model system provides unique advantages, and their integration allows for a more robust
characterization of CRC subtypes and the development of personalized approaches for
patients [148,181-184].
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Figure 5. Leveraging patient-derived models to investigate intratumoral heterogeneity in colorec-
tal cancer subtypes. Primary tumor tissues dissociated from colorectal cancer (CRC) patients serve
as the starting point for generating diverse experimental models. Single-cell suspensions allow
enrichment of adherent cancer cells while depleting non-malignant stromal components, maintaining
intratumoral heterogeneity. The enriched cancer cells can be directly cultured as patient-derived cell
lines or used to derive three-dimensional organoid cultures that recapitulate aspects of the tumor mi-
croenvironment. Additionally, these patient-derived cells can be modified through transfection with
siRNA, shRNA, cDNA, or CRISPR/Cas9 gene editing before utilization in downstream applications.
One key application is injection into immunocompromised mouse models to establish patient-derived
xenograft (PDX) tumors. Sample collection from these in vivo models provides primary tumors,
metastases, and liquid biopsy samples for comprehensive molecular analyses. Established CRC
cell lines like HT-29 offer an alternative source for generating xenograft models and modified sub-
lines. Multi-omics data acquisition through techniques like RNA sequencing, mass spectrometry
proteomics, and identification of differentially expressed genes enables biomarker discovery, path-
way analysis, and biological interpretation of distinct CRC subtypes. Potential therapeutic targets
derived from these analyses are validated through antibody/drug treatment studies in the PDX and
cell line xenograft models. This multifaceted strategy integrating patient-derived models, genetic
modifications, organoids, xenografts, and multi-omics profiling facilitates investigations into the
complexity of intratumoral heterogeneity underlying CRC. Figure created using BioRender.



Int. . Mol. Sci. 2024, 25, 9463

12 of 124

4. Hallmarks of Colorectal Cancer
4.1. Genome Instability and Mutations in CRC Driver Genes

Similar to other cancers, CRC is a complex disease characterized by the accumula-
tion of genomic alterations [185]. In fact, genome instability, which refers to an increased
propensity for genetic alterations within cells (Figure 6), plays a significant role in CRC
development and progression [186,187]. There are two primary forms of genome insta-
bility in CRC: CIN [188] and MSI [189]. CIN is described by an abnormal number or
structure of chromosomes within cells [190] and is observed in approximately 70-80% of
CRC cases [188]. The key features of CIN include: (1) aneuploidy, which is an abnormal
number of chromosomes in cells and results in gains or losses of specific chromosomal
regions [191]; (2) structural alterations in chromosomes, such as deletions, duplications,
inversions, or translocations that can affect the expression of key genes involved in cancer
development and progression [192]; (3) complex genomic profiles with numerous chromo-
somal alterations that contribute to tumor heterogeneity and can impact the response to
treatment [193]; and, (4) a wider spectrum of mutations affecting various cancer-related
genes, including tumor suppressor genes and oncogenes [194,195].

MSI is another form of CRC genome instability, which refers to a distinct accumulation
of small insertions or deletions in repetitive DNA sequences known as microsatellites [189,196].
MSI is observed in approximately 15-20% of CRC cases [189]. It arises due to impaired
DNA mismatch repair (MMR), a system responsible for correcting errors during DNA
replication [197]. MMR deficiency therefore leads to the accumulation of genetic mu-
tation in microsatellite regions [198]. MSI tumors can also exhibit variable lengths in
microsatellite regions due to the insertion or deletion of repeat units [199]. In fact, this
unique feature is used to assess MSI status of a tumor in clinical practice [200]. MSI tumors
often possess a higher degree of immune cell infiltration, particularly tumor-infiltrating
lymphocytes (TILs), which can influence the tumor microenvironment and response to
immunotherapy [201,202].

MSI tumors also display specific mutation profiles in genes involved in DNA repair,
such as MMR genes (e.g., MLH1, MSH2, MSH6, PMS2) [203]. These errors can cause
mutations in important cancer-related genes and contribute to tumor development [204].
Other mutations may also occur but are less common compared to CIN tumors [189]. This is
because the majority of mutations in MSI tumors are localized to the microsatellite regions,
while the rest of the genome remains relatively stable [205]. In contrast, CIN tumors exhibit
higher rates of genomic instability affecting various regions of the genome, leading to a
higher overall mutation burden [189]. MSI tumors often respond favorably to immune
checkpoint inhibitors, which can harness the enhanced immune response observed in
these tumors [206,207]. MSI is more common in hereditary forms of CRC, such as Lynch
syndrome, but can also occur sporadically [208].

Genetic mutations occur when there are changes in the consensus DNA sequence of
specific genes [209]. Several genes have been identified as being frequently mutated in
CRC (Figure 6) [210]. The most common driver mutations in CRC affect the Wnt signaling
pathway in addition to the APC, KRAS, BRAF, and TP53 genes [210]. Mutations in these
genes disrupt normal cellular processes, leading to uncontrolled cell growth, increased
survival, and the acquisition of invasive properties [211,212]. For example, mutations in
the Wnt signaling pathway are considered early events in CRC development [213]. On the
other hand, the APC gene, which normally regulates the pathway, is frequently mutated
in both hereditary and sporadic CRC [214]. Inactivation of the APC gene leads to in-
ducted Wnt signaling resulting in uncontrolled cell growth and division [215]. Specifically,
APC mutations correlated with the formation of polyps, which can progress to adenomas
and eventually carcinoma [216]. KRAS and BRAF alterations are also commonly found
in CRC, where KRAS mutation leads to the constitutive activation of the RAS signaling
pathway, cell survival, and proliferation [216,217], whereas BRAF alterations, particularly
the V600OE mutation, activate the MAPK signaling pathway which contribute to tumor
growth [218]. KRAS and BRAF mutations are both associated with a poor clinical prognosis
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in CRC [219,220]. The most well-described and prominent TP53 tumor suppressor gene
is also involved in CRC genomic stability [221]. In fact, TP53 mutations are found in a
significant proportion of CRC cases associated with advanced tumor staging, resistance to
therapy, and poor prognosis [222,223]. In addition to the key driver mutations mentioned
above, CRC can also harbor various other genetic alterations in genes regulating DNA
repair (i.e., POLE, POLD1) [224], chromatin remodeling (i.e., ARID1A) [225], and cell cycle
regulation (i.e., PIK3CA, SMAD4) [226]. Together, these genetic profiles not only contribute
to the heterogeneity and complexity of CRC, but also define the molecular nomenclature
supporting cancer stratification and therapeutic approaches [224-227]. However, genome
instability and mutations are not the sole factors contributing to CRC pathogenesis. Envi-
ronmental factors, lifestyle choices, and other genetic and epigenetic alterations also play
significant roles in the initiation and progression of CRC [228-230].
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Figure 6. Mechanisms underlying the hallmarks of colorectal cancer progression. Colorectal
cancer (CRC) is a complex and multifaceted disease characterized by the acquisition of various
hallmark capabilities that enable tumor growth, progression, and metastasis. Sustained proliferative
signaling in CRC tumors is driven by modifying mechanisms like cell cycle arrest, DNA repair,
senescence, and apoptosis, while evasion of growth suppressors occurs through disruptions in tumor
suppressors like TP53 and APC. Resistance to cell death is facilitated by dysregulation of apoptotic
machinery and BCL-2 family members, and replicative immortality is enabled by deregulation of
pathways like WNT, RAS, and PI3K. Angiogenesis is induced by factors like VEGF and hypoxic
conditions, while invasion and metastasis involve epithelial-mesenchymal transition, altered cell-cell
adhesion, and extracellular matrix remodeling. Deregulation of cellular energetics, such as the
Warburg effect, provides a growth advantage, and immune evasion is mediated by mechanisms like
PD-L1 upregulation. A tumor-promoting inflammatory microenvironment is created by cytokines,
chemokines, and immune cell infiltration, while genomic instability and tumor progression are driven
by the accumulation of mutations in genes like APC, KRAS, and TP53. The image further depicts
emerging hallmarks specific to CRC, including the distinct molecular features of left-sided and
right-sided tumors, unique characteristics of rectal cancer, and the involvement of signaling pathways
like Wnt, Notch, Hedgehog, and TGF-3 in disease progression. Figure created using BioRender.
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Telomere Dysfunction/Reactivation

Telomeres are repetitive DNA sequences located at chromosome extremities, which
play a critical role in maintaining genomic stability and protecting the integrity of the
genome [231]. With each cell division, telomeres gradually shorten with the aging process,
and when they become critically short, it triggers cellular senescence or apoptosis to
limit cell proliferation and prevent the propagation of damaged DNA [232]. Telomere
dysfunction, including shortening or loss of telomeres, has been implicated in various
age-related diseases and cancer malignancies [233]. The reactivation of telomerase in cancer
serves to counteract telomere shortening and allows cancer cells to bypass typical cellular
senescence and apoptosis checkpoints, thus enabling uncontrolled cell division and tumor
growth [234]. Telomerase reactivation is considered one of the hallmarks of cancer, and its
targeting has been intensively explored as a potential therapeutic strategy [235].

In the early stages of CRC, telomere-based crisis can occur due to critically short
telomeres that trigger DNA damage responses [236]. This crisis leads to extensive chromo-
somal rearrangements and genomic instability, a phenomenon known as CIN [237]. During
telomere crisis, cells undergo multiple cycles of DNA damage, repair, and breakage—fusion—
bridge (BFB) cycles [238]. BFB cycles are the result of broken DNA ends fusing with other
chromosomes during DNA repair, leading to further genetic abnormalities and chromo-
somal rearrangements [238]. These cycles can result in the amplification of oncogenes or
the inactivation of tumor suppressor genes, all of which promote cancer development and
progression [239,240]. In CRC, telomere-based crisis and subsequent CIN can facilitate the
acquisition of additional genetic alterations necessary for tumor growth and survival [241].

Several approaches have been investigated to target telomerase in CRC. One of these
involves the use of small molecule inhibitors including BIBR1532 [242,243], RHPS4 (BRACO-
19, Imidazole quinoline derivative) [244,245], and MST-312 (Silybin derivative) [246], that
selectively block telomerase activity to prevent telomere elongation and dysfunction in
CRC cells [247]. Mechanistically, BIBR1532 is a non-nucleosidic telomerase inhibitor that
acts by disrupting the interaction between the telomerase enzyme and its telomeric DNA
substrate [242,243]. It also inhibits telomerase catalytic activity thereby impairing telomere
maintenance [243]. While BIBR1532 has been primarily studied in the context of hemato-
logical malignancies [248-251], its potential efficacy in solid tumors including CRC [242],
breast cancer [252], non-small cell lung cancer (NSCLC) [253], and oral squamous cell
carcinoma (OSCC) [254], has also been recently explored. On the other hand, RHPS4 is a
small synthetic molecule that targets the G-quadruplex structures formed at the telomeric
DNA [244] where it binds and prevents telomerase from elongating the telomeres [245].
RHPS4 has exhibited promising anti-telomerase activity in various cancer models, includ-
ing CRC [255-257]. Finaly, MST-312 is a compound found in milk thistle and has been
reported to inhibit telomerase activity by interfering with the telomerase enzyme complex
assembly [246]. MST-312 has demonstrated telomere shortening effects in CRC cells and
may soon be applied as an anti-cancer agent in preclinical studies [246].

Other targeting strategies include the inhibition of telomerase RNA components
(i.e., TER or TERC), which are essential for telomerase expression and function [258].
Inhibiting TERC is an area of active research and holds potential for therapeutic inter-
vention as it is shown to effectively disrupt telomerase activity leading to telomere short-
ening in cancer cells [259,260]. To date, several approaches have successfully targeted
TERC in CRC through the use of antisense oligonucleotides (ASOs) [261], RNA inter-
ference (RNAi) [262,263], and small-molecule scaffolds (i.e., GRN163L/imetelstat and
CX-5461) [263,264]. ASOs are short synthetic strands of nucleotides that are complemen-
tary to specific RNA sequences [265]. The design of TERC-specific ASOs therefore inhibit
telomerase activity [266] and has shown promise in preclinical studies in various cancers,
including CRC [267]. RNAIi has also been used to inhibit telomerase activity in CRC [262].
This is performed by introducing small interfering RNA (siRNA) molecules that target
TERC, which then initiates a natural process that regulates gene expression by silencing
specific RNA molecules (i.e., TERC) [268]. Researchers are still actively exploring the
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potential of RNAi-based therapies for targeting telomerase in cancer cells [269]. Another
approach involves the development of small-molecule scaffolds that specifically bind to
TERC and inhibit telomerase function [264,270]. These molecules, known as telomerase
inhibitors, disrupt the proper assembly and stability of telomerase, leading to its inacti-
vation [271]. For example, imetelstat is a synthetic oligonucleotide that directly targets
and binds to an RNA component of telomerase (called hTERC) resulting in telomerase
inhibition and telomere shortening in CRC cells [270]. CX-5461 is another a selective in-
hibitor of RNA polymerase I transcription, which indirectly affects telomerase activity
by reducing the synthesis of telomerase RNA components [272,273]. CX-5461 has shown
promising inhibitory effects on telomerase activity in CRC and has been studied in preclini-
cal models [272,273]. Furthermore, alternative strategies aimed to exploit the reliance of
telomerase-positive cancer cells on telomere maintenance have been developed [274]. For
instance, telomerase-specific oncolytic viruses have been created to selectively replicate
and eliminate telomerase-positive cancer cells by exploiting the dependence of these cells
on functional telomerase for telomere elongation [275]. Although the targeted inhibition
of telomerase activity has demonstrated promise as a potential therapeutic strategy for
CRC, further research is needed to better understand its efficacy, safety, and potential side
effects [276]. Clinical trials are currently ongoing to determine the optimal approach and to
evaluate the long-term effects of targeting telomerase in CRC patients [277].

4.2. Enabling Replicative Immortality

Sustaining proliferative signaling is a hallmark of cancer, including CRC [278]. In
normal cells, the process of cell proliferation is tightly regulated, and cells divide and
grow in a controlled manner [279]. However, in CRC, certain genetic alterations disrupt
the normal regulation of cell growth (Figure 6), leading to the sustained proliferative
signaling characteristic of cancer [280]. Two key molecular pathways involved in sustaining
proliferative signaling in CRC are the EGFR and Wnt signaling pathways [281,282].

4.2.1. EGFR Signaling Pathway

Activation of EGFR triggers downstream signaling cascades, including the RAS/RAF/
MEK/ERK and PI3K/AKT pathways (Figure 6) [283]. These pathways are essential for
transmitting signals from the cell surface to the nucleus, ultimately leading to various
cellular responses such as proliferation, survival, and differentiation [284]. When EGFR
is activated by its ligands, such as epidermal growth factor (EGF), it undergoes a con-
formational change that allows it to dimerize and autophosphorylates specific tyrosine
residues located in its intracellular domain, creating docking sites for downstream signaling
molecules such as RAS, RAF, MEK, and ERK pathway components [285-287]. Upon EGFR
activation, the small GTPase protein RAS is recruited to the plasma membrane, where it is
activated by guanine nucleotide exchange factors (GEFs) [288]. Activated RAS then recruits
and activates RAF kinase, which subsequently activates MEK (MAPK/ERK kinase) [289].
MEK phosphorylates and activates ERK (extracellular signal-regulated kinase), which then
translocates to the nucleus and phosphorylates various transcription factors, leading to
gene expression changes involved in cell proliferation, survival, and differentiation [290].
Another important pathway activated by EGFR is the PI3K/AKT cascade [291]. EGFR
activation leads to the recruitment of phosphatidylinositol 3-kinase (PI3K) to the receptor
complex [292]. PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to gen-
erate phosphatidylinositol 3,4,5-trisphosphate (PIP3), which serves as a docking site for
AKT for its activation by phosphoinositide-dependent protein kinase 1 (PDK1) [293,294].
Given that activated AKT regulates multiple downstream effectors involved in cell sur-
vival, metabolism, and protein synthesis, this cascade is also a prevalent cancer signaling
gateway [295].

Dysregulation of RAS/RAF/MEK/ERK and PI3K/AKT signaling cascades can con-
tribute to the development and progression of several diseases, including cancer [296]. In
CRC, the most common genetic alterations affecting this signaling pathway are found in
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the RAS gene, especially KRAS and NRAS (Figure 6) [297]. It involves a single nucleotide
substitution, leading to a glycine amino acid replacement by either an aspartic acid at
position 12 (G12D) or, by a valine at position 13 (G13D) [298]. Other less common mu-
tations occur at positions 61 (Q61H) and 146 (A146T) [298,299]. KRAS G12D and G13D
mutations are found in approximately 30-45% of CRC cases, leading to constitutive ac-
tivation of RAS and aberrant activation of downstream signaling [298-300]. Colorectal
cancer patients with KRAS mutations are often associated with poor prognosis, less re-
sponsive to certain targeted therapies, and have a higher risk of disease recurrence when
compared to patients with wild-type KRAS [301-306]. KRAS mutations are also valuable
predictive markers for the efficacy of anti-EGFR therapies, such as cetuximab [302-304]
and panitumumab [305,306]. Patients with KRAS mutations in codons 12 or 13 are typically
resistant to these drugs [302-304], and testing for KRAS mutation status is now standard
practice upon the consideration of anti-EGFR therapy [307-309]. Nonetheless, patients with
KRAS mutations may undergo other targeted therapies, such as MEK inhibitors, which are
currently being investigated as effective treatment options for CRC patients with KRAS
mutation signatures [310].

Furthermore, dysregulation of other components of this pathway, such as RAF, MEK,
or ERK, can also occur in CRC [287]. Mutations in the BRAF gene, which is part of the RAF
protein family, are found in a subset of CRCs and affect the behavior and treatment of the
disease [311]. However, BRAF mutations are relatively uncommon in CRC, accounting for
approximately 5-15% of cases [312,313]. The most prevalent BRAF mutation in colorectal
cancer is the V600OE mutation, where valine (V) is substituted with glutamic acid (E) at
position 600 [314]. This mutation causes a hyperactive BRAF kinase, leading to increased
downstream signaling [315]. BRAF mutations in CRC are associated with poor prognosis
as patients tend to have more aggressive disease, advanced stages at diagnosis, higher
likelihood of lymph node involvement, and lower overall survival rates compared to
patients with BRAF wild-type tumors [316]. BRAF mutation is also frequently observed in
specific tumor subtypes, such as those with MSI-high MSI-H or CIMP features [317]. These
subtypes often exhibit distinct clinicopathological characteristics and have implications
for treatment strategies [150,151,318]. For instance, BRAF mutant tumors might be less
sensitive to anti-EGFR treatment, and some BRAF mutations may not be sensitive to any
particular targeted therapies [150]. Therefore, other therapeutic options for BRAF V600E
have been developed, such as vemurafenib [319] and encorafenib [320], which are often
used in combination with other agents like MEK inhibitors (i.e., cobimetinib or binimetinib).
These therapeutic interventions have shown promising results in improving outcomes for
CRC patients with BRAF mutation [321]. Nevertheless, ongoing clinical trials are exploring
novel treatment approaches for BRAF-mutated colorectal cancer, including combinations
of targeted therapies, immunotherapies, and chemotherapy [311].

Mutations in genes encoding components of the PI3K/AKT pathway can also result in
its dysregulation, leading to uncontrolled cell growth and tumor formation [311]. The most
common mutations occur in the PIK3CA gene, which encodes the catalytic subunit of PI3K
(p110«x), and in the PTEN (phosphatase and tensin homolog) gene, a negative regulator of
the pathway [322,323]. PIK3CA mutations are detected in approximately 15-20% of CRC
cases and represent the most frequent genetic alterations in CRC, particularly in tumors aris-
ing from the left side of the colon [324,325]. PIK3CA mutations are often mutually exclusive
with other well-known driver mutations in CRC, such as KRAS and BRAF mutations [326].
However, they may co-exist with other gene mutations involved in the PI3K pathway, such
as PTEN and AKT [327]. Due to the complexity in these signaling components, studies
have shown conflicting results regarding the prognostic significance of PIK3CA mutations
in CRC. For example, some studies suggest that PIK3CA mutation may be associated with
a favorable prognosis [328-331], while others indicate no significant impact on overall
survival or disease-free survival [330,332]. Nonetheless, PIK3CA mutations have gained
attention as a potential predictive biomarker for targeted therapies [333,334]. Preclinical
studies have demonstrated that CRC cells with PIK3CA mutations may be sensitive to PI3K
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inhibitors, such as alpelisib [335]. Several clinical trials are ongoing to evaluate the efficacy
of PI3K inhibitors in CRC patients with PIK3CA mutations to determine whether targeting
the PI3K pathway can improve treatment outcomes in specific patient populations [336,337].
However, similar to other targeted therapies, resistance to PI3K inhibitors can develop
over time as alternative downstream signaling components, activation of compensatory
pathways, or the emergence of additional mutations may contribute to resistance [338,339].
Given the complex nature of CRC and the heterogeneity of PI3K pathway alterations, com-
bination therapies involving PI3K inhibitors with other targeted agents or chemotherapy
drugs are being explored to improve treatment response and overcome resistance [340,341].

AKT, also known as protein kinase B (PKB), is another key signaling protein involved
in various cellular processes such as cell growth, survival, and metabolism [342]. In CRC,
the most frequent AKT mutations involve the AKT1 gene [343]. Although relatively rare
(2-6%) in comparison to APC, KRAS, TP53, and PIK3CA genes [344,345], AKT1 muta-
tions mainly contribute to the development and progression of cancer [344]. The most
common AKTI gene mutation observed in solid tumors is a missense mutation known
as E17K (G49A) [346]. This mutation occurs in the PH (pleckstrin homology) domain
of the AKT1 protein where a glutamic acid (E) is replaced by a lysine (K) at position 17,
leading to its constitutive activation [345]. Studies have shown that the AKTEK mutation
is associated with more aggressive tumor behavior, increased resistance to chemotherapy,
and poorer patient outcome compared to CRC cases without this mutation [347]. In fact,
AKTEYK mutation has been considered as a potential therapeutic target in cancers for
several targeted therapies and inhibitors of the AKT signaling pathway like ARQ751 and
ARQO092 [348-350], capivasertib or AZD5363 [351-353], and BAY1125976 [354], which are
currently being developed and tested in clinical trials to specifically target and inhibit the
downstream effects of this mutation. Molecular testing, such as DNA sequencing, can also
be used to detect the presence of AKTF17K mutation in cancer patients [355]. Therefore,
identifying patients who may benefit from targeted therapies or personalized treatment
approaches [350]. Nevertheless, the frequency of this mutation may vary depending on the
population studied and the methodology used for mutation detection [356].

Activated AKT exerts its downstream effects by phosphorylating and regulating nu-
merous targets within the cell (Figure 6) [357]. One of its major targets is mTOR, a central
regulator of cell growth and metabolism, which exists in two distinct complexes: mTORC1
and mTORC?2 [358]. AKT-mediated phosphorylation of mTORC1 enables its activation,
which regulates protein synthesis, cell growth, and metabolism in response to nutrient avail-
ability and growth factors [359]. In CRC, genetic alterations in PIK3CA and PTEN genes
lead to sustained activation of the PI3K/AKT/mTOR pathway, promoting cell survival, pro-
liferation, angiogenesis, and resistance to apoptosis [360]. The dysregulation of the mTOR
pathway in CRC has led to the exploration of mTOR inhibitors as potential therapeutic
agents [361-363]. Drugs like everolimus [364,365] and temsirolimus [366,367], have shown
some efficacy in specific subsets of CRC patients with mTOR pathway alterations [368].
Despite the initial promise of mTOR inhibitors, resistance to these drugs can develop [369].
These mechanisms mostly include feedback activation of upstream signaling components,
alternative pathway activation, and mutations in downstream effectors [370]. Due to the
complexity of drug resistance and the mTOR pathway, combination therapies targeting
multiple nodes in the pathway or combining mTOR inhibitors with other agents are being
investigated as potential strategies to improve treatment outcomes in CRC patients with
mTOR pathway mutations [371].

Overall, the PI3K/AKT/mTOR signaling pathway integrates and responds to a wide
range of intracellular and extracellular signals, allowing cells to coordinate their growth,
metabolism, and survival in response to various physiological and environmental cues [372].
Interaction between the PI3K/AKT/mTOR pathway and other CRC signaling pathways,
such as the Wnt/ 3-catenin pathway and the MAPK/ERK pathway, establish a complex
network of signaling crosstalk that contributes to the overall pathogenesis of colorectal
cancer [373].
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4.2.2. Wnt/3-Catenin Signaling

The Wnt/ 3-catenin signaling pathway plays a crucial role in promoting and main-
taining cancer cell stemness (Figure 6) [374]. Stem cells are undifferentiated cells that
have the ability to self-renew and give rise to different cell types in the body [375]. In
the absence of Wnt signaling, a protein called (3-catenin is phosphorylated by a complex
of proteins, which leads to its degradation [376]. However, when Wnt ligands bind to
their receptors on the cell surface, it activates a signaling cascade that inhibits 3-catenin
degradation by a destruction complex comprising APC, Axin, GSK3{ (Glycogen synthase
kinase 3 beta), and CK1 (Casein kinase 1) [377]. As a result, 3-catenin accumulates in the
cytoplasm and translocates into the nucleus, where it interacts with transcription factors of
the T-cell factor/lymphoid enhancer factor (TCF/LEF) family [378]. This interaction leads
to transactivation of target genes including c-Myc, cyclin D1, and matrix metalloproteinase
7 (MMP?) that regulate cell proliferation, survival, and differentiation [379]. In normal
stem cells, controlled activation of the Wnt/3-catenin pathway is essential for maintaining
self-renewal capacity and tissue homeostasis [380]. However, dysregulation of this cascade
leads to aberrant stem cell behavior and contributes to the development of various cancer
types, including CRC [381].

In cancer cells, Wnt/ 3-catenin pathway is often hyperactivated [381]. This occurs
through various mechanisms, including ligand-dependent or ligand-independent Wnt
signaling activation [382]. In the canonical pathway, secreted Wnt ligands bind to specific
cell surface receptors, which include the very well-established Frizzled (FZD) receptor pro-
teins and low-density lipoprotein receptor-related protein (LRP) 5/6 co-receptors [383,384].
Upon ligand binding, the canonical Wnt pathway leads to the stabilization and nuclear
translocation of (3-catenin [385]. On the other hand, ligand-independent Wnt activa-
tion includes alterations in upstream regulators like APC [386] or key components of
the CTNNBI1 pathway [387] and destruction complex components [388]. Altogether, these
paths lead to sustained activation of Wnt/ 3-catenin signaling in CRC cells characterized by
enhanced self-renewal capacity, resistance to therapy, and the ability to initiate tumor forma-
tion [389,390]. Sustained Wnt/ 3-catenin activation is also important in maintaining CRC
stem cells (CSCs), which are thought to be responsible for tumor initiation, heterogeneity,
and recurrence [389,390].

Mutations in several key components of the Wnt signaling pathway have been identi-
fied in CRC, including genes encoding ligands, receptors, and downstream effectors [391].
One of the most mutated genes in this pathway is the APC gene [391,392]. The APC protein
normally acts as a negative regulator of Wnt signaling by promoting the degradation of
[-catenin [391,392]. APC mutations are found in approximately 80% of sporadic CRC cases,
making it the most frequently mutated gene in this pathway [392]. APC gene mutations
therefore lead to the accumulation of (3-catenin and constitutive activation of Wnt signaling,
which can drive colorectal tumor formation [392]. Other CRC gene mutations associated to
the Wnt pathway include CTNNBI1 (encoding 3-catenin), AXIN2, TCF7L2, and LRP5/6 [391].
The prevalence of these gene alterations vary among CRC cases [393] where CTNNB1
mutations occur in about 10-15% of CRC cases, whereas AXIN2, TCF7L2, and LRP5/6 are
relatively rare mutations but have been reported in a small percentage of cases [393,394].

Given the prominent role of Wnt signaling in CRC, most components of this path-
way represent potential therapeutic targets [395]. One approach has directly targeted the
key downstream effector of the pathway, 3-catenin. In this regard, small molecules like
ICG-001 [396], PRI-724 [397], CGP049090 [398], C-82 [398], and BC2059 [399] have been
shown to prevent 3-catenin nuclear translocation, disrupting the transcriptional activity of
the pathway and inhibiting tumor growth. Other strategies have targeted components of
the destruction complex, such as GSK3 [400] or the tankyrase enzyme, which regulate
[-catenin levels and activity [401]. For example, the novel tankyrase inhibitor OM-153
has proven to reduce Wnt/b-catenin signaling and tumor progression in preclinical CRC
models [402] and could be used in clinical trials. In addition, novel antibodies are being
developed to inhibit specific Wnt pathway components including the Porcupine enzyme,
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which is involved in the secretion and maturation of Wnt ligands [403]. These inhibitors
block the production of both ligand-dependent and ligand-independent Wnt signaling,
showing promise as potential therapeutic agents for CRC [404,405]. Nevertheless, chal-
lenges in the development of 3-catenin inhibitors still remain as the identity of patients
who are most likely to benefit from this therapeutic approach by overcoming potential
resistance is still underway [406]. Addressing these issues requires a multidisciplinary
approach involving collaboration between researchers, clinicians, and pharmaceutical com-
panies [406]. Continued research and clinical trials will be essential to overcome these
obstacles and realize the potential of 3-catenin inhibitors as effective targeted therapies for
cancer [406].

In summary, the EGFR and Wnt/ 3-catenin pathways are critical players in CRC [406].
Their dysregulation through genetic and epigenetic alterations contributes to uncontrolled
cell proliferation, survival, and invasion, which are key characteristics of cancer cells [407].
Understanding these pathways and developing targeted therapies against them have
shown promise in the treatment of CRC [374]. These targeted therapies have the potential
to improve patient outcomes, reduce side effects, and overcome resistance to traditional
chemotherapy [408].

4.2.3. Overriding Restraints: Cancer’s Growth and DNA Damage Tolerance

One aspect of CRC development involves the evasion of growth suppressors, which
normally regulate cell growth and prevent uncontrolled proliferation (Figure 6) [409,410].
Tumor suppressor genes such as APC, TP53, and SMAD4 are commonly mutated in
CRC [409,410]. Mutations in the APC gene are considered initiating events in most sporadic
cases of CRC and commonly locate to the 8q, 13q, 18q, and 20q chromosomal regions in
most colorectal adenocarcinomas [409,411]. Mutations in 18q often result the translation of
a truncated APC gene product and non-functional protein [412]. Lost or impaired function
of APC leads to the development of FAP, an inherited condition characterized by the forma-
tion of numerous polyps in the colon and rectum [413]. FAP also significantly increases the
risk of developing CRC [414]. Disruption of APC function can also impact other cellular
processes beyond the Wnt pathway [373]. For instance, APC is involved in cell migration,
adhesion, and cytoskeletal organization by regulating the dynamics of the actin cytoskele-
ton, and its dysfunction can lead to abnormalities in these processes [415-417]. APC is also
implicated in the maintenance of chromosomal stability and proper segregation of chro-
mosomes during cell division [418]. APC mutation can consequently lead to chromosomal
instability and increased risk of genomic aberrations [419].

While mutations in the APC gene are considered early events in CRC develop-
ment [412], additional genetic alterations are usually required for advanced tumorigenesis
and disease progression. Such mutations can include alterations in the genes involved in
cell cycle regulation, such as TP53 [420]. In healthy cells, TP53 acts as a checkpoint regulator,
preventing the proliferation of cells with damaged DNA [421]. When TP53 is mutated, the
ability to repair damaged DNA is compromised, leading to an accumulation of genetic alter-
ations that promote cancer progression [422]. While TP53 mutations can occur in different
regions of the gene, certain hotspots are more commonly affected such as exons 5-8, which
encode the DNA-binding domain of the TP53 transcription factor [423-427]. Other regions
of TP53 prone to mutation include exon 4, which stabilizes the protein structure [428,429],
and exon 10, which encodes the tetramerization domain of the protein [430,431]. TP53
mutations are relatively common in CRC, occurring in approximately 50% of cases and
are frequently observed in advanced-stage tumors [222,432,433]. Some mutations may
result in a complete loss of function, while others either retain partial activity or acquire
new functions that contribute to tumorigenesis [434,435]. Patients with TP53-mutated
tumors have greater risks of disease recurrence, metastasis, and overall mortality compared
to wild-type TP53 tumors [436]. Other studies show that TP53-mutated tumors exhibit
reduced responsiveness to certain treatments [437,438]. For example, TP53-mutated colon
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cells are associated with resistance to chemo-based drugs like fluorouracil (5-FU), which is
commonly used in CRC treatment [438,439].

SMADA4 (also known as DPC4) is another tumor suppressor gene affected by genetic
alterations in CRC. SMAD4 is an important downstream effector of the transforming
growth factor-beta (TGF-f3) signaling pathway where it inhibits cell proliferation and pro-
motes apoptosis when the TGF-p pathway is intact [440]. SMAD4 mutations therefore
disrupt TGF-f signaling, leading to uncontrolled cell growth and decreased apoptosis [441].
SMAD4 mutations have also been shown to impact Wnt signaling activity through a
SMADA4 R361 hotspot mutation, which alters Wnt/ 3-catenin pathways and contributes to
the evasion of growth suppressors in CRC cells [442]. Other studies have demonstrated
that SMAD4 mutations are associated with increased CRC metastatic potential [442—-444].
Mechanistically, loss of SMAD4 in CRC cells causes Bone Morphogenetic Protein (BMP) sig-
naling, which enables a functional switch from tumor suppressive to metastasis promoting
features through EMT and other metastasis-related processes [445]. These mutations have
been also linked to resistance to certain chemotherapeutic agents commonly used in CRC
treatment, such as 5-FU or folinic acid / fluorouracil / oxaliplatin regimen 4 (FOLFOX4) [446].
This drug resistance can be attributed to the altered cellular responses impacted SMAD4
mutation such as the PI3K/AKT/Cdc2 survival cascade [444,447].

While APC, TP53, and SMAD4 mutations play a significant role in CRC progres-
sion [448], it is important to understand that cancer is a multifactorial disease, and other ge-
netic alterations or molecular mechanisms are also involved in evading growth suppressors
through the override of cell cycle restriction points [449], enhancing DNA damage tolerance
(DDT) mechanisms [450], and bypassing senescence to render immortality [451,452]. There-
fore, targeting these mechanisms is a major focus of cancer research, and ongoing efforts are
aimed at developing novel therapies to counteract the evasion of growth suppressors and
improving the treatment outcomes [453-455]. Checkpoint mechanisms and its regulation
in CRC are discussed below.

4.2.4. Bypassing Cell Cycle Restriction Checkpoints

Cell cycle checkpoints are crucial mechanisms that regulate cell division processes
and prevent the replication of damaged or abnormal cells, including cancerous cells [456].
However, in human cancers like CRC, these checkpoints can be bypassed, allowing cancer
cells to divide and multiply unchecked (Figure 6) [449].

Cyclin-Dependent Kinase Inhibitors

In addition to APC and TP53 that play important roles in maintaining genome in-
tegrity [449], cell cycle inhibitors such as cyclin-dependent kinase inhibitor 1 (CDKN1A) [457]
and CDKN2A [458] also act as physiological brakes on the cell cycle, halting cell division
and allowing time for DNA repair. CDKN1A (p21), a downstream gene target of TP53 [459],
blocks the activity of cyclin-dependent kinases (CDKs), which are enzymes that regulate
the progression of the cell cycle [460]. CDKN2A, on the other hand, is located on the short
arm of chromosome 9 (9p21) and encodes multiple proteins through alternative splicing,
including p16INK4a and p14ARF [461-463]. The p16INK4a protein specifically inhibits the
activity of cyclin-dependent kinases 4 and 6 (CDK4/6), which normally promote the pro-
gression of the G1 phase in the cell cycle [464]. By inhibiting CDK4/6, p16INK4a prevents
the phosphorylation of retinoblastoma protein (Rb) and other target proteins, leading to cell
cycle arrest and halting cell division [465]. The p14ARF protein, also known as alternate
reading frame protein or ARF, also acts as a tumor suppressor by stabilizing TP53 when
cells undergo excessive proliferation or DNA damage [466,467].

In addition to the TP53-mediated impact of CDKN1A and CDKN2A activity, these
genes have also been reported to undergo alterations in cancer tumors [468,469]. In CRC,
the functional polymorphisms of CDKN1A may contribute to the risk of malignancy [470].
Meanwhile, CDKN2A mutation is relatively rare in CRC, but methylation of the p16 locus is
common in both normal and cancerous colonic mucosa [471]. While promoter methylation
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of CDKIN2A can lead to its low expression level, this alone does not show an independent
association with the prognosis of cancer. However, this low expression has been shown to
negatively affect CRC patients’ survival [472]. This could be because the loss of CDKN2A
function inhibits cell cycle progression, promoting tumor growth [473]. The impact of this
low expression could be more significant when combined with other factors and clinical
stages [474-476]. More studies are needed to fully understand how CDKN2A promoter
methylation interacts with other genetic alterations and clinical variables to influence CRC
patients” survival.

Aurora Kinases

The other protein family actively involved in cell cycle checkpoints is the Aurora
serine/threonine kinases [477,478]. Aurora-A (AURKA) is involved in the regulation of
centrosome function and spindle assembly, which are anatomically crucial for proper cell
division [479]. Aurora-B (AURKB), on the other hand, is part of the chromosomal passenger
complex (CPC), a “master controller” of the cell cycle [480]. It plays a role in almost every
stage of mitosis, including the condensation, orientation, and segregation of chromosomes
in addition to the formation of the spindle checkpoints, and cytokinesis [481-484]. Aurora
B, along with other CPC proteins, ensure the proper segregation of chromosomes by
destabilizing incorrect, erroneous kinetochore-microtubule attachments [481,485]. Both
AURKA and AURKB are frequently overexpressed in CRC and associate with aggressive
tumor behavior, poor prognosis, and resistance to chemotherapy [486,487]. Evidence
indicates that TP53 also can regulate the expression and activity of Aurora kinase in
cancer cells [488,489]. Activation of TP53 leads to the downregulation of Aurora kinases
through p21-mediated CDK2/RB1/AURKA or revoking the inhibitory impact of miR-25
on FBXW?7 as a negative regulator of AURKA and B, which helps maintain proper cell
cycle control [489]. Accordingly, TP53 knockdown in cancer cells reduces the level of p21,
which in turn increases the activity of CDK2 [489]. This leads to the induction of Rbl
hyperphosphorylation and its dissociation with the transcription factor E2F3, which in
return can bind to the AURKA gene promoter, potentiating AURKA gene expression [488].
On the other hand, AURKA can also phosphorylates TP53 at Ser215/315 and facilitate its
degradation [490,491]. Therefore, the impact of mutated TP53 in cancers like CRC can be
compounded by increased expression and activity of Aurora kinases, contributing to tumor
progression and genomic instability [492].

Polo-like Kinases

The impact of APC on cell cycle progression can also be manifested through the
regulated expression of the polo-like kinases (PLKs) and their activity [493]. PLKs are a
family of serine/threonine kinases (PLK1-5) that play essential roles in cell cycle regulation,
particularly during mitosis [494]. PLK1 localizes to the centrosomes and spindle poles
during prophase and metaphase, and then relocates to the spindle midzone during late
anaphase [495]. Expression of PLK1 is low in G0, G1, and S phases of the cell cycle, but then
begins to increase during the G2 phase up to the M phase [496]. PLK1 activity is promoted
through phosphorylation by CDK1 and AURKA, which help the PLK1 localization, activity,
and substrate recognition during mitotic progression [497,498]. Normally, the Spindle
Assembly Checkpoint (SAC) monitors the proper attachment of chromosomes to the mitotic
spindle during mitosis [499]. When the SAC is activated due to improper attachment, it
inhibits PLK1 activity and prevents premature mitosis [500]. PLK1 also controls several
key transcription factors that promote cell proliferation, transformation, and EMT in
various types of cancers, including CRC [501]. In fact, analysis of PLK1-depletion in
CRC cells cultures and CRC mice models demonstrate a key role for PLK1 in colorectal
carcinogenesis [502]. In this context, PLK1 overexpression in cancer cells is associated
with poor prognosis and has been suggested as a potential target for cancer therapeutic
interventions [503]. However, the role of PLK1 in cancer cells with deficient TP53 or APC
might be different [502,504]. For instance, in TP53-null cancer cells, the cell cycle sequence
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is more sensitive to PLK1 depletion than in TP53-wt cells [504]. On the other hand, in
colon cancer cells expressing a truncated form of APC (APC-AC), PLK1 appears to have
a tumor-suppressive function [502]. The inhibition of PLK1 in these genetically-modified
cells weakens the mitotic suppressive action of PLK1, leading to accelerated mitotic exit
and improved cell survival [502]. This suggests that PLK1 helps to maintain the mitotic
checkpoint in these cells, and its inhibition can accelerate the development of adenomatous
polyps, supporting a “tumor-suppressor function” for PLK1 in APC-AC-expressing colon
cells [505]. Overall, the interaction between PLK1 and APC in cancer cells is complex and
can have both tumor-promoting and tumor-suppressing effects, depending on the context.
Further research is therefore needed to fully understand these dichotomous interactions
and their implications for CRC treatment.

Checkpoint Kinases

Another group of cell cycle inhibitors are checkpoint kinases (CHKSs), a family of
serine/threonine kinases involved in the cellular response to DNA damage and replication
stress [506]. CHK1 and CHK?2 are the two main CHK family members involved in cell
cycle regulation [507]. They act as “gatekeepers” and can be activated in response to
DNA damage, such as double strand breaks or replication stress, where they subsequently
phosphorylate and activate downstream effector proteins involved in DNA repair, cell cycle
arrest, or apoptosis [508]. CHK1 is considered to have a stronger inhibitory effect on the
activity of cell division control protein 25 (Cdc25) [509], whereas CHK2 is thought to have a
larger role in inducing the expression of the G1-S transition inhibitor p21 [510]. Mutations
or dysregulation of CHK1 and CHK2 can lead to genomic instability and to an increased
risk of cancer development [506]. For instance, overexpression of CHK1 and CHK2 promote
cancer cell resistance to radiation or chemotherapies by enhancing their ability to repair
induced DNA damage [511-513]. In the context of CRC, frameshift mutations in CHK1
with microsatellite instability, suggest that CHK1 alterations could represent an alternative
way for cancer cells to escape cell cycle control [514]. On the other hand, studies show
that CHK?2 expression levels CRC cases show an approximately 50% reduction, which may
contribute to the development of colorectal neoplasm [515,516]. In line with these findings,
knockdown of CHK1 expression sensitizes human colon carcinoma cells to DNA-damaging
agents, while suppression of CHK2 had no impact on CRC cells [517]. Specifically, it
appears that inhibition of CHK1, but not CHK2, caused a greater abrogation of the G2
phase by DNA-damaging treatments and a greater sensibility to the same treatments in
CRC cells characterized with TP53 and p21 wild-type proteins [518]. However, whether
CHK1 inhibition can also be exploited for therapy of TP53-wild-type cancers remains
ambiguous [519,520]. Some studies demonstrate a synergy between TP53 deficiency and
CHK1 inhibition [519], while others indicated that TP53 status is only one of the decisive
factors [520,521]. For example, CHK1 abrogation together with TP53 inactivation in TP53-
mutated B-lymphoid cells can result in uncontrolled proliferation leading to direct apoptosis
or mitotic catastrophe [519]. Accordingly, a synthetic lethal relationship between CHK1
inhibition and TP53 deficiency has been observed in soft-tissue sarcomas, but not TP53-
WT undifferentiated pleomorphic sarcoma (UPS) models, which was associated with an
increased proportion of cells with DNA damage [522]. In lung cells, inhibition of CHK1
had a strong effect on TP53 and p21 dynamics, where CHK1 phosphorylation level was
high [523]. In contrast, CHK1 inhibition had almost no effect on TP53 and p21 dynamics
in breast cells, where CHK1 phosphorylation level was low [523]. Additionally, it was
found that p21, both basal and TP53-induced pools, protects normal epithelial cells and
colorectal tumors from the lethal effects of DNA damage as a single stress or in combination
with CHKT1 inhibition [519]. This suggests that p21 attenuators may sensitize tumors,
independent of their TP53 status, to the lethal effects of DNA damage combined with
CHK1 inhibition [519]. While these findings highlighted the impact of CHKs deregulation
in CRC development, they also suggest that the specific downstream effects vary depending
on the cell type and that more research is needed to fully understand these networks [14].
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WEE1

WEE]1 is another kinase that plays a crucial role in the cell cycle, particularly in the
G2/M transition [524]. It functions as a G2 checkpoint regulator by directly phosphorylat-
ing and inhibiting Cdc2, the major cyclin-dependent kinase inducing G2-M progression
in the cell cycle [525]. This inhibitory action prevents the transition from the G2 phase
to the M phase during the cell cycle, ensuring that no DNA damage exists prior to cell
division [525]. In the context of cancer, WEE1’s role in cell cycle regulation has been shown
to promote cell survival in various types of malignancies, including breast cancer [526,527],
leukemia [527,528], melanoma, brain tumors [529], and CRC [530]. Expression of WEEL1 in
CRC appears to be variable and may be influenced by several factors [530]. For instance, a
study found that WEE1 was positive in 52.9% of patients with CRC, which is lower than
the positive rate of WEE1 in melanoma and vulvar squamous cell carcinoma tissues [531].
In terms of clinical significance, WEE1 protein staining scores were found to be significantly
linked with distant metastasis of CRC and high TNM staging [531]. Therefore, inhibition of
WEEL has been suggested as a potential strategy for cancer therapy, especially in combina-
tion with DNA damaging agents [532]. This is because cancer cells often show elevated
replication stress, which likely provides sensitivity to WEE1 inhibitors [533]. Furthermore,
loss of the G1 checkpoint is frequent in tumors and potentially provides increased reliance
on the G2 checkpoint [534], thereby selectively sensitizing cancer cells to checkpoint in-
hibitors like adavosertib (AZD1775), which is a highly selective inhibitor of WEE1 [535-538].
For example, microRNAs miR-424 and miR-503 have been found to directly regulate WEE1
leading to a significant decrease in both mRNA and protein expression levels of WEE1 [535].
Accordingly, a lower level of tumor suppressor miR-424 /503 has been previously reported
in several types of cancer, including CRC [535,539-542]. In fact, WEE1 expression in ovarian
cancer stem-like cells could be resorted by transcription factor NANOG via modulating the
negative impact miR-424 /503 on WEE1 transcripts [535]. Furthermore, this mechanism was
shown to be neutralized in the same model, under atorvastatin stimulation [535]. NANOG
activation has been associated with reduced chemosensitivity and poor survival outcome
in CRC patients [543]. Moreover, cancer cells transduced with shRNA against NANOG
failed to form visible or microscopic hepatic liver colonies, compared with parental cells
in a mouse model of CRC [544]. These findings suggest that NANOG may play a role
in the regulation of WEEL in certain types of cancer such as CRC, potentially through
the modulation of microRNAs [545,546]. However, there are still outstanding questions
regarding the use of WEE1 inhibition as an anticancer strategy [529,547,548]. These include
determining the optimal timing of treatment with the WEE1 inhibitor and DNA-damaging
components of chemotherapy, understanding the impact of WEE1 inhibition on the ge-
nomic integrity of normal cells and tissue, and whether WEE1 inhibition can sensitize CRC
cells to DNA-damaging agents [529,547,548].

Protein Phosphatase-1

In addition to above cell cycle mediators, there are other proteins which despite their
noticeable impact on cell cycle regulation, have not been well-studied in human cancers, in
particular CRC [549-551]. For example, protein phosphatase-1 (PP1) is a serine/threonine
phosphatase involved in the regulation of various cellular processes, including cell division,
proliferation, and differentiation [549]. It is generally considered a tumor suppressor in
cancer [552,553]. PP1 exerts its tumor-suppressive effects by dephosphorylating various
signaling proteins involved in cell cycle control, apoptosis, and DNA repair [554-557]. PP1
plays a role in the transition from the G1 phase (the period before DNA synthesis) to the
S phase (DNA synthesis phase) [553]. It dephosphorylates and inactivates the Rb protein
which is a negative regulator of the G1 to S transition [553,558,559]. By dephosphorylating
Rb, PP1 promotes the activation of E2F transcription factors, allowing the cell to enter the S
phase [559]. PP1 also regulates the activity of the CDK complexes that control DNA replica-
tion [560-562]. During mitotic entry, PP1 dephosphorylates and inactivates CDK1/cyclin B
complexes, allowing the cell to progress from the G2 phase to mitosis [561,562]. In mitotic
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exit, PP1 is involved in the dephosphorylation of various substrates, including the Securing
complex (a protein complex involved in chromosome segregation), kinetochore proteins,
and the nuclear envelope, which facilitate chromosome segregation and the reformation
of the nuclear envelope [563-565]. PP1 also plays a role in the inactivation of SAC by
dephosphorylation and counteraction the activity of kinases involved in the SAC action,
allowing the cell to progress to anaphase once all chromosomes are properly aligned on
the spindle [566,567]. Therefore, PP1 helps maintain genomic stability and prevents the
formation of cancerous cells [568]. PP1 lacks substrate specificity and depends on over
200 regulatory proteins to confer specificity towards distinct substrates [569]. Most of
these regulatory proteins are intrinsically disordered proteins (IDPs) that interact with
PP1 through pre-formed secondary and tertiary structures [570]. The interaction of PP1
with regulatory subunits leads to a pronounced reshaping of the catalytic cleft of PP1,
contributing to the increased substrate specificity of the complex [571]. In the context of
cancer, the protein phosphatase activity of PTEN, a protein that shares similar functions
with PP1 [572], has been found to negatively regulate the SRC-mediated drug-resistant sig-
naling pathway [573]. This suggests that PP1 and similar proteins may play a role in cancer
progression and resistance to treatment [574]. Conversely, dysregulation of PP1 activity
can lead to aberrant activation of Wnt/3-catenin signaling and the PI3K/AKT/mTOR,
MAPK, and AMPK pathways, and eventually promotes tumor growth and progression. It
can also dephosphorylate and inactivate AURKA at T288 residue [575]. Low expression of
PP1 along with spinophilin has been reported to correlate with poor prognosis, increased
tumor aggressiveness, and reduced patient survival rates in lung cancer [576]. While
deregulation of PP1 has not been studied in CRC yet, it has been shown that colorectal
tumors from patients with an increased levels of PPP1R11, a regulatory subunit of PP1,
directly associated with TP53 mutations and metastasis to liver [577]. On the other hand,
correlation analysis of PP1 and DARPP-32, which involves in cancer cell survival and drug
resistance [578], depicted that that low expression of PP1 in samples with a higher level of
DARPP-32 associated with adverse survival in breast cancer patients when compared to
high expression in the same group [579]. These findings suggest that low expression of PP1
may be associated with adverse outcomes in certain types of cancer, but more research is
needed to understand the specific role of PP1 in CRC.

Mitotic Arrest Deficient Protein-2

Mitotic arrest deficient protein 2 (MAD?2) is another key component of the cell cycle
checkpoint machinery that ensures the accurate separation of chromosomes during cell
replication [550,551]. Similar to PP1, MAD?2 also plays a crucial role in SAC regulation [580].
When the chromosomes are unattached or incorrectly attached, MAD2 becomes activated
and forms a complex with other proteins at the kinetochores, which are specialized protein
structures on the chromosomes that bind to microtubules of the spindle apparatus [581].
The formation of this complex generates a signal that inhibits the anaphase-promoting
complex/cyclosome (APC/C), a large E3 ubiquitin ligase that targets key mitotic regulators
for degradation by the proteasome and responsible for promoting anaphase onset [582].
Inhibition of APC/C prevents the degradation of securing and cyclin B, which are necessary
for the cell to progress to anaphase [583,584]. Dysregulation of MAD?2 levels, either by
upregulation or downregulation, can result in similar genomic aberrations and contribute
to decreased patient survival [585]. High MAD2 levels are associated with increased risk of
all-cause death and cancer recurrence in non-ovarian cancers [585]. In CRC, a significant
decrease in the levels of SAC proteins such as Bub1/R1, Mad1/2, and AURKB, along
with the TP53 oncoprotein, has been reported by Twistl overexpression that shows their
collective role in regulating chromosomal stability in cancer cells [586]. MAD2 might also
be related to advanced stages of cancer since its overexpression has been shown in thyroid
carcinoma with an aggressive nature [587]. Meanwhile, MAD2-silenced cells showed a
reduced viability, suggesting this protein as one of the most important effectors of CMLD-
2-induced cell growth decrease [587]. In conclusion, while MAD2 plays a significant role in
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cancer progression and prognosis, its specific role in CRC has not been explicitly detailed
yet. Therefore, more research might be needed to establish this relationship.

4.2.5. Endurance of DNA Damages

Like all cancers, CRC can result from various genetic mutations, including DNA dam-
age [588]. Therefore, these cells have developed several mechanisms to counteract DNA
damage, which contributes to their survival and resistance to treatment [588] (Figure 6).
Various oncogenic signaling molecules regulate these DNA repair mechanisms [587]. For
instance, the forkhead box protein M1 (FOXM1) is a transcription factor involved in the
regulation of various cellular functions, including DNA damage response, cancer stem
cells, and cell cycle regulation [589-592]. It transcriptionally regulates most of the DNA
damage response proteins that are essential for normal cell survival [589]. However, the
overexpression of FOXM1 in cancer cells can lead to chemoresistance, as FOXM1 enhances
DNA repair damaged by these drugs, thereby reducing their effectiveness [590-592]. In
addition, FOXM1 expression has been found to be upregulated in CRC tissues, and its
expression level is negatively associated with the sensitivity of CRC cells to the chemothera-
peutic agent 5-FU [593]. This suggests that silencing FOXM1 may play a role in overcoming
chemoresistance, and invasiveness of CRC cells [594].

The next DNA damage tolerance mechanism is aneuploidy or the presence of an
abnormal number of chromosomes in a cell [595]. As a hallmark, cancer cells like CRC
have adopted mechanisms to cope with the detrimental consequences of aneuploidy, in-
cluding different responses to cellular stresses, immune system activation, and cell cycle
arrest [596]. For example, they may upregulate heat shock proteins and other molec-
ular chaperones to cope with proteotoxic stress or alter their metabolism to deal with
metabolic stress [597-599]. Aneuploidy incidence could increase with the size of colorectal
adenomas, and adenomas with higher degrees of aneuploidy are more likely to progress
to cancer [600,601]. Accordingly, aneuploid CRC tumors have greater allelic loss and are
associated with poor differentiation of the carcinomas, but not with distant metastasis [602].

TRIM31 upregulation is another mechanism cancer cells use to counteract DNA dam-
age induced by radiation [603]. The biological effects of radiation, such as cell death and
redistribution of the cell cycle, involve many pathways, especially DNA damage repair
pathways [604-606]. TRIM31 may be involved in these pathways through its interaction
with ATM, a protein that plays a key role in the cellular response to DNA damage [607]. Ac-
cordingly, enhanced level of TRIM31 promoted invasion and metastasis in CRC cells [608].
In contrast, knockdown of TRIM31 led to increases in ROS production, an aggregation
of DNA damage, and radiosensitivity in CRC cells [607]. Therefore, patients with lower
expression of TRIM31 have better response to preoperative radiotherapy [607].

Alterations in MMR and MSI mechanisms have also a significant impact on DNA
damage tolerance in CRC cells [609]. MMR is a critical DNA repair system that corrects
errors (like base-base mismatches and insertion-deletion loops) that occur during DNA
replication [610,611]. Defects in MMR genes can lead to MSI, a hypermutable phenotype
characterized by lengthy alterations within short repetitive DNA sequences [612]. In CRC,
high level of MSl is associated with a distinct clinical and pathological phenotype, including
proximal tumor location, poor differentiation, and abundant tumor-infiltrating lympho-
cytes [613-615]. Importantly, MSI-H tumors are generally more resistant to chemotherapy
that induces DNA damage, such as 5-FU [53,616], but have a better overall prognosis
compared to microsatellite stable (MSS) tumors [617-619]. The resistance to chemotherapy
in MSI tumors is thought to be due to the increased ability of these cells to tolerate DNA
damage [620,621]. The loss of MMR function in cancer cells allows them to accumulate mu-
tations without triggering apoptosis, leading to the survival of cells that would otherwise be
eliminated [620,621]. This increased DNA damage tolerance can drive tumor progression
and contribute to the development of resistance to DNA-damaging agents [622]. However,
while MSI-H CRC tumors are generally more resistant to certain types of chemotherapy,
they may be more susceptible to immune checkpoint blockade therapy, which has shown
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promising results in MSI-H metastatic CRC [207,623]. In conclusion, MSI and MMR al-
terations can increase DNA damage tolerance in CRC cells, influencing their response to
therapy and overall disease progression [624,625]. However, the exact impact can vary
depending on the specific genetic context and the types of therapy used [624,626].

4.2.6. Evading Cell Senescence Mechanisms

Cell senescence refers to a state in which cells cease to divide and enter a state of
irreversible growth arrest [627]. The two main mechanisms through which cell senescence
can be induced are replicative senescence [628] and premature senescence [629]. Replicative
senescence is related to the limited replicative capacity of somatic cells [630]. During each
cell division, the telomeres, which are protective caps at the ends of chromosomes, become
shorter [631]. Eventually, when telomeres reach a critical length, the cell’s ability to divide is
halted, and it enters replicative senescence [632]. This process acts as a cell division counting
mechanism and is often referred to as the “Hayflick limit”, named after Leonard Hayflick,
who first observed this phenomenon [633]. Premature senescence, on the other hand, is
triggered by various stress signals that can damage the cell’s DNA, activate oncogenes,
or induce oxidative stress [634—-637]. Premature senescence can occur independently of
telomere shortening and does not have a strict limit on the number of cell divisions [638].
Instead, it is induced by specific stresses that the cell experiences [638].

In cancer, both replicative [639-642] and premature senescence [643—645] can play sig-
nificant roles. As cancer cells divide rapidly, their telomeres can become shortened [646]. To
bypass replicative senescence and continue dividing, cancer cells often activate telomerase
or other alternative lengthening of telomeres (ALT) mechanisms [647]. By maintaining
telomere length, cancer cells can evade the normal limitations on cell division, contributing
to tumor growth and progression [648]. Premature senescence can also be induced in cancer
cells in response to various stressors, including chemotherapy and radiation therapy [649].
Therefore, this cellular response serves as a tumor-suppressive mechanism by arresting
the growth of damaged cells [650]. It is a strategy used in cancer treatments to halt the
proliferation of cancer cells and promote their clearance by the immune system [643].

Despite the advances made over CRC growth and development mechanisms, unrav-
eling the processes that allow CRC cells to bypass senescence continues to be a complex
and challenging field of study [651]. It has been shown that genes involved in DNA
replication are significantly deregulated in colorectal tumors, and that overexpression of
certain replication genes could be associated with poor patient survival [652]. Similarly,
loss of TP53 function may be a selection pressure for escaping replicative senescence in
many human cancers, including CRC (Figure 6) [653]. As for the premature senescence
(induced by various factors such as DNA damage [654], oxidative stress [655], and certain
drugs [656]), it seems that the deficiency of Caveolin-1, a protein involved in various cellu-
lar processes, could be a key factor in CRC cell death through activation of the TP53-p21
pathway, a well-known regulator of cell cycle progression and senescence [657]. On the
other hand, Teng-Long-Bu-Zhong-Tang (TLBZT), a traditional Chinese medicine, could
enhance the effects of 5-FU in colon carcinoma, provoke apoptosis or cell senescence, and
inhibit angiogenesis in colon carcinoma [658]. Future studies revealed that TLBZT induces
cell senescence in cancer cells by regulating the levels of p21 and p16, and inhibiting the
phosphorylation of Rb, ultimately leading to cell cycle arrest and potential anticancer
effects [659,660]. Accordingly, it has been shown that low concentrations of camptothecin,
a drug that induces DNA damage, enhanced cell cycle arrest and premature senescence
in human CRC cells, while high concentrations induced apoptosis [661]. The anticancer
effects of camptothecin in cancer cells are mediated through senescence induction via
ATM/CHK2/TP53/p21 pathway and blocking autophagy via AMPK/TSC2-mTOR inhi-
bition axis [662]. In the context of clinical prediction and outcome, senescence has been
shown to be a good treatment response indicator in metastasized CRC patients [663]. Later,
in 2022, a study led by K. Dong et al. developed a senescence-related prognostic signature
to predict the prognosis and immunotherapeutic response of patients with CRC [664]. This
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model can also potentially identify drug targets and aid in guiding PD-1 (programmed
death-1) immunotherapy [665]. Collectively, these studies suggest that both replicative
and premature senescence can play a role in the development and progression of CRC,
and that inducing these processes could represent potential therapeutic strategies for
this disease [664,666]. However, more research is needed to fully understand senescence
mechanism and its implications for cancer treatment [667,668].

Taken together, these mechanisms allow CRC cells to continue growing and dividing
even in the presence of signals that would normally restrain growth, restrict cell cycle
progression, or induce cell death in response to DNA damage [669,670]. As research ad-
vances, scientists are continuously identifying potential therapeutic targets to interfere with
these mechanisms and to develop more effective treatments for CRC [671-673]. Targeted
therapies, immunotherapies, and combination treatments are some of the strategies being
explored to improve the outcomes for patients with CRC [674,675].

4.3. Resisting Cell Death

Cancer cells possess a remarkable ability to circumvent cell death mechanisms and
survive harsh conditions within the tumor microenvironment [676—679]. Faced with diverse
stresses from DNA damage, limited resources, and anticancer therapies, tumor cells have
evolved diverse strategies to resist demise (Figure 6) [677,680,681]. Apoptosis resistance,
achieved through defects in key tumor suppressors and activated pro-survival pathways,
is the most prominent survival strategy [682,683], but not the only one. Cancer cells can
also block alternative cell death modes like necrosis and ferroptosis [684,685]. Moreover,
they induce pro-survival processes like autophagy to evade death and fuel continued
growth [684]. This multi-pronged approach to circumventing cell death allows cancer to
thrive despite the myriad stresses it encounters [684]. Overcoming apoptosis resistance
as well as nonapoptotic death mechanisms has therefore become a major focus of cancer
research to enhance the efficacy of current therapies [684,686,687].

4.3.1. Mechanisms of Intrinsic Apoptosis Resistance

CRC cells frequently have defects in apoptotic pathways that allow the cancer to
develop and progress (Figure 6) [688-692]. A key pathway hijacked is intrinsic apop-
tosis, as CRC tumors encounter various intrinsic stresses in the tumor microenviron-
ment [693]. Hypoxia, or low oxygen levels, is common within the dense tissue of solid CRC
tumors [694,695]. Studies have shown that hypoxia activates the YAP oncogene, which in
turn upregulates the expression of the anti-apoptotic protein Bel-xL [696,697]. Bel-xL works
to block the intrinsic pathway by binding pro-apoptotic effectors like Bax and Bak [698],
preventing their oligomerization and the release of cytochrome ¢ from mitochondria [699].
This inhibition of the intrinsic apoptotic cascade allows CRC cells to evade cell death even
under hypoxic conditions, promoting tumor survival and growth [700].

Other signals produced within the CRC tumor microenvironment also dysregulate in-
trinsic apoptosis. Inflammatory cytokines from immune cells in the tumor have been found
to increase levels of the anti-apoptotic Bcl-2 protein in intestinal epithelial cells [701,702].
Overexpression of Bcl-2 and Bel-xL helps CRC cells bypass intrinsic apoptotic stimuli
to avoid mitochondrial outer membrane permeabilization (MOMP) and caspase acti-
vation [703-705]. Mutations that commonly occur in CRC, such as Wnt pathway acti-
vation [691], indirectly influence anti- versus pro-apoptotic Bcl-2 protein expression as
well [706]. Overall, dysregulated expression of anti-apoptotic Bcl-2 family members is a
major strategy CRC uses to acquire resistance to intrinsic apoptosis and ensure genetically
unstable cells persist [707]. This eventually also allows CRC progression through the
accumulation of additional mutations [708,709].

4.3.2. Evading Extrinsic Apoptosis

The extrinsic apoptosis pathway triggers cell death through activation of cell surface
death receptors (Figure 6) [710]. These receptors belong to the tumor necrosis factor receptor
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superfamily and include Fas, TNFR1, and the TNF-related apoptosis inducing ligand
(TRAIL) receptors TRAILR1 and TRAILR?2 [710,711]. Upon binding of their respective
ligands, these death receptors recruit an adaptor molecule called FADD to their intracellular
death domains [712,713]. FADD contains both a death domain that interacts with the
activated receptor, as well as a death effector domain [714], which enable the recruit of
procaspases-8 and -10 to the activated receptor complex [714]. The clustering of FADD and
procaspase molecules forms a multi-protein structure called the death-inducing signaling
complex (DISC) [714]. Within this DISC, procaspase-8 is brought into close proximity which
allows for self-activation through induced proteolytic cleavage [715,716]. Active caspase-8
can then directly activate downstream effector caspases such as caspase-3, rapidly inducing
apoptosis independent of mitochondrial outer membrane permeabilization [717]. In some
cell types, caspase-8 may also trigger the intrinsic pathway through cleavage of Bid and
mitochondrial involvement [718,719].

As with the intrinsic pathway, CRC cells often develop defects in the extrinsic pathway
that promote evasion of apoptosis [720]. One way is via mutation of death receptors, such
as Fas, that normally initiate the extrinsic apoptotic cascade upon engagement with death
ligands [710]. Another mechanism utilized by CRC cells is downregulation of death ligand
expression [686,688,721]. TRAIL shows promise as a death ligand that triggers extrinsic
apoptosis through DR4 and DRS5 receptors [722,723]. However, studies have found that
TRAIL and its receptors are often downregulated in CRC tumors compared to normal
tissue [65]. This reduction in TRAIL and its receptors decreases the sensitivity of CRC cells
to TRAIL-mediated extrinsic apoptosis [724-726].

IBD disorders, such as UC, that are associated with increased CRC risk have also been
linked to decreased death ligand /receptor systems [727]. UC specifically has been shown
to upregulate expression of the decoy receptor DcR3 [728]. DcR3 competitively binds the
death ligands FasL and TRAIL without initiating the apoptotic signaling cascade [728].
This sequesters the death ligands and reduces the ability of Fas and TRAIL receptors to
trigger extrinsic apoptosis when engaged [729,730]. Overall, CRC cells employ various
strategies such as death receptor mutations, downregulation of death ligands and receptors,
and upregulation of decoy receptors to circumvent triggering of the extrinsic apoptotic
pathway and promote the cancer progression and growth [723,731-735].

4.3.3. Avoiding Non-Apoptotic Cell Death

Necroptosis is a regulated form of necrotic cell death triggered by death receptors like
TNEFR1 [736]. Upon TNFR1 ligation, the complex I machinery recruits RIPK1 and RIPK3
kinases to initiate the necroptotic signaling cascade [736]. CRCs develop resistance to this
pathway through genetic and epigenetic changes that disrupt core components [737,738].
Frequent mutations in CRC directly silence or downregulate expression of RIPK1 and
RIPK3 [739,740]. This prevents the critical phosphorylation events driven by RIPK kinases
that activate downstream molecules like MLKL [741,742]. MLKL normally drives necrotic
plasma membrane rupture, a defining feature of necroptosis [743]. Without RIPK1/RIPK3
signaling, necroptotic execution is effectively blocked in CRC cells [743].

Additional resistance can also occur via epigenetic mechanisms [744,745]. CRC tumors
exhibit promoter hypermethylation of RIPK1, reducing its transcription [746]. CRC cell
lines also secrete factors that sponge TNEF, inhibiting death receptor stimulation of necrop-
tosis [744]. Together, these adaptations allow CRC cells to circumvent controlled necrotic
demolition via death receptors to persist even under conditions conducive for necroptotic
cell death [744,745]. Overall, disabling the RIPK-dependent necroptotic pathway is a key
strategy CRCs use to resist this non-apoptotic cell fate [686,745].

On the other hand, autophagy is a cellular process that involves the degradation and
recycling of damaged or dysfunctional cellular components, such as organelles and pro-
teins [747]. The word “autophagy” comes from the Greek words “auto” (self) and “phagy”
(eating), which together mean “self-eating” [748]. Autophagy is initiated upon cellular
stress through the ULK1/Atg13/FIP200 complex [749]. This normally activates the class III



Int. . Mol. Sci. 2024, 25, 9463

29 of 124

phosphatidylinositol 3-kinase (PI3K) complex containing Beclin-1, which nucleates forma-
tion of the autophagosome isolation membrane [750]. However, CRCs commonly mutate
or delete the Beclin-1 gene, disrupting PI3K complex assembly and function [751]. Without
Beclin-1, autophagosomes cannot efficiently engulf damaged cargo like dysfunctional mito-
chondria and protein aggregates [752]. Studies have shown impaired autophagosome bio-
genesis and accumulation of autophagic vesicles in CRC models lacking Beclin-1 [753,754].
Additional resistance occurs via overexpression of p62/SQSTM1, which not only binds
ubiquitinated aggregates, but also interacts with LC3 to target them for autophagic degrada-
tion [692,755]. High p62 in CRC outcompetes protein aggregate binding to LC3, preventing
autophagic turnover [692,755]. Collectively, mutations impacting Beclin-1 and upregula-
tion of p62 sabotage proper autophagic flux in CRC cells [754]. This allows sequestration
of worn-out or stressed organelles to support biosynthesis and bioenergetics promoting
persistent neoplastic growth [754,756].

Finally, ferroptosis is characterized by lethal lipid peroxide accumulation resulting
from iron-dependent Fenton reactions [756,757]. These reactions produce highly reac-
tive lipid ROS that normally trigger regulated necrotic cell death to eliminate damaged
cells [758]. CRC cells frequently undergo dysregulation in tumor suppressor genes like
Keapl that derepress Nrf2 signaling [759-763]. As a downstream target of Nrf2, GPX4
expression is significantly increased at both mRNA and protein levels in CRCs [764-766].
GPX4 is the key enzymatic regulator of lipid peroxidation, directly reducing toxic lipid
hydroperoxides to halt ferroptotic execution [767]. Studies show GPX4 overexpression
alone might be sufficient to confer complete resistance to ferroptotic inducers in CRC
cell lines [768-772]. Additional findings indicate GPX4 is also epigenetically upregulated
in CRC through histone modifications at its promoter [773]. High GPX4 then potently
scavenges lipid ROS to circumvent iron-dependent cell death, even under conditions of
oxidative and ER stress that would normally trigger ferroptosis [774]. Together, these
GPX4-centered adaptations allow CRC tumors to evade this physiological form of regu-
lated necrosis and continue thriving despite aberrant accumulation of iron and oxidative
damage [774-776].

4.4. Deregulating Cellular Energetics and Metabolism in CRC

Cellular metabolism is tightly regulated to maintain energetic and anabolic homeosta-
sis [777]. In normal cells, glucose and oxygen are broken down through sequential biochem-
ical pathways to efficiently generate energy through oxidative phosphorylation [778]. The
citric acid cycle and electron transport chain fully oxidize nutrients to fuel mitochondrial
ATP production [778]. Cell proliferation is precisely controlled by metabolic and growth
signaling networks [779]. However, cancer cells undergo metabolic reprogramming to
support rapid uncontrolled growth (Figure 6) [679]. The disruption of metabolic regula-
tion can be achieved by oncogenic mutations, hypoxia, and other microenvironmental
cues [780]. For example, oncogenic BRAF mutations lead to metabolic alterations in less
than 10% of CRC cells [781]. A common feature is increased aerobic glycolysis despite
under normoxic conditions, known as the “Warburg effect” [782,783]. This heavy reliance
on glycolysis allows cancer cells to shunt metabolic intermediates towards biomass genera-
tion through pentose phosphate and other anabolic pathways [783,784]. CRC exemplifies
dramatic metabolic alterations that fuel tumor progression [785,786]. For example, CRC
cells exhibit increased glucose transport and expression of glycolytic enzymes [785,787].
They also depend more on glutamine and beta-oxidation of fatty acids [788-790]. These
adaptations generate precursors for macromolecule biosynthesis essential for CRC cell
proliferation [788-790]. Oncogenic KRAS mutations in CRC activate signaling cascades
that cement the metabolic switch towards glycolysis [785,791,792].

Herein, we will discuss key aspects of how metabolic reprograming supports CRC,
including the basis of the Warburg effect and the impact of specific dysregulated en-
zymes on downstream pathways governing CRC pathology. Systems that feedback to
further enhance metabolic flexibility in CRC will also be covered. Finally, the targeting of
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metabolic vulnerabilities for CRC therapeutic development will be presented along with
their challenges.

4.4.1. The Warburg Effect

The Warburg effect plays a crucial role in supporting the rapid growth and progression
of CRC through molecular reprogramming of cancer cell metabolism [793]. A primary
driver is the presence of oncogenic KRAS mutations that occur in approximately 50%
of CRC cases [794]. Mutant KRAS directly activates downstream signaling pathways
like RAF/MEK/ERK and PI3K/AKT, even under normoxic conditions within the tumor
microenvironment [795]. A key consequence is the stabilization and accumulation of
the a-subunit of hypoxia-inducible factor 1 (HIFle), a major transcription factor that
regulates the cellular response to low oxygen levels [796]. However, in CRC, elevated HIF1 o
resulting from oncogenic KRAS signaling induces transcriptional upregulation of numerous
glucose transporters and glycolytic enzymes under normoxia [780,797]. This includes
increased expression of GLUT family members that import more glucose into tumor
cells, as well as rate-limiting enzymes like hexokinase 2 (HK?2) and lactate dehydrogenase
A (LDHA) [781,798]. Collectively, these molecular alterations driven by mutant KRAS
promote aerobic glycolysis, known as the Warburg effect, as the dominant metabolic
program in CRC cells to support their insatiable energetic and biosynthetic demands of
uncontrolled growth and proliferation [794].

By accelerating aerobic glycolysis, or the Warburg effect, through molecular changes
driven by mutant KRAS, CRC cells shift away from using the more efficient oxidative
phosphorylation pathway to generate ATP [679,784]. Although glycolysis produces ATP at
a lower rate, this metabolic reprogramming allows CRC cells to divert a greater portion of
glycolytic intermediates into ancillary pathways that fuel biosynthesis [679,799,800]. A key
example is the pentose phosphate pathway, into which glucose-6-phosphate can enter after
being phosphorylated by hexokinase [679]. Overexpressed enzymes in CRC cells like phos-
phofructokinase and pyruvate kinase M2 further flux carbon through glycolysis [679,785,801].
Sustained aerobic glycolysis, or the Warburg effect, meets the high energy and anabolic
precursor demands required for cancer cells to rapidly grow and divide [784,802]. Excess
lactate produced is exported from CRC cells by monocarboxylate transporters, acidifying
the microenvironment in a manner that supports invasion, metastasis, and evasion of
antitumor immunity through immune suppression [803-806].

The reliance on aerobic glycolysis, or the Warburg effect, provides CRC cells significant
metabolic plasticity and flexibility [807]. This supports their ability to adapt to different
tissue microenvironments during metastasis [678]. For example, CRC liver metastases
demonstrate the capability to relatively increase glutamine metabolism and glutaminol-
ysis compared to primary colon tumors [808]. Such metabolic reprogramming facilitates
colonization at secondary sites [809,810]. Non-invasive FDG-PET/CT imaging capitalizes
on altered FDG glucose uptake by CRC tumors to serially monitor treatment response
patterns [811,812]. Preclinical studies have shown that directly targeting enzymes causal
to aerobic glycolysis, such as hexokinase and lactate dehydrogenase, can inhibit CRC
progression both alone and synergistically with chemotherapy [781,813]. This under-
scores glycolysis as an exploitable metabolic dependency downstream of oncogenic KRAS
signaling that fuels CRC development and aggressiveness [679,784]. Overall, extensive
reprogramming of central carbon metabolism drives the progression of this malignancy by
meeting heightened energetic and biosynthetic needs.

4.4.2. Dysregulated Glucose and Glutamine Metabolism in CRC Cells

In addition to the Warburg effect driving increased glycolysis, CRC cells also exhibit
dysregulated metabolism of the amino acid glutamine to support tumor growth and sur-
vival (Figure 6) [814]. Glutamine is taken up via increased expression of transporters like
SLC1ADS, then converted to glutamate by elevated glutaminase isoform GLS2 [815-817].
This drives the entry of glutamine-derived carbons into the Krebs cycle (also known as
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citric acid cycle or tricarboxylic acid cycle/TCA) via a-ketoglutarate [818,819]. Around
10% of CRCs also exhibit mutated IDH1, generating NADPH from «-ketoglutarate to
maintain redox balance during rapid growth [819]. Glutamate can be further metabolized
in the mitochondria to fuel ATP production or translocated to the cytosol for biosynthe-
sis of molecules like glutathione, non-essential amino acids, and nucleotides [820-822].
GLUT transporters also import high intracellular levels of glucose to feed glycolysis and
produce lactate [823,824]. However, glucose-derived pyruvate can enter the TCA cycle,
and intermediates from both nutrients converge at oxaloacetate to mutualistically support
anabolism [825-827].

Metabolic reprogramming exhibited by CRC cells confers significant flexibility in their
utilization of key carbon and nitrogen sources [828,829]. Rewired glucose and glutamine
metabolism pathways allow tumors to adjust relative reliance on these nutrients depending
on environmental conditions [830-833]. For example, proliferating CRC cells may increase
glutamine metabolism and decrease their dependence on glucose uptake under normoxic
conditions in certain tissues like the liver, employing glutaminolysis to better support
aerobic proliferation [816,834,835]. The many biosynthetic roles of glutamine in CRC par-
ticularly involve generation of non-essential amino acids and collagen, a major component
of the extracellular matrix [788,836,837]. Heightened collagen production facilitates CRC
cell invasion into surrounding stroma and the formation of metastases [838]. Non-invasive
analytical techniques like using 13C-labeled glucose [839] and glutamine [840] have begun
to elucidate how nutrient flux is altered in individual patient tumors. Such emerging
metabolomic profiles could complement genomic analyses to stratify CRC subtypes and
predict response to targeted inhibitors [841]. In this regard, dual blockade of glutaminol-
ysis and glycolysis, as shown preclinically with combined glutaminase and hexokinase
inhibition, holds promise for comprehensively restricting the multiple nutrient supply lines
exploited by CRC to fuel uncontrolled growth, survival, and dissemination [842].

4.4.3. Role of Oncogenic Drivers” Mutations in Reprogramming Metabolism in CRC

Mutant KRAS is a primary oncogenic driver that rewires cellular metabolism in CRC
through MAPK pathway activation (Figure 6) [794,843]. KRAS signaling leads to chronically
elevated ERK1/2 downstream, even under normoxia within tumors [844]. This stimulates
the expression of HIF1x and other hypoxia-responsive factors normally [845,846]. HIF1 o
then induces transcriptional upregulation of numerous glycolytic enzymes and GLUT
transporters [847]. Constitutive MAPK signaling also feeds into mTORC1 to promote
anabolic processes [848]. The metabolic effects of mutant KRAS are further compounded
if concurrent PI3K pathway mutations occur in PI3K, PTEN, or AKT genes [849-851].
Activated PI3K/AKT then further enhances HIF1a activity, HK2 and LDHA expression,
and glutaminolysis [785,852,853]. mTORC1/2 signaling emanating from PI3K deregulation
also drives lipogenesis and biosynthesis [854,855].

The concomitant activation of MAPK and PI3K/AKT pathways downstream of com-
mon KRAS and PI3K mutations has profound cooperative effects on rewiring central
carbon metabolism in CRC cells [856]. Both pathways converge on promoting HIF1o
activity and transcriptome changes that boost glycolysis, glutaminolysis and nutrient trans-
port [830,852,857,858]. Mutant KRAS-driven MAPK signaling stimulates expression of
numerous glycolytic enzymes and GLUTs via ERK/HIF1« signaling [859,860]. Concur-
rently, hyperactive PI3K/AKT leads to further induction of HK2, LDHA, and glutamine-
associated enzymes through mTORC1/2 and HIF1«, as well [853,857]. This dual activation
mechanism elicits greater magnitude alterations in glycolytic and TCA cycle flux compared
to either pathway alone [780,861]. The metabolic reprogramming rendered by oncogenic
KRAS and PI3K cooperation is critical to sustaining drastic increases in energetic and
biosynthetic requirements of CRC proliferation [862]. It also provides metabolic plasticity
that enables adaptation to diverse microenvironments and evasion of cell death signals,
thereby facilitating disease progression and therapy resistance [863,864]. Targeting both
the MAPK and PI3K networks may help break this metabolic symbiosis, restricting the
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extensive metabolic transformations that fuel CRC growth and survival [865,866]. The use
of combined small molecule inhibitors against MEK/ERK and AKT pathway components
show promise as strategically focused combination treatments [284].

4.4.4. Adaptive Metabolism in CRC: Autophagy, Catabolism, and Mitochondrial Plasticity
under Nutrient Deprivation

CRC cells strongly induce autophagy as a survival mechanism under low nutrient
conditions (Figure 6) [867]. During periods of glucose and glutamine depletion, which
commonly occur in poorly vascularized tumor microenvironments, autophagy acts as a
nutrient stress response [785]. Through lysosomal degradation of damaged organelles and
proteins, autophagy recycles intracellular components into simple building blocks [868,869].
It generates free amino acids that can directly enter central carbon metabolism through
replenishing TCA cycle intermediates like glutamine, or be used for gluconeogenesis
to resynthesize glucose [869]. Autophagy-derived lipids and fatty acids are also catab-
olized to produce acetyl-CoA and ketone bodies for ATP generation in mitochondria
under hypoxia [870,871]. This autophagic recycling allows CRC cells to maintain growth,
proliferation and anti-apoptotic pathways even in the absence of ample exogenous nu-
trients [870,872]. By liberating biosynthetic precursors internally through self-digestion,
autophagy acts as a key adaptive strategy that enables CRC cell survival under low glucose
and glutamine conditions [871,872].

CRC tumors activate additional catabolic processes including lipolysis and protein
degradation to break down stored macromolecules [873-875]. Enhanced lipolysis occurs
through increased expression of lipases such as adipose triglyceride lipase that hydrolyze
triglycerides in lipid droplets [876]. This releases free fatty acids that CRC cells can readily
use through fatty acid oxidation [876]. Fatty acid catabolism in the mitochondria gener-
ates acetyl-CoA and NADH to help fuel ATP production via the electron transport chain,
especially under hypoxic stress [877-879]. Concurrently, proteasomal degradation and au-
tophagic recycling of proteins liberates free amino acids, especially glutamine, which acts as
a critical anaplerotic substrate [880,881]. These catabolism mechanisms break down stored
energy sources into smaller bioavailable nutrients that CRC cells can employ to survive pe-
riods of low glucose or glutamine availability typically found within tumors [788,799,882].

4.4.5. Metabolic Diversity among CRCs: How Disease Stage, Genetics, and Location
Drive Variability

CRC tumors exhibit considerable heterogeneity in their metabolic profiles based on
staging, location, genetics, and other factors [883,884]. More advanced cancers stages
(i.e., III-IV) demonstrate pronounced increases in aerobic glycolysis and glutaminolysis
to fuel their invasive growth patterns [799]. These late-stage tumors also robustly induce
autophagy and catabolic programs to salvage nutrients under nutrient stressed conditions
within bulky tumor masses [885]. Additionally, the primary location of the CRC influences
metabolism, as right-sided tumors commonly bearing BRAF mutations show preferential
reliance on glutamine due to mitochondrial alterations induced by oncogenic BRAF signal-
ing [70,816,886-889]. In contrast, left-sided CRCs lacking BRAF mutations typically exhibit
increased dependence on glycolysis [816,843,889,890].

Intratumoral heterogeneity in CRC metabolism is also prevalent and driven by somatic
mutations found in subpopulations [883,891-893]. Genome-wide analyses have found al-
tered metabolic enzyme expression profiles and flux patterns between KRAS-mutant versus
wild-type regions within CRCs [892-895]. KRAS-driven glycolysis and glutaminolysis
renders these subclones less sensitive to metabolic therapies that may still target oxidative
regions [781,785,835,896]. Additional mutations impacting genes like HIF1A, IDHI, or
tumor suppressors further introduce variability in metabolic wiring between CRC tumor
cells and microenvironments [897-900]. This intratumoral diversity poses challenges to
targeted metabolic therapies but may be overcome through predictive biomarkers and
combination treatments [901-903].
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4.4.6. Exploring the Microbiome-CRC Metabolic Interface

The gut microbiome also plays an important role in influencing CRC tumor metabolism
and responses to therapy through the metabolites it produces [904]. Certain bacterial
species, such as Bacteroides associated with Western diets, produce tumor-promoting effects
by metabolizing primary bile acids into secondary bile acids like deoxycholic acid [905-907].
These secondary bile acids enter the tumor microenvironment and activate the farnesoid
X receptor (FXR) in CRC cells [908-910]. This induces expression of FGF19, stimulating
proliferative pathways such as MAPK and (3-catenin, which promotes cell cycle progres-
sion and inhibits apoptosis [911]. Other gut pathogens secrete volatile organic compounds
that generate oxidative stress, activating Wnt/ 3-catenin signaling through phosphoryla-
tion and degradation of the APC tumor suppressor [912-914]. Compounds from bacteria
like Fusobacterium nucleatum and Enterobacteriaceae support inflammation and drive ge-
nomic instability within the CRC microenvironment [915-917]. Additionally, antibiotic or
chemotherapy use can alter the microbiome composition and metabolite outputs through
dysbiosis, potentially compromising treatment responses [918-921]. Modulation of the gut
microbiome and its metabolic functions therefore presents opportunities to influence CRC
metabolism and therapeutic response [907].

Commensal gut bacteria exert potent antitumor effects in CRC through the production
of short chain fatty acids (SCFAs) like butyrate [907,922-924]. Butyrate is produced through
the fermentation of dietary fiber by certain bacteria including Clostridia and Faecalibacterium
prausnitzii [925-928]. In CRC cells, butyrate functions as a histone deacetylase (HDAC)
inhibitor, preventing deacetylation of histone proteins [929]. This modifies chromatin
structure, increasing transcription of tumor suppressor genes involved in cell cycle regu-
lation such as p21 [672]. Butyrate also inhibits GSK3f phosphorylation, which stabilizes
[-catenin for proteasomal degradation and blocks Wnt pathway stimulation of prolifera-
tion [930]. Through these epigenetic modifications, butyrate induces cell cycle arrest and
apoptosis in CRC cells [931]. Additionally, as an HDAC inhibitor, butyrate establishes an
anti-inflammatory environment in both the gut and tumor microenvironment by inhibiting
HDAC activity in macrophages and dendritic cells (DCs) [932,933]. Supplementing bu-
tyrate through dietary interventions or modulating the bacterial community composition
to enrich butyrate-producers represents a promising strategy to establish protective micro-
bial metabolites that directly impact oncogenic and tumor suppressor signaling pathways
critical to impairing CRC pathogenesis [934-939].

4.4.7. Metabolic Rewiring during EMT and Metastatic CRC

Glycolytic reprogramming plays a pivotal role in EMT and metastasis [940]. At
the molecular level, EMT is driven by alterations in key metabolic regulators, includ-
ing transcription factors (TFs) Snail, Slug, and Twist that directly repress miR-200 fam-
ily microRNAs, which normally target glycolytic genes GLUT1/3 and Pyruvate kinase
M2 (PKM2) [941,942]. Overexpression of EMT-TFs therefore induces aerobic glycolysis
through transcriptional and post-transcriptional changes [941,943,944]. This includes in-
creased HIF1«x signaling via PI3K/AKT/mTORC1, leading to upregulation of glucose
transporters and glycolytic enzymes phenotype [785,945,946]. CRC cells undergoing EMT
exhibit increased GLUT1/3 transcription and membrane localization to enhance glucose
uptake [787,947,948]. This supports elevated glycolytic flux and lactate production under
normoxia, providing nutrients and reducing equivalents to fuel the biosynthetic require-
ments of migration and invasion [823,949,950]. PKM?2 is also induced, shunting pyruvate
away from the TCA cycle, which would otherwise contribute to energy production through
oxidative phosphorylation [801]. Instead, PKM2 promotes lactate production and supports
the anabolic processes necessary for migration and invasion [679].

Mitochondrial dynamics also undergo significant alterations during EMT and metas-
tasis of CRC cells [951]. During EMT, loss of E-cadherin triggers mitochondrial fission and
fragmentation through Drpl, favoring migration and invasion [952]. At metastatic sites,
tumor cells alter their metabolism to meet the bioenergetic and biosynthetic demands upon
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colonizing distant tissues [786,953]. Mitochondrial biogenesis and oxidative phosphoryla-
tion are often augmented, driven by oncogenes like c-Myc and HIF2« [953,954]. However,
emerging evidence from metabolomic profiling reveals diverse mitochondrial heterogene-
ity between primary and metastatic lesions [955,956]. In fact, studies have shown that
metastasized tumors within the same patient exhibit metabolic variability [949,957]. For
example, some metastatic tumors rely more heavily on glycolysis or glutaminolysis de-
pending on tissue-specific signaling cues [821,949,958]. These unique discrepancies provide
avenues to develop combination therapies tailored to the vulnerabilities of each metastatic
site [956]. Targeting glycolytic enzymes like GLUT or MCT inhibitors may impede EMT
and cancer dissemination by disrupting metabolic reprogramming associated with these
processes [855,940,959]. Similarly, blocking glutaminolysis [835] or altered oxidative phos-
phorylation [785] in specific metastases offers opportunities to prolong survival in advanced
CRC. Continued multi-omics analyses of metabolic evolution during CRC progression
should illuminate additional targets to include with conventional drugs, thereby improving
outcomes for patients with liquid or solid tumor metastases [960,961].

4.5. Tumor-Promoting Inflammation in Colorectal Carcinogenesis

Chronic inflammation establishes a pro-tumorigenic environment in the colon for
conditions such as UC and Crohn’s disease (CD) [962]. Patients with long-standing UC or
CD have a 4- to 18-fold elevated risk of developing CRC compared to the general population
due to prolonged gut inflammation [963,964]. Prolonged inflammation involves immune
cell infiltration that secretes factors remodeling the environment into a state conducive to
uncontrolled cell growth over decades [965].

4.5.1. Inflammation-Driven Molecular Mechanisms

At the molecular level, macrophages and neutrophils contribute to chronic inflamma-
tion and increased cancer risk through both acute and prolonged effects (Figure 6) [966-968].
In the short term, these immune cells secrete ROS and cytokines to eliminate pathogens
and cell debris. ROS react with DNA, potentially inducing oxidized base mutations if
unchecked [969,970]. Cytokines simultaneously activate intracellular signal transduction
by binding to cell surface receptors, stimulating cascades such as NF-«B that reshape the
microenvironment [971-973]. However, decades of repeated exposure to this inflammatory
barrage have deeper, long-lasting consequences [974,975]. Persistent ROS generation sub-
jects surrounding colonic cells to chronic oxidative stress, gradually accumulating DNA
damage that may mutate critical cancer driver genes [976-978]. Constitutive cytokine
signaling also exerts epigenetic modifications and sustained activation of pro-inflammatory
and pro-growth signaling like NF-«B, which disrupt normal cellular processes and set
the stage for uncontrolled proliferation [979-982]. Together, these molecular alterations
incited by macrophages and neutrophils establish a pro-tumorigenic microenvironment
conducive to cancer development over the prolonged course of conditions such as UC and
CD [966-968].

The NF-«B signaling pathway plays a central role in linking chronic intestinal inflam-
mation to CRC development [983,984]. At the molecular level, pro-inflammatory cytokines
like TNF- and IL-1p stimulate NF-«B activation upon engaging their cell surface receptors
(Figure 6) [985]. This triggers a cascade of intracellular events, starting with recruitment
of adaptor proteins and degradation of the inhibitory protein IkB [986]. Relief from IkB
repression allows the NF-«B transcription factor to translocate to the nucleus and transacti-
vate a myriad target genes [987]. Prolonged cytokine stimulation maintains NF-«B in its
active state, resulting in chronic overexpression of pro-inflammatory, anti-apoptotic, and
mitogenic genes critical for tumorigenesis [668,973,988].

Sustained NF-«B signaling also exerts genomic instability through multiple mecha-
nisms (Figure 6) [972,988-991]. It disrupts DNA damage response pathways, preventing
efficient repair of cytokine-induced mutations [992,993]. NF-kB also induces expression
of proteins involved in DNA replication and cell cycle progression, collectively increasing
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cellular mutation rates over the long-term presence of inflammation [994]. These effects
directly enable accumulation of the genetic alterations required to transformed normal
colonic epithelium into malignant cancer [668,989,994,995]. Therefore, persistent activa-
tion of the NF-«B pathway by cytokines represents a key molecular link between chronic
intestinal inflammation and elevated CRC risk [702,972,981,996].

4.5.2. Long-Term Epigenetic Repercussions of Prolonged Inflammation

Chronic inflammation also induces long-term epigenetic alterations that profoundly
influence CRC risk at the molecular level [997,998]. Prolonged exposure to cytokines
and ROS modifies chromatin structure and DNA methylation patterns within colono-
cytes over many decades [999-1001]. Histone modifications induced by inflammatory
signaling, such as acetylation and oxidation, relax chromatin and stimulate expression
of oncogenic genes [1002-1004]. Meanwhile, cytokines and ROS directly and indirectly
influence DNA methyltransferases to gradually accumulate aberrant CpG island hyper-
methylation [1005,1006]. These heritable epigenetic changes modify cellular behaviors
and phenotypes without direct DNA mutations [1007-1009]. The accumulation of histone
modifications and dysregulated DNA methylation across colonic epithelial cells, resulting
from years of constant inflammatory cues, generate broad genomic instability conducive to
cancer development [1003,1010]. Epigenetic alterations developmentally reprogram colonic
tissues at the molecular level, facilitating an environment supportive of uncontrolled pro-
liferation [1011-1013]. These chronic inflammation-driven epigenetic transformations
represent an additional critical link between inflammatory bowel diseases and elevated
long-term CRC risk through non-mutational gene regulation changes [1014-1016].

4.5.3. Microbiota Interactions Exacerbate Inflammation and Carcinogenesis

The gut microbiota also influences chronic intestinal inflammation and CRC risk
through molecular interactions at the epithelial interface [904,1017]. Bacterial secondary bile
acids generate ROS in colonocytes, directly inducing oxidative DNA damage through for-
mation of lesions like 8-ox0-dG altered nucleotides or adducts [1018,1019]. They also bind
DNA nucleotides to form bulky and etheno adducts that distort the DNA helix, resulting
in mutations over years [906,1020]. As depicted in Figure 7, certain pathobionts (organisms
native to the host’s microbiome) engage Toll-like receptors (TLRs) on colonocytes, recruiting
adaptor proteins like MyD88 triggering downstream NF-«B signaling cascades [1021-1023].
Prolonged TLR stimulation by changes in the microbiota (dysbiotic) maintains prolonged
NEF-«B activation leading to chronic overexpression of genes disabling DNA damage re-
sponse and promoting mitogenic/anti-apoptotic pathways [980,1024-1026]. This sustained
dysbiosis-driven NF-kB activation exerts the same molecular effects attributed to immune
cells during chronic gut inflammation that elevate risk over decades [1027-1029].

In addition, the gut microbiota influences CRC development through long-term epi-
genetic modifications to colonocytes [1030,1031]. Microbial metabolites regulate the one-
carbon metabolic pathway within epithelial cells, indirectly altering DNA methylation pro-
files by providing methyl groups [1032-1034]. Certain metabolites like secondary bile acids
have also been shown to directly influence DNA methyltransferase activity and gene methy-
lation levels in colonocytes [1035]. Prolonged dysbiosis reshapes histone modifications
over time via their effects on histone-modifying enzymes and chromatin accessibility as
bacteria engage cellular receptors to stimulate epigenetic modifiers [1034,1036-1038]. This
results in aberrant chromatin landscapes with changes to histone codes at genes involved
in processes like proliferation, DNA damage repair, and stress response [1034,1039,1040].
The accumulation of these stochastic epigenetic alterations, including dysregulated DNA
methylation and aberrant histone modifications, affects gene expression profiles supporting
cancer processes when accrued over decades [1041]. At the molecular level, microbes repre-
sent a critical environmental factor driving the non-mutational, heritable changes to the
epigenome that developmentally reprogram colon tissues and increase CRC risk through
long-term epigenetic impacts of dysbiosis [998,1036,1042,1043]. Microbial metabolites and
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ligands can also both directly and indirectly drive the pathogenic DNA and epigenetic
alterations linking chronic gut inflammation to CRC progression [1017,1040,1044].
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Figure 7. Gut microbiome-host interactions in colorectal cancer development. The gut micro-
biome plays a crucial role in influencing colorectal cancer (CRC) development and progression. This
schematic image illustrates the presence of both potentially pro-carcinogenic pathogens, including
Fusobacterium nucleatum (F. nucleatum), Peptostreptococcus, Streptococcus, and Escherichia coli (E. coli), as
well as beneficial probiotic species like Lactobacillus, Bifidobacterium, and Bacteroides fragilis (B. fragilis).
These microbes interact with the colonic epithelium, influencing the proliferation of CRC cells and
the process of tumorigenesis. For instance, B. fragilis and E. coli can promote CRC progression by acti-
vating the TLR/NF-«B signaling pathway. B. fragilis secretes polysaccharide A (PSA), which acts as a
TLR2-specific agonist. The binding of PSA to TLR2 leads to downstream NF-«B activation, a key tran-
scription factor that promotes CRC cell proliferation, survival, angiogenesis, and metastasis. NF-«xB
signaling induced by PSA enhances CRC growth and development by increasing pro-inflammatory
cytokines like IL-6 and IL-8, leading to chronic inflammation and fostering CRC progression. PSA
also stimulates TLR2 expression on colon and CRC cells, creating a positive feedback loop wherein
higher TLR2 levels induce greater NF-«B responses to repeated PSA, driving cell proliferation. PSA
protects CRC cells from chemotherapy and activates NF-«B survival signaling as well. Meanwhile,
B. fragilis lipopolysaccharide (LPS) engages TLR4, stimulating NF-«B -mediated expression of genes
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for survival, invasion, and angiogenesis in CRC tissues with co-expressed TLR4 and NF-«B. LPS
increases cytokines like IL-1p and IL-6 via NF-kB, fueling tumor growth and metastasis. It also
induces COX-2 and EMT through NF-«B. E. coli LPS also can bind TLR4, triggering MyD88 re-
cruitment and mitochondrial reactive oxygen species (ROS) generation via NOX1 upregulation in
a NF-«B -dependent manner. Elevated mitochondrial ROS activates MAPKs and IKB oxidation, as
well as nuclear translocating NF-«B. This underscores the importance of maintaining a balanced
gut microbiome to modulate the tumor microenvironment and potentially prevent or manage CRC
development. Figure created using BioRender.

4.5.4. Inflammation and Genomic Instability

Inflammation can also contribute to CRC pathogenesis through its impact on telom-
ere biology [1045,1046]. Specifically, inflammatory can accelerate telomere shortening by
promoting oxidative stress, DNA damage, and increased cell turnover [1047]. Chronic
inflammation also leads to the activation of immune cells releasing of pro-inflammatory
cytokines and ROS, all of which contribute to telomere attrition [1047-1049]. Additionally,
inflammatory processes can upregulate telomerase activity, which not only compensates
for telomere shortening, but also contribute to the survival and proliferation of cancer
cells [1050]. Furthermore, telomerase itself can have pro-inflammatory effects through the
modulation of pro-inflammatory cytokine levels, which promote immune cell recruitment
and an inflammatory microenvironment associated with tumor progression [1051,1052].
Overall, the interplay between telomere biology and inflammation is complex and mul-
tifaceted [1053-1055]. Telomere dysfunction and chronic inflammation can mutually fuel
each other, creating a vicious cycle that supports the initiation and progression of colon
cancer, particularly in individuals with IBD such as UC [1045,1056]. Therefore, understand-
ing the molecular mechanisms underlying this relationship is important for developing
strategies to prevent or intervene in the development of CRC in high-risk populations [996].

In summary, chronic intestinal inflammation establishes a pro-tumorigenic environ-
ment conducive to CRC development over decades. Immune cells and gut microbiota
alike perpetuate inflammation and its associated molecular changes [1057,1058]. Persis-
tent ROS and cytokine signaling induce DNA damage, disrupt cellular processes, and
activate oncogenic signaling pathways like NF-kB [1059,1060]. Prolonged inflammation
also causes enduring epigenetic changes through histone modifications and aberrant DNA
methylation [1061]. The cumulative molecular and epigenetic alterations derail epithelial
homeostasis and increase mutational burdens in cancer genes [1013,1062-1064]. Over many
years, this inflammation-driven pathogenic cascade stochastically accumulate genetic and
epigenetic alterations required for malignant transformation of colonocytes [1062]. Effec-
tive long-term management of chronic gut inflammation may help curb these sequential
molecular events and lower CRC risk in conditions such as IBD [9,1065]. Taken together,
the discussed mechanisms elucidate how chronic inflammation acts as a key driver of
colorectal carcinogenesis through diverse influences at the DNA, RNA, and protein levels
in addition to epigenetic changes.

4.6. Avoiding Immune Destruction by CRC Tumors

The immune system plays a vital role in protecting against cancer through its ability to
recognize and eliminate tumor cells [1066]. The innate and adaptive immune systems work
in close collaboration to identify and eliminate developing tumor cells [1067,1068]. Natural
killer (NK) cells constitutively patrol tissues and induce antibody-dependent cellular
cytotoxicity against malignant cells lacking appropriate self-markers [1069]. Macrophages
and other myeloid cells phagocytize tumor debris and apoptotic bodies [1068,1070]. They
also secrete cytokines to activate adaptive immune responses [1070]. CD8" cytotoxic T
lymphocytes (CTLs) have T cell receptors that directly recognize tumor-specific antigens
displayed on cell surface major histocompatibility complexes (MHC) class I molecules of
cancer cells [1071]. Once tumor antigens are endocytosed by resident dendritic cells (DCs)
in tissues, DCs migrate to lymph nodes where they present processed peptide fragments
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to CD4" helper T cells and CD8" CTLs [1072-1075]. Activated tumor-specific T cells then
proliferate and circulate through peripheral blood and lymph, migrating back to sites of
tumor development [1076]. When this immunoediting process functions properly through
immune surveillance and elimination phases, it prevents establishment of clinically evident
cancer [1077]. Immunotherapies seek to re-engage the immune system’s intrinsic ability
to identify and destroy malignant cells through vaccines, checkpoint inhibitors, and other
modalities [1077,1078].

Unfortunately, CRC tumors evade immune detection and suppression through various
mechanisms [1079-1081]. One strategy is to decrease tumor antigen expression and cell
surface MHC class I molecules to shield themselves from T cell recognition [1082]. Alter-
natively, immunosuppressive cytokines and metabolites in the tumor microenvironment
also paralyze antitumor immune effector cells [1079]. Recruitment of regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) establishes local immunosuppres-
sion. Tumors also exploit checkpoint molecules to inhibit T cell activation [1083-1085]. By
orchestrating the infiltration of suppressor cells within the tumor and surrounding stroma,
CRC tumors establish an immune desert where effector T cells and natural killer (NK) cells
cannot eliminate cancer cells [1083-1085].

4.6.1. Immune Cell Subsets in the Tumor Microenvironment
CD8* Cytotoxic T Cells

T cells are central players in antitumor immunity Figure 8 [1086,1087]. The CD8" T
cell subset recognize tumor antigens presented on MHC class I molecules and kill cancer
cells [1086,1087]. However, CRC tumors suppress CD8" T cell activation through several
mechanisms [1085,1088]. For example, MDSCs in the tumor can secrete arginase and ROS
that deprive CD8" T cells of essential amino acids and induce oxidative stress [1085,1089,1090].
This renders them exhausted and unable to proliferate [1091]. CRC tumors can also
recruit MDSCs and express galectins to induce T cell apoptosis [1092-1094]. As a result,
MDSCs present antigens in an immune subdued manner [1095] or enhance IDO/IDO2
expression [1096,1097] to deplete tryptophan essential for T cells.

Tumor cells also downregulate MHC class I to evade detection by CD8* T cells [1088,1098].
In a similar fashion, cancer cells can modulate the expression of surface checkpoint
molecules like programmed cell death protein 1 (PD-1) on CD8" T cells to functionally
impair their cytotoxic effector function within tumors [1099]. In fact, upregulation of PD-1
on CD8" T cells can be induced in the microenvironment through various mechanisms in-
cluding chronic antigen exposure and tumor-mediated immunosuppression [1100]. Tumors
can also produce inhibitory cytokines like TGF-{3 [1101], IL-10 [1102], and prostaglandin
E2 [1103], which directly suppress T cell effector functions. Cancer cells including CRC
can also co-express the PD-1 specific ligand (PD-L1) to engage PD-1 and deliver inhibitory
signals to CTLs [1104-1106]. This interaction effectively dampens immune response by
suppressing overall antitumor CD8* T cell function [1105].

There are several promising therapeutic approaches being evaluated to block the di-
verse immunosuppressive pathways utilized by CRC tumors [1107]. Inhibiting checkpoint
molecules like PD-1/PD-L1 using monoclonal antibodies is a direct method to reactivate
exhausted T cells [1107-1109]. Additionally, depleting or blocking the inhibitory effects of
MDSCs [1108], Tregs [1109,1110], and immunosuppressive cytokines such as TGF-f3, VEGE,
IL-10, and IL-6 [1111] can relieve multiple levels of suppression. Enhancing antigen presen-
tation through vaccination or oncolytic viruses aims to fully activate T cells [1112-1114].
Targeting metabolic vulnerabilities like IDO/IDO2 depletion seeks to restore T cell prolifer-
ation [1115,1116]. Adoptive cell therapies like CAR T-cell therapy infuse large numbers of
activated tumor-specific CD8* T cells able to overcome immunosuppression [1117,1118].
Combination regimens involving two or more of these strategies have shown synergistic
potential to reprogram the tumor microenvironment into an immunostimulatory state
where endogenous T cell responses can robustly eliminate cancer cells [1119]. Proper pair-
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immunosuppressive mechanisms. The image presents a comprehensive overview of the complex in-
teractions between tumor cells and the immune system, highlighting the dynamic interplay between
tumor-killing mechanisms and immunosuppressive pathways within the tumor microenvironment.
Key effector cells like natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) can directly
eliminate tumor cells through the release of cytotoxic granules, while being activated by the presen-
tation of tumor antigens by antigen-presenting cells (APCs) and the presence of pro-inflammatory
cytokines like IFN-y and TNF-«, which also enhance the expression of MHC molecules and tumor
antigens, making them more susceptible to immune recognition. Chemokines like CXCL9, CXCL10,
and CXCL11 promote the trafficking of these effector cells into the tumor site, facilitating their
antitumor functions. Conversely, regulatory T cells (Tregs) and immunosuppressive cytokines like
TGF-$, IL-10, and IL-4 create an inhibitory environment that dampens the activity of effector immune
cells. Myeloid-derived suppressor cells (MDSCs) inhibit T cell responses through the production of
enzymes like arginase (ARG1), inducible nitric oxide synthase (iNOS), and reactive oxygen species
(ROS), which deplete essential nutrients and induce oxidative stress. Other enzymes like indoleamine
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) deplete the essential amino acid trypto-
phan, leading to metabolic stress and suppression of T cell responses. Additionally, factors like VEGE,
COX2, and PGE2 not only support tumor growth but also contribute to the recruitment and function
of immunosuppressive cell types. This intricate balance and crosstalk between pro-inflammatory
and anti-inflammatory signals within the tumor microenvironment ultimately determines the overall
efficacy of the antitumor immune response or the establishment of an immunosuppressive state that
favors tumor progression, with the balance often tipped towards progression in advanced stages of
cancer. Figure created using BioRender.
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Tumor-Associated Macrophages

Macrophages play complex roles in the CRC tumor microenvironment [1123]. Two main
subsets exist: M1 macrophages activated by IFN-y and microbial signals that promote
antitumor immune responses, and M2 macrophages dominant in tumors that exhibit
pro-tumoral functions [1124-1126]. Tumor cells secrete high levels of cytokines like IL-4,
IL-10, and IL-13 that signal through STAT6 pathways and drive macrophages towards an
M2 alternative activation state [1127-1129]. M2 tumor-associated macrophages (TAMs)
show distinctive gene expression profiles characterized by arginase-1 and Ym1/2 expres-
sion [1130,1131]. They secrete growth factors like EGF, FGF, and PDGF that stimulate
proliferation of cancer cells in a paracrine manner [1125,1132,1133]. M2 macrophages
also suppress CD8* cytotoxic T cell functions needed to eliminate developing tumor
cells [1134,1135]. Additionally, they promote processes like angiogenesis and extracel-
lular matrix remodeling through VEGF, TGF-§3, and matrix metalloproteinases (MMPs),
facilitating tumor invasion and metastasis [1125,1136].

Due to these tumor-promoting functions mediated through multiple pathways, re-
educating or depleting M2 TAMs is an important therapeutic strategy for eliciting antitumor
immunity in CRC [1137]. Several approaches have also aimed to re-educate macrophages
towards an antitumor M1 profile [1138-1141]. Inhibiting cytokines like IL-4, IL-10, and
IL-13 that drive M2 polarization can redirect macrophages differentiation [1138]. Activating
them with IFN-y, TLR agonists and chemotherapies promotes a cytotoxic M1 phenotype ca-
pable of damaging cancers [1139]. Blocking growth factors and angiogenic factors produced
by M2 macrophages also impacts tumor progression [1140]. Adoptive transfers of pre-
activated M1 macrophages genetically modified to target tumors may provide a local source
of tumor cell killing [1138]. Combined with checkpoint therapy, such as CTLA-4 and PD-1
blockers, programmed M1 macrophages seek to enhance macrophage-T cell crosstalk for
coordinated anti-cancer immunity [1141]. As an alternative, depleting established tumor-
associated M2 macrophages while simultaneously stimulating M1 polarization through
targeting specific surface receptors, like PI3Ky, holds promise [1142]. Taken together, under-
standing macrophage polarization dynamics will enable optimizing strategic combinations
for clinically applicable measures to defeat the tumor microenvironment [1143].

Regulatory T Cells

Tregs play an important physiological role in controlling excessive immune response
and maintaining tolerance to self-antigens [1144—1146]. Characterized by expression of
CD25 and the transcription factor FoxP3, Tregs comprise 5-10% of CD4" T cells in healthy
individuals [1147]. However, colorectal cancer cells have developed mechanisms to co-opt
this regulatory network and avoid immune-mediated elimination [1148]. Considerable
quantities of FoxP3* Tregs are densely recruited into the tumor and surrounding stroma of
CRC patients [1149,1150]. Higher densities of intratumoral Tregs directly correlate with
advanced tumor stage and poor patient prognosis [1151,1152]. Within the tumor microen-
vironment, Tregs employ two primary suppressive strategies [1153,1154]. Firstly, through
surface expression of CTLA-4, they can directly inhibit dendritic cell and macrophage
involvement by outcompeting for CD80/86 binding [1153]. Secondly, Tregs secrete anti-
inflammatory cytokines like IL-10 and TGF-f3, which dampen the activation and effector
functions of tumor-specific CD4* helper and CD8" killer T cells [1154]. By harnessing host
Treg responses, CRC establishes local immunosuppression, which promotes unchecked
growth and spread [965,1155].

There are several promising strategies being investigated to counteract the immuno-
suppressive influence of Tregs in the colorectal cancer microenvironment [1156-1161].
Direct depletion of Tregs offers one approach to remove their inhibitory effects on other
antitumor immune cells [1156]. This can be achieved through monoclonal antibodies tar-
geting the interleukin-2 receptor alpha (IL-2Rx) chain (CD25), which is highly expressed on
Tregs [1156,1162]. Alternatively, targeting the transcription factor FoxP3 that controls Treg
development and function using small interfering RNA shows potential to diminish Treg
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numbers [1157]. Another method is blocking the mechanisms through which Tregs exert
suppression [1158,1159]. Inhibiting CTLA-4 prevents direct contact-based inhibition [1158],
while targeting the indoleamine 2,3-dioxygenase pathway blocks Treg-mediated trypto-
phan depletion [1097]. Inflammatory cytokines like TGF-f can also be neutralized to curb
immunosuppressive signaling [1159]. Additional strategies involve interfering with intra-
cellular pathways critical for Treg stability and function [1162]. Promisingly, combining
Treg-depletion or -inhibition with checkpoint therapies, vaccines or other immunomodula-
tors demonstrates synergistic effects in unleashing robust antitumor immunity [1162,1163].
Aside from the strategies mentioned, blocking the migration of Tregs to the tumor mi-
croenvironment could also help in reducing their infiltration and immunosuppressive
impact [1161]. Collectively, a multifaceted approach seeks to comprehensively relieve Treg
suppression through complementary pathways [1160].

4.6.2. Microbiome and Immune Response

The gut microbiome plays an important role in influencing the immune system and
vice versa [1027,1164-1166]. The gut is home to trillions of microorganisms that make up
the microbiome [1027]. These microbes help regulate intestinal immunity and support the
development of the gut-associated lymphoid tissues (GALTs) [1027]. A healthy, diverse mi-
crobiome is important for maintaining intestinal barrier integrity and priming appropriate
immune responses against pathogenic microbes [1167]. Changes in the gut microbiome
composition have been linked to CRC development and progression [1017,1168]. Studies
have found that individuals with CRC tend to have a less diverse microbiome with reduced
populations of certain beneficial bacteria like Faecalibacterium prausnitzii [1169]. A lower
microbiome diversity or dysbiosis is associated with increased CRC risk potentially by
compromising the colonization resistance against pathogenic bacteria [1044,1169]. Certain
pathobionts like Fusobacterium nucleatum have also been found at higher levels in CRC
tumors and may promote tumorigenesis [1044].

Specific probiotic strains have been shown to strengthen the intestinal barrier, a key
component of gut immunity [1170-1172]. Lactobacillus rhamnosus GG produces a soluble
protein that increases the expression of tight junction proteins like zonula occludens-1
(ZO-1), reinforcing intestinal barrier integrity [1170]. A blend of probiotic strains, includ-
ing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium lactis also reduced
epithelial cell apoptosis and enhanced barrier function in animal studies [1171]. These pro-
biotics support mucin expression, contributing to improved barrier function and pathogen
exclusion [1171]. They enhance immune surveillance of the gut through effects on dendritic
cells [1172], macrophages [1173], and lymphocytes [1174]. Lactobacillus casei DN-114 001
promotes a Th1 immune profile by activating dendritic cells [1172]. Bifidobacterium lactis
HNO19 increases antigen presentation by maturing dendritic cells [1172,1175]. Both Bifi-
dobacterium longum and Lactobacillus acidophilus induce NK cells cytotoxicity, which helps
eliminate developing tumor cells [1172,1176].

Certain probiotic metabolites also aid gut immunity [1172,1173,1177-1179]. Butyrate
is a short-chain fatty acid (SCFA) produced when probiotics ferment dietary fibers in
the colon [1180]. It serves as an important energy source for colonocytes and exerts
potent anti-inflammatory effects [1180]. Butyrate also suppresses the activity of NF-«B
and its pro-inflammatory downstream genes [1181]. It also supports the generation and
function of Tregs in the colon [1182]. Lactobacillus plantarum has been shown to produce
polysaccharide A when it colonizes the gut [1175]. Polysaccharide A activates dendritic
cells by binding to the Toll-like receptor 2 [1183,1184]. This stimulates dendritic cells to
secrete IL-6 and IL-23 cytokines, which drive the differentiation of protective T helper 17
(Th17) cells [1185]. It also induces Treg cell development via retinoic acid production [1186].
The balanced Th17/Treg response induced by polysaccharide A helps strengthen intestinal
barrier integrity while keeping inflammation in check, both of which are crucial in halting
CRC progression [1187]. SCFAs from the gut microbiota, including butyrate, propionate
and acetate, impact both innate and adaptive immune responses in the colon [923,1188].



Int. . Mol. Sci. 2024, 25, 9463

42 of 124

They shape the structure and composition of gut lymphoid follicles where immune cells
constantly sample gut contents [923,1189]. This supports colonic immune surveillance
against developing tumors [1190,1191]. The anti-inflammatory environment maintained by
SCFAs also prevents excessive or prolonged inflammation, which promotes DNA damage
and tumor initiation in the colorectum [1190,1191].

In summary, the immune system plays a crucial role in protecting against CRC through
its ability to recognize and destroy developing tumor cells [1095]. However, like other can-
cers, CRC tumors have evolved sophisticated mechanisms to evade immune detection and
suppression [1079,1141]. They inhibit CD8" T cell activation [1192], recruit immunosup-
pressive myeloid cells and Tregs [1079], and alter the tumor microenvironment [1193] to es-
tablish local immunosuppression. Understanding these complex immune escape networks
utilized by CRC is important for developing rational immunotherapeutic approaches [1095].
Promising strategies targeting different immune cell populations and pathways, especially
in combination, show potential to lift multiple brakes on antitumor immunity imposed
by cancers [1095,1194]. Modulating the gut microbiome may also influence CRC risk and
progression through interactions with intestinal immunity [1195]. Harnessing a deeper
understanding of tumor immunology, including the microbiome-immune interplay in
the CRC microenvironment, is key to designing more effective immunotherapies that
can tip the balance towards robust, coordinated antitumor immune responses capable of
eradicating cancers [1196-1198].

4.6.3. Specialized Resistance in Cancer Stem Cells

CRC stem cells play an important role in driving tumor initiation, progression, and
therapeutic resistance [1199-1202]. In order to attain a survival advantage, CRC stem cells
overexpression ATP-binding cassette transporters like ABCB1 [1203,1204]. High ABCB1 ef-
fectively effluxes chemotherapeutic agents from CRC stem cells, limiting exposure to drugs
typically used to induce apoptosis [1205]. Another mechanism involves unique metabolic
processes found in CRC stem cells [946,1206]. Rather than relying heavily on mitochondrial
respiration like differentiated tumor cells, stem-like CRC cells favor autophagy-dependent
metabolism [1207,1208]. This makes them less susceptible to mitochondrial outer mem-
brane permeabilization during apoptosis [1209,1210]. CRC stem cells also maintain slow
cycling and quiescence, rendering them comparatively resistant to cytotoxic drugs targeting
actively proliferating cells [1211-1214]. Enhanced DNA damage response pathways further
support self-repair of lethal lesions in the stem cell genome [1215-1217]. The regenerative
microenvironment where CRC stem cells reside also promotes survival [70,1218,1219].
These niches secrete signals activating pro-survival pathways important for stem cell main-
tenance, such as Wnt and Notch, which block apoptosis when inhibited [691,1220,1221].
Immune evasion mechanisms such as loss of MHC class I molecules [1088], downregulation
of death receptors [1222], and immune checkpoint pathways like PD-1/PD-L1 [1223] also
hamper antigen presentation and immune killing of stem-like tumor cells. Together, these
intrinsic and extrinsic adaptations reserve sufficient protection for CRC stem cell pools to
escape cell death stimuli [692,1212].

The regenerative microenvironment of the intestinal crypt niche also plays a piv-
otal role in supporting CRC stem cell survival [1224]. Stromal cells and cytokines se-
creted within the crypt microenvironment activate key pro-survival pathways in stem-
like CRC cells, such as Wnt/ 3-catenin and IL-6/STAT3 signaling [691,702,1225]. These
signals serve to directly antagonize apoptosis while maintaining the stem cell pheno-
type [691,702,1225]. Additionally, hypoxic zones and immune evasion mechanisms in
the crypt niche collectively hamper antigen presentation and shield CRC stem cells from
immune-mediated killing [1226-1228]. Through a combination of intrinsic adaptations in
drug transportation, DNA repair, and autophagy-dependent metabolism, coupled with ex-
trinsic support from the pro-tumorigenic stem cell microenvironment, CRC stem cell pools
are uniquely equipped to withstand conventional cytotoxic therapies and fuel recurrent
disease [686,1221]. Therefore, developing strategies to disrupt this regenerative niche may
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help target treatment-resistant CRC stem cell populations driving tumor propagation and
clinical relapse [1229].

4.7. Sustained Proliferative Signaling and the CRC Tumor Microenvironment

The CRC tumor microenvironment consists of a diverse array of cell types that engage
in bidirectional communication with cancer cells to drive tumor development and resistance
to therapy [1230-1232]. Cancer-associated fibroblasts are highly prevalent within the desmo-
plastic stroma of CRC tumors [1233]. Through secretion of extracellular matrix molecules
and growth factors, like TGF-f3, FGF2, and PDGEF, fibroblasts restructure the physical
architecture of the tissue to generate pronounced hypoxic regions of dense matrix adhesive-
ness [1234-1236]. This pathological remodeling induced by cancer-associated fibroblasts
establishes topographical niches ideally suited to harbor CRC stem-like cells [1237]. Studies
show such stem cell sanctuaries enriched with fibroblast-derived signals like Wnt2 and
SDF1 promote expression of genes linked to tumorigenic properties, stem cell survival, and
apoptosis evasion [1219,1238]. By compartmentalizing the CRC microenvironment through
aberrant deposition of new matrix, cancer-associated fibroblasts generate a pro-tumorigenic
environment optimized to support the CRC stem cell pools responsible for sustaining
long-term recurrence and therapeutic failure [1239-1241].

In addition to cancer-associated fibroblasts, immune cells are another major cell type
sculpting the CRC tumor microenvironment [1242,1243]. Specifically, TAMs extensively
penetrate CRC tissue and secrete a myriad of growth factors and cytokines like epidermal
growth factor (EGF), colony stimulating factor 1 (CSF-1), IL-6, TGF-f3, and IL-10 [1244,1245].
Macrophages polarize to an immune-suppressive phenotype within the tumor and pro-
duce EGF [1246], CSF-1 [1247], and various inflammatory mediators [1248]. These se-
creted factors have been shown to amplify pro-survival and pro-inflammatory signal-
ing cascades in neighboring CRC stem-like cells through pathways such as STAT3 and
NF-«B [1125,1247,1248]. The immune-evasive polarization of TAMs towards an immune-
suppressive state also helps shield CRC stem cells from immune detection and killing by T
cells [1079,1249].

As CRC tumors progress, hypoxic conditions develop within the growing mass due
to insufficient vascular supply [694,1250,1251]. This triggers an angiogenic switch char-
acterized by upregulation of pro-angiogenic signals such as VEGF [1252-1254]. New
blood vessels then infiltrate the tumor to ameliorate hypoxic stress [1252-1254]. How-
ever, the perivascular regions surrounding these tissues remain suboptimal for oxygena-
tion [1255,1256]. Within these hypoxic perivascular niches, endothelial cells secrete high
levels of stem cell-regulating factors like Wnt3A and NOTCH ligands that stimulate self-
renewal pathways in nearby CRC stem-like cells through pathways such as 3-catenin and
Hes]1 [1257-1259].

In addition to stromal and endothelial cells, cancer cells themselves play an active
role in sculpting their microenvironment through secretion of extracellular vesicles such
as exosomes [1260-1262]. Exosomes released from CRC cells transport biologically active
cargo such as regulatory RNAs, proteins, and lipids that can manipulate surrounding cell
populations upon fusion and cargo transfer in target cells [1263]. Specific microRNAs that
are highly enriched in CRC exosomes like miR-21-5p, miR-203, miR-934, miR-25-3p, miR-
130b-3p, and miR-425-5p have been shown to induce pro-tumor inflammatory phenotypes
when delivered to macrophages [1264-1267]. This reprograms macrophages towards a pro-
inflammatory M2-like state characterized through different axis like miR-21-5p promoting
TLR-7/IL-6 and miR-25-3p, miR-130b-3p, and miR-425-5p targeting PTEN /PI3K/AKT,
which in turn enhances EMT and metastasis of CRC cells [1264-1267].

The CRC tumor microenvironment influences cancer stem cells not only through se-
creted soluble factors and physical niches, but also via epigenetic reprogramming [1268,1269].
Hypoxic niches, metabolic intermediates, and intercellular signaling pathways cooperate to
induce epigenetic alterations in cancer stem cells that maintain “stemness” traits enabling
recurrence and therapy resistance [1219,1270-1272]. For instance, prolonged HIF stabiliza-
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tion and chronic NF-kB/STAT activation deposit H3K4me3 enhancer marks in stem-like
cells, driving self-renewal pathways through genes such as SOX2 and MYC [1273,1274].
This epigenetic process drives gene expression profiles that promote tumor-initiating ca-
pacity and hinder differentiation [1273,1274]. By modifying the epigenetic landscape of
cancer stem cells, the tumor microenvironment endows them with characteristics of both
self-renewal and therapy resistance [1275-1278].

Collectively, CRC tumors coordinate a multi-pronged campaign targeting different
arms of cellular suicide pathways through cell-intrinsic mutations, microenvironmental
optimization of survival signals, and cancer stem cell dependencies [691,1279,1280]. This
multi-tiered resistance allows CRC to thrive despite genetic instability and therapeutic
insults, presenting a major challenge to treatment [691,1279,1280]. Overcoming the diverse
cell death evasion strategies employed through redundancy across molecular, cellular, and
tissue levels may be necessary to achieve improved clinical outcomes by more effectively
eliminating tumor cells [677,720,903,1079].

Signaling Pathways Governing EMT

EMT is a process whereby epithelial cells adopt a mesenchymal phenotype, allowing
increased migratory and invasive properties [1281]. In CRC, EMT endows cells with traits
necessary for dissemination from the primary tumor [1282]. EMT is largely driven by
TGF-f signaling through Smad proteins and developmental pathways such as Wnt/3-
catenin [1281]. When TGEF-f3 binds to TGF-f3 receptor II on cancer cells, it activates receptor
I and the SMAD?2/3 signaling pathway downstream [1283]. SMAD2/3 forms a transcrip-
tional complex with SMAD4, which translocates to the nucleus [1284] to induce EMT-TFs
such as Snail, Slug, and Twist [1283]. TGF-p levels are often elevated in CRC tissues
and correlate with poor prognosis [1285]. Knockdown experiments have demonstrated
that Snail and Slug are critical for TGF-3-mediated E-cadherin repression in CRC cells
undergoing EMT [1286]. These EMT-TFs directly suppress transcription of the CDH1 gene
encoding E-cadherin to disrupts adhering junctions between epithelial CRC cells, facilitat-
ing detachment [1287]. Concurrently, Wnt ligands stabilize (3-catenin, inducing EMT-TFs
and MMPs through association with LEF/TCF [1288]. Activation of the Wnt/3-catenin
pathway promotes EMT, stemness and invasion in cancer cells [1288].

Cytoskeletal reorganization during EMT relies on Rho/ROCK (Rho-kinase) signal-
ing [1289]. ROCK phosphorylation of myosin light chain and LIM kinases regulates actin poly-
merization and contractility; enabling morphological shifts during cell migration [1289-1291].
In CRC models, blocking ROCK activity impairs cytoskeletal shifts, which inhibit migration
seen during EMT [1290]. EMT is also characterized by increased expression of mesenchy-
mal proteins like N-cadherin and vimentin that facilitate cell motility and interactions with
the tumor microenvironment [1292,1293]. Beyond the TGF-f3 and Wnt/ 3-catenin pathways,
other signaling cascades such as Hedgehog (Shh), Notch, hypoxia-inducible factors, and
receptor tyrosine kinases converge on EMT transcriptional programming to fully induce
the migration and invasion phenotypes crucial for CRC metastatic dissemination [1294]

4.8. Activating CRC Invasion and Metastasis

CSCs represent a subpopulation within colorectal tumors that possess tumor-initiating
capabilities [1295]. They can self-renew and differentiate into the heterogeneous cell types
that comprise the tumor [1296]. CSCs undergo EMT to acquire a migratory, drug-resistant
phenotype ideal for metastatic spread [1297]. These EMT processes further favor and enrich
cells exhibiting CSC biomarkers like CD44, CD133, and ALDH]1, enabling direct activation
of stemness and pluripotency programs [1298,1299]. Thereafter, CSCs in EMT disseminate
from primary tumors due to their slow-cycling nature, drug efflux pumps, and recruitment
of supportive stromal cell types to pre-metastatic sites via secreted cytokines [1300,1301].
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4.8.1. Adaptations for Survival and Macrometastatic Outgrowth

Upon arrival at distant organs, disseminated CRC cells must overcome challenges
to survive and proliferate [1302-1304]. EMT and stemness programs enhance adap-
tive survival pathways [1299,1305]. In fact, colonized cells re-express epithelial mark-
ers through mesenchymal-epithelial transition (MET), allowing utilization of niche sig-
nals [1299]. Other adaptations include metabolic reprogramming to utilize available nutri-
ents via amino acid metabolism, autophagy induction, redox homeostasis, and oxidative
phosphorylation [1306,1307]. The metastatic CRC secretome changes through environmen-
tal factors such as exosomes, cytokines, and growth factors that prompt angiogenesis,
recruit fibroblasts, and alter the niche for favorable outgrowth [1308,1309]. Genomic evolu-
tion also occurs where metastatic cells acquire new mutations that activate pro-tumorigenic
programs like Wnt/ 3-catenin signaling [1310]. Therefore, the plasticity of CRC pheno-
types and adaptation to various environmental conditions is the gateway to metastatic
colonization and expansion into macrometastases [1311].

4.8.2. Preparing the Pre-Metastatic Niche through Tumor-Derived Signals

Primary CRCs prepare pre-metastatic niches in distant organs via exosomes and
factors that induce chemokines, growth factors, extracellular matrix (ECM) remodeling,
and inflammation [1312,1313]. Exosomal transfer of miRINAs like miR-19a, miR-29a, miR-
21, and miR-200 family members are known to condition niches in the liver and lungs [1312].
Soluble factors such as TGFf3, VEGFs, and LOXL4 crosslink collagen IV to rigidify the
ECM [1312]. These signals also recruit bone marrow-derived inflammatory cells like
neutrophils, macrophages, platelets, and myeloid precursors that establish a supportive
microenvironment [1313].

4.8.3. Mechanisms of Cell Detachment, Circulation, and Extravasation

CRC cells undergoing EMT lose cell-to-cell adhesion and detach upon E-cadherin
downregulation, which concomitant leads to the repression of other adhesion molecules
like occludins and claudins by EMT transcription factors [1281,1314]. This transition
involves the rearrangement of the cytoskeleton, leading to decreased polarity and adhesion
structures in epithelial cells [1315]. Increased expression and activation of proteases like
MMPs, cathepsins, and uPA degrade surrounding components of the ECM, allowing
detached CRC cells to facilitate migration through surrounding tissues [1314]. In the
circulatory system, EMT-associated cytoskeletal changes also grant cellular rigidity and
resistance to shear stresses [1287]. CRC cells are also capable of forming microembolic
clusters, which are reinforced by sustained surface expression of N-cadherin [1287]. Upon
physical arrest in smaller capillary networks, selectins and integrins mediate initial tethering
and rolling of circulating CRC cells followed by firm adhesion to endothelial cells expressing
intracellular adhesion molecule-1 (ICAM), which bind to lymphocyte function-associated
antigen-1 (LFA-1) found on tumor cells [1316,1317].

The exit of the circulatory system (or extravasation) requires the degradation of en-
dothelial junctions like the platelet-endothelial cell adhesion molecule (PECAM) and
vascular-endothelial cadherin (VE-cadherin) by MMPs, and cathepsins and uPA activation
by CRC cells [1318,1319]. Meanwhile, CRC chemokines interact with endothelial ICAM
and vascular cell adhesion molecules (VCAMs) to induce integrin ligands on endothe-
lium, further stabilizing adhesion [1320,1321]. Receptors on CRC cells thereafter engage
neuropilin-1 (NRP1)/focal adhesion kinases (FAK) and integrin—talin on endothelium, en-
abling trans-endothelium migration through junctional retraction [1322]. In tissues, niche
factors including chemokine/cytokine gradients and matrix cues support extravasated CRC
cell colonization [1101]. Targeting proteases, chemokines and receptor pairs involved (espe-
cially CCR6 and CCR?2) could block CRC dissemination at extravasation [1101,1323,1324].
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4.8.4. Organotrophic Metastasis in CRC

The organ preference of CRC metastases is explained by organotropic signaling from
primary tumors [809]. Molecular profiling reveals similarities between primary and hepatic
lesions [1266,1325,1326]. CRC exosomes carrying specific miRNAs condition the liver niche
by inducing chemokines, growth factors, and NF-«kB signaling [1266,1327]. Additional
tropic factors like SDF-1 chemokine and P-selectin interactions facilitate CRC microemboli
homing to the liver [1266,1327]. In the lungs, CRC-derived signals similarly activate niche-
specific cues through miRNAs and surfactant proteins, like SP-A and SP-D, enabling
organotropic lung colonization [1328-1331].

4.9. Inducing Angiogenesis to Fuel CRC Metastasis

In order to grow at secondary sites, disseminated CRC cells must stimulate angiogen-
esis [1332,1333]. Hypoxic CRC cells upregulate VEGF-A through HIF1x, which activate
VEGEF receptors on endothelial cells to induce vessel formation [1332,1333]. Other pro-
angiogenic factors like FGFs, PDGEF, TGF-3, and angiogenin are also secreted [1332,1333].
Additionally, tumor-recruited neutrophils and TAMs secrete pro-inflammatory media-
tors that stimulate angiogenesis, which culminate into optimal angiogenic stimulation
conditions to establish blood supply essential for macrometastatic outgrowth [1333].

In summary, many spatio-temporal events are required for successful CRC metastasis.
TGF-$, Wnt, and other pathways induce EMT and CSC properties critical for early dis-
semination from primary tumors [1283,1305]. Disseminated CRC cells are then aided by
pre-metastatic niche preparation and organotropic tropism to extravasate and initiate colo-
nization [1305,1334]. Adaptive responses and angiogenesis subsequently enable growth to
macrometastases [1335,1336]. Crucially, EMT, stemness maintenance, and pre-metastatic
niche formation represent key opportunities for therapeutic intervention [1307,1337,1338].
Targeting these molecular drivers and pathways at different points along the metastatic
cascade, from early dissemination to organ-specific colonization, holds promise for more
effectively treating metastatic CRC [1307,1337,1338]. Combined anti-EMT, anti-CSC, anti-
angiogenic, and niche-modulation strategies may improve patient outcomes by disrupting
CRC’s ability to successfully disseminate and proliferate at secondary sites [1303,1338].

5. CRC Biomarkers and Therapeutic Approaches
5.1. Biomarkers of Immune Response

Biomarkers are biological indicators that can be objectively measured and evalu-
ated as indicators of normal biological processes, disease progression, or therapeutic
responses [1339]. Their discovery, validation, and clinical application help researchers and
medical professionals better understand diseases, identify high-risk patients, guide treat-
ment decisions, and assess new therapies [1339]. One biomarker showing promise in CRC
is MMR or MSI status [1340]. Cancer cells with a defective MMR/MSI-high profile tend to
have more mutations and respond better to PD-1/PD-L1 checkpoint inhibitors [1340,1341].
Testing tumors for MMR or MSI could help identify patients likely to benefit from these
immunotherapies [624,1342]. Another potential CRC biomarker is PD-L1 expression on
tumor or immune cells [1343]. While PD-L1 expression alone is not sufficient to predict
response [1343], when used in combination with other factors it may help select CRC
patients that will respond best to anti-PD-1/PD-L1 drugs [1104,1344].

Beyond genetic characteristics, the type and location of immune cells within the CRC
tumor microenvironment may provide predictive information [1345-1348]. Several studies
have found increased densities of CD3* and CD8" TILs within the tumor core; these can-
cers exhibit improved response to chemotherapy and overall prognosis [202,1349-1352].
Researchers believe that CRC tumors with higher levels of intratumoral CD3* and CD8* T
cell infiltration not only enhances antitumor immune responses [1345-1348], but also may
experience greater responses to immunotherapy due to greater pre-existing immunogenic-
ity [624]. Ongoing research aims to define specific cut-off values of CD3* or CD8" tumor
density that correlate best with clinical outcomes on immunotherapy [624]. In addition to
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cell density, the location of immune cell infiltration is significant [624,1353]. Having a pre-
dominance of lymphocytes at the invasive margins, where the tumor meets healthy tissue,
rather than confined to the tumor center may impact immunotherapy efficacy [1353,1354].

Aside from CD3* and CD8" T cells, other immune cell populations within the tumor
microenvironment show promise as predictive biomarkers [1355]. The ratio of cytotoxic to
immunosuppressive cells, such as the balance between CD8* T cells and FOXP3+ regula-
tory T cells, is being investigated [1356]. A higher cytotoxic/regulatory T cell ratio offers
insights into a pre-existing antitumor immune response that may be further stimulated by
immunotherapy [1357,1358]. Emerging evidence suggests this ratio, along with the densi-
ties and locations of specific immune cell subsets, can aid patient selection for checkpoint
inhibitors or other immunotherapies in CRC treatment [1355,1357,1359].

5.2. Cancer Immunotherapy Approaches

New immunotherapy approaches aim to reverse immune suppression and boost
antitumor immunity against CRC, such as checkpoint inhibitors, cancer vaccines, and adop-
tive cell therapies [1360,1361]. Checkpoint inhibitors aim to reverse immune suppression
caused by certain immune checkpoint proteins [1362]. Pembrolizumab and nivolumab
are monoclonal antibodies that target the PD-1 checkpoint receptor [1362,1363]. In clinical
trials, these PD-1 inhibitors have shown responses in a subset of patients with advanced
CRCs that show evidence of MMR or MSI [624,1364]. These types of CRCs tend to have
more mutations in their DNA and are more visible to immune checkpoint blockade [1363].
Ongoing research aims to identify additional biomarkers that can help predict which CRC
patients are most likely to benefit from PD-1 inhibitors [1363]. Combining PD-1 inhibitors
with other immunotherapies, like vaccines, is also a promising avenue being explored in
clinical trials [1364].

Ipilimumab works through a different mechanism by targeting the CTLA-4 check-
point receptor [1365]. CTLA-4 acts earlier in the immune response than PD-1 [1365], and
ipilimumab appears to activate more T cells in the antitumor response [1366,1367]. How-
ever, this activation comes at the cost of more immune-related side effects [1368]. In
pre-treatment, ipilimumab has shown limited activity as monotherapy for CRC [1368]. To
potentially improve responses, ipilimumab is now being studied in combination with PD-1
inhibitors, chemotherapy, radiation therapy, or other immunotherapies in ongoing clinical
trials [1368,1369]. The goal is to make CRC tumors more visible while also enhancing T cell
function through dual checkpoint blockade [1366,1370].

Cancer vaccines, on the other hand, attempt to boost the body’s natural antitumor
immune response [1371]. These vaccines can contain tumor-associated antigens that train
the immune system to recognize and attack the cancer [1371]. One of the most studied
tumor antigens for CRC vaccines is carcinoembryonic antigen (CEA) [1371]. CEA is highly
expressed in many colorectal tumors but is also present at low levels in some healthy
tissues [1371]. Vaccines containing CEA aim to induce immune responses against this
antigen, training T cells and antibodies to recognize and destroy CEA-expressing cancer
cells [24,1371,1372]. Several CEA vaccine candidates have shown promising results in
clinical trials, generating CEA-specific immune responses in CRC patients [1371-1375].
Ongoing research is optimizing the dosing and combinations of CEA vaccines to improve
their clinical efficacy [1371].

Mutated KRAS is another antigen being targeted with experimental CRC vaccines [1376].
KRAS mutations are very common in CRC (45% of cases) and help drive tumor growth [1377].
Vaccines containing peptides from the most prevalent KRAS mutations including G12C,
G12D, G12V, and G13D, have induced T cell responses against mutated KRAS in early-phase
trials [1376]. Combining KRAS or CEA vaccines with checkpoint inhibitors may further
boost these immune responses [1376]. Researchers are also exploring mRNA and viral
vector-based vaccines to enhance the delivery and immunogenicity of tumor-associated
antigens like KRAS, CEA, and others [1378-1380]. By improving antigen presentation and
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induction of T cell and antibody immunity, these newer generation cancer vaccines aim to
provide greater clinical benefit than past generations [1376].

Adoptive cell therapies such as chimeric antigen receptor (CAR) T cell therapy take
this approach a step further by extracting a patient’s own immune cells, such as T cells,
engineering them to express artificial tumor-targeting receptors in the lab, and then infusing
the enhanced immune cells back into the patient to target the cancer [1381]. In early trials
for CRC, CAR-T cells have been designed to target the CEA antigen expressed by many
colorectal tumors [1382]. After being activated and multiplied in the lab, the anti-CEA
CAR-T cells have shown some success in eliminating CEA-positive cancer cells [1382].
Researchers continue optimizing CAR design and working to overcome obstacles like T
cell exhaustion [1383].

Another approach involves isolating and activating TILs found naturally within
colorectal tumors [1384]. These TILs have already demonstrated an ability to infiltrate
and attack the patient’s own cancer cells [1384]. In the laboratory, TILs are selected,
grown in large numbers, and re-infused back into the patient together with therapies to
support their expansion [1384,1385]. Early results show TIL therapy can generate antitumor
responses and patient benefits [1385-1387]. Ongoing work focuses on integrating TILs
with checkpoint blockade to further potentiate their long-term anti-cancer activity [1387].
Adoptive cell therapy offers a personalized avenue for CRC treatment but will require
more clinical evaluation [1386].

5.3. Therapeutic Strategies to Restore Cell Death
5.3.1. Targeting the Intrinsic Apoptotic Pathway

The intrinsic pathway acts as a convergence point for numerous cell death signals
such as DNA damage, oxidative stress, and hypoxia [1388]. Drugs that modulate this
central hub have the potential to synergize with diverse anticancer therapies including
chemotherapy, radiotherapy, and molecularly targeted agents [1388,1389]. Reactivating the
intrinsic pathway allows these therapies to more effectively eliminate CRC cells through
mitochondria-mediated apoptosis [710,1388]. By contrast, upstream extrinsic signals are
more easily disrupted by cancer processes [683]. Therefore, reinstating the intrinsic pathway
provides a robust downstream amplified cell death response [710,1388].

5.3.2. Reengaging the Mitochondrial Death Machinery

One approach is re-activating the intrinsic mitochondrial apoptosis pathway in CRC
cells using targeted agonistic agents [687,732]. The intrinsic pathway is normally activated
in response to cellular stress like DNA damage, which triggers pro-apoptotic Bcl-2 family
proteins like Bax and Bak to permeabilize the outer mitochondrial membrane [1390]. This
allows release of pro-apoptotic factors from the mitochondria that initiate caspase activation
and cell death [1390]. Chemotherapeutics such as 5-FU can induce this pathway through
DNA damage [687]. However, anti-apoptotic Bcl-2 proteins like Bcl-2, Bel-xL, and Mcl-1
are often overexpressed in CRC and inhibit the mitochondrial death response [1391-1393].

Drugs aimed at disabling anti-apoptotic Bcl-2 proteins therefore seek to lift their
blockade of the intrinsic pathway [1394]. BH3 mimetic drugs bind these proteins and dis-
rupt their interaction with Bax/Bak [705,1395]. Venetoclax is an FDA-approved oral Bcl-2
inhibitor showing promise in restoring mitochondrial apoptosis in chronic lymphocytic
leukemia (CLL) cells [1396]. Similarly, Navitoclax targets both Bcl-2 and Bcl-xL, provid-
ing broader inhibition [1396-1399]. Accordingly, combining these Bcl-2 inhibitors with
chemotherapy allows synergistic reactivation of the intrinsic pathway through simultane-
ous DNA damage and anti-apoptotic blockade [1400]. Therefore, sequential or concurrent
use of Bcl-2/Bcl-xL inhibitors with DNA damaging agents represents an attractive strategy
for overcoming redundancy between survival proteins and inducing mitochondrial outer
membrane permeabilization in apoptosis-resistant CRC [1400-1402].



Int. . Mol. Sci. 2024, 25, 9463

49 of 124

5.3.3. Reinstating the TP53 Guardian of Apoptosis

Mutations in the TP53 tumor suppressor gene occur in over 50% of CRC cases and
severely hamper the intrinsic apoptotic response [453]. As a master transcriptional regulator,
wild-type TP53 activates pro-apoptotic Bcl-2 family members like PUMA and Bax upon
sensing DNA damage from chemotherapy or radiation therapy [423]. However, mutant
TP53 fails to induce these cell death effectors even in the face of severe stresses [423]. To
this point, small molecules like PRIMA-1 and APR-246 are being investigated that can bind
to the mutated TP53 core domain, correct misfolding and restore wild-type conformation
and function [1403]. PRIMA-1 and APR-246’s correction of misfolding suggests potential
for therapeutic applications in CRC by reactivating apoptotic responses associated with
TP53 mutations [1404].

Reactivated mutant TP53 can then rescue mitochondrial apoptosis through down-
stream targets in a similar manner to wild-type TP53 [453]. Preclinical research shows
PRIMA-1 and similar molecules strongly sensitize TP53-mutant CRC models to DNA
damaging agents by re-establishing TP53 tumor suppressor signaling [1405]. Ongoing
clinical trials are evaluating TP53 reactivating drugs alone and with chemotherapy in pa-
tients selected by tumor sequencing validation of TP53 status [1406]. Early results indicate
induction of cell death pathways in mutant TP53 cancers [1406]. Therefore, targeting both
TP53 and anti-apoptotic Bcl-2 proteins represents an attractive combination approach, as
each modulates independent but intersecting components of intrinsic apoptosis regula-
tion [519,1407].

5.3.4. Bypassing IAP-Mediated Apoptotic Resistance

The intrinsic pathway converges on the activation of effector caspase proteases to
execute apoptosis [1390,1408]. However, inhibitor of apoptosis proteins (IAPs) can directly
bind and inhibit caspase-3, -7, and -9, halting the apoptotic cascade [1409,1410]. IAPs like
cIAP1, cIAP2, and XIAP are often overexpressed in CRC and prevent cell death signal-
ing downstream of mitochondria [687,1411]. A therapeutic strategy uses small molecule
Second Mitochondrial-derived Activator of Caspases (SMAC) mimetics that antagonize
IAP proteins by mimicking the endogenous IAP-antagonist SMAC [1411,1412]. By displac-
ing IAPs from caspases, SMAC mimetics liberate the apoptosis execution machinery and
amplify death signaling initiated by other pathway modulators [1411].

Preclinical studies show SMAC mimetics, such as birinapant, potentiate the effects of
DNA damaging chemotherapy and radiotherapy in CRC cell lines and models [1413,1414].
These mimetics induce RIPK1-dependent necroptosis, contributing to their efficacy in CRC
models [1413-1415]. Combination regimens demonstrate strong synergistic interactions to
induce tumor cell apoptosis through parallel mechanisms of cytotoxic stress imposition
and inhibition of caspase blockades [1413,1414,1416]. Ongoing clinical trials are evaluating
SMAC mimetics alone or combined with genotoxic agents, showing signs of pathway
modulation and preliminary efficacy in selected solid tumors including CRC [1417,1418].

5.3.5. Targeting the Extrinsic Apoptotic Pathway

The extrinsic pathway offers an alternative route to trigger apoptosis in CRC cells
when the intrinsic pathway is disrupted [687,723]. It is activated by death receptor (DR4/5)
ligand binding, principally FasL and TRAIL, which recruits caspase-8 to initiate caspase
cascades [687,723]. However, CRC tumors frequently downregulate or mutate DR4/5
receptors and upregulate decoy receptors to negate extrinsic signals [1419,1420]. Targeted
therapies aim to overcome these blocks by supplementing death ligand activity through
TRAIL receptor agonists or blocking inhibitory decoy receptors [1421-1424]. Initial clinical
evidence suggests some TRAIL monotherapy efficacy in selected CRC, demonstrating
feasibility of modulating extrinsic signaling [731,1425].

Combining extrinsic modulators with drugs targeting the intrinsic pathway holds
promise for potent synergy through concurrent activation of proximal caspase-8 and distal
effector caspase-3/7 [1426,1427]. Preclinical models demonstrate robust apoptosis when
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TRAIL agonism is combined with inhibitors of anti-apoptotic Bcl-2 proteins [1426]. This
dual approach leverages both major induction routes to trigger robust, redundant caspase
cascades even in apoptosis-resistant CRC [1427]. Rational sequencing of extrinsic pathway
modulators with cytotoxic chemotherapy also shows potential to sensitize CRC to DNA
damage [1427].

In addition to DR4/5 downregulation, overexpression of c-FLIP is another common
resistance mechanism deployed by CRC cells to inhibit death receptor signaling [1428]. Pre-
cisely how c-FLIP inhibits caspase-8 activation involves competition for recruitment to the
DISC complex that forms upon DR4/5 ligation [1429,1430]. c-FLIP structurally resembles
caspase-8 but lacks protease activity, essentially acting as an inhibitory stowaway that pre-
vents caspase-8 dimerization and autoproteolysis required for its apoptotic function [1431].
Small molecule c-FLIP inhibitors in development disrupt this protein—protein interaction
to free caspase-8 [1432]. Studies show they strongly potentiate DR4/5 agonist-induced
apoptosis in CRC models when combined [1428,1433]. The dual blockade comprehensively
dismantles extrinsic adaptive resistance, with c-FLIP inhibition restoring receptor-initiated
caspase-8 activity while DR4/5 agonism provides tonic pro-death signaling [1428]. This
synergistic bimodal approach to re-engage both the receptor and downstream extrinsic
machinery holds promise as a rationally designed strategy deserving of clinical evaluation
in biomarker-selected CRC patient groups [1434,1435].

Adoptive T cell therapies engineered to present TRAIL on their surface provide
an alternative extrinsic modulatory approach [1436]. Upon CAR-mediated homing to
tumor sites, these “TRAIL-CAR” T cells induce localized DR4/5 engagement and extrinsic
apoptosis [1437-1439]. Early studies demonstrate the feasibility of generating TRAIL-
CAR T cells that persistently kill CRC cell models through apoptosis [1440]. However,
key challenges remain in fully harnessing the potential of this approach as prolonging
TRAIL expression and maintaining robust CAR T cell engraftment over time are critical
for durable antitumor effects [1441]. The tumor microenvironment can also limit T cell
function through immunosuppressive mechanisms [1442]. Developing strategies to protect
CAR T cells through costimulatory domains or adjuvant therapies may help overcome
these inhibitory factors [1441,1443]. Combining TRAIL-CAR T cells with targeted agents
reactivating intrinsic apoptosis could further synergize killing through non-redundant
mechanisms [1441].

With continued engineering refinements and insights from ongoing clinical research,
TRAIL-CAR T cell therapy holds promise as a personalized precision medicine for CRC
subsets [1444,1445]. Integrating predictive biomarkers may help discern optimal patient
subsets for specific extrinsic modality trials such as evaluable for c-FLIP dependence or
immunosuppressive tumors amenable to CAR T cell therapies [1444,1446]. Combined pre-
dictive and dynamic pharmacodynamic monitoring moreover allows rational sequencing
of extrinsic targeted drugs or immunotherapies with chemotherapy to maximize apoptotic
responses in resistant CRC [1444,1446].

5.3.6. Inducing Non-Apoptotic Cell Death

When apoptosis resistance develops in CRC, targeting alternative programmed cell
death modes holds value [1447]. Necroptosis is a lytic, inflammatory form of regulated
necrosis induced upon TNF receptor activation [1447,1448]. CRC cells often overexpress
necroptosis suppressors like RIPK1 to avoid this fate [1449]. RIPK1 plays a crucial role
as a scaffold protein in the necroptosis signaling cascade [1450]. High RIPK1 expression
in CRC cells suppresses necroptosis by interfering with this RIPK3 activation step [1449].
Small molecule RIPK1 inhibitors currently in preclinical development selectively block
RIPK1's necroptosis inhibitory function [1451,1452]. Without RIPK1's brake, kinase activity
shifts to RIPK3 phosphorylation upon death receptor stimulation or genotoxic stress [1451].
This drives formation of the necrosome complex and downstream MLKL phosphorylation
to perforate membranes in necroptotic cell death [1451]. Studies show RIPK1 inhibitors
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effectively sensitize CRC models otherwise resistant to TNF-driven necroptosis through
this targeted release of the necroptotic brake [1453].

Necroptosis also elicits antitumor immunity more strongly than apoptosis [744].
When cells undergo necroptosis, their membranes rupture in a lytic process that release
damage-associated molecular patterns (DAMPs) like HMGB1 and ATP [744]. These act
as danger signals to stimulate nearby dendritic cells and recruit immune effectors like
NK cells [744,1454]. Activated dendritic cells can then migrate to lymph nodes and prime
T cell responses against tumor antigens [1455]. The inflammatory contents released from
necroptotic cells also promote inflammation within the tumor microenvironment [1456].
This makes dying tumor cells more visible to adaptive immune cells and supports the
development of long-term immunological memory [1456]. As such, inducing necroptosis
represents an attractive strategy to not only directly kill CRC cells, but also stimulate
protective antitumor immunity less obtainable through the non-immunogenic process of
apoptosis [1448].

Autophagy likewise assumes both tumor suppressive and promoting roles in CRC
depending on context [867]. Autophagy is a catabolic process involving lysosomal degra-
dation of cellular components that cancer cells can subvert for pro-survival purposes under
stressful conditions like nutrient deprivation or chemotherapy [867]. However, excessive
autophagy can also trigger non-apoptotic programmed cell death termed autophagic cell
death [753]. The context-dependent roles of autophagy in CRC make both inducing and
inhibiting autophagy potential therapeutic strategies [753,867]. In the early stages of CRC,
autophagy can reduce genetic instability and promote an anti-cancer immune response, but
in established tumors, it can confer resistance to metabolic stress and therapy [1457]. Drugs
that force high levels of autophagy beyond a tolerable threshold may induce autophagic
cell death [1458]. Conversely, autophagy inhibitors would block its pro-survival functions
during chemotherapy or prevent tumor initiation in predisposed individuals [1459].

Preclinical models provide promising validation of autophagy modulation in CRC [1460-1462].
Inducers like Rapamycin demonstrate autophagic cell death capabilities when combined
with standard therapeutics, while inhibitors like hydroxychloroquine (HCQ) enhance
chemosensitivity [1463]. However, the challenge of developing autophagy inhibition as
a therapeutic strategy lies in the potential for contradictory or inconsistent results, as
autophagy can have both cytoprotective and nonprotective functions [1464]. So far, the
FDA-approved autophagy inhibitors chloroquine (CQ) and HCQ are currently being evalu-
ated in clinical trials for their safety and efficacy in cancer therapy [1465]. For example, a
phase II trial combined the autophagy inhibitor HCQ with FOLFOX chemotherapy and be-
vacizumab and observed increases in the autophagy marker LC3 with a complete response
rate of 11% in patients with metastatic CRC [1466]. Additionally, phase I trials found com-
binations of HCQ with temozolomide [1467] or the mTOR inhibitor temsirolimus [1468] to
be safe and show beneficial antitumor activity in solid tumors including CRC. However,
another phase I trial reported HCQ treatment with the AKT inhibitor MK-2206 was tolera-
ble but had minimal antitumor effect in CRC [1469]. Furthermore, in vitro studies showed
autophagy inhibition by chloroquine (CQ) enhanced the anti-proliferative effects of 5-FU
chemotherapy [1470] and bevacizumab [1471] in CRC cell lines. On the other hand, a phase
I trial found no significant clinical improvement when combining HCQ with the HDAC in-
hibitor vorinostat in renal and CRC [1472]. Ongoing studies are evaluating optimal dosing
schedules and sequencing of these multi-drug regimens [1465]. Selection of CRC subtypes
most reliant on autophagy for survival is also an important focus, with biomarkers like LC3
expression being studied [753,1473]. Managing adverse events particular to CRC patients
remains essential [867]. Given autophagy influences CRC development at different stages,
patient characteristics like tumor mutation burden (TMB) are also being investigated to
define contexts where autophagy inhibition may be most beneficial [70,1474,1475]. Large
biomarker analyses continue enrolling CRC patients to further refine candidate biomarkers
for clinical application [1460]. Ultimately, these ongoing combination trials aim to estab-
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lish effective and safe approaches for leveraging autophagy modulation to improve CRC
treatment outcomes [1460,1474].

Microtubule-targeting agents (MTAs) such as taxanes are a mainstay of CRC chemother-
apy [1476-1478]. These drugs work by interfering with the formation of the mitotic spindle
during cell division [1476,1477]. This induces a type of non-apoptotic programmed cell
death called mitotic catastrophe [1476,1477]. By trapping cells in abnormal mitosis, MTAs
cause extensive DNA damage that cells cannot repair, leading to mutations, multinucle-
ation, and senescence [1479,1480]. Several studies have investigated the use of antimitotic
drugs, which interfere with cell division, as potential treatments for CRC and colon can-
cer. Antimitotic drugs such as taxanes and vinca-alkaloids like vinflunine that target
microtubules have shown activity against CRC cell lines in preclinical research [1481,1482].
Accordingly, the antitumoral effect of these two MTAs have been reported in CRC clin-
ical trials [1483,1484]. While this halts cancer cell proliferation, it may not outright kill
apoptosis-resistant tumors [1478]. However, combining these agents with modulators of
apoptosis pathways such as Bcl-2 inhibitors could tip cells over the edge into true cell
death via mitotic catastrophe [1478,1485]. By augmenting the DNA damage and disrupted
cell cycle induced by MTAs, resistant CRC cells may be effectively eliminated through
mitosis gone awry rather than traditional programmed cell death pathways [1486]. In
this regard, several MTAs have been tested or used in combination with other chemother-
apy agents for better treatment outcomes. For instance, paclitaxel and docetaxel, the first
generation taxanes, are often combined with platinum drugs like cisplatin for cancers
like breast and lung [1487]. A newer taxane, larotaxel, showed promise in phase I/II
trials when combined with cisplatin for non-small cell lung cancer, metastatic breast, and
bladder cancer [1488-1490]. The antibody-drug conjugate brentuximab vedotin, which
links an anti-CD30 monoclonal antibody to the microtubule-disrupting agent monomethyl
auristatin E, demonstrated efficacy against Hodgkin’s lymphoma when combined with cy-
totoxic chemotherapy in clinical studies [1491]. Fosbretabulin, a vascular disrupting agent
from the combretastatin family that targets the colchicine binding site, has been evaluated
pre-clinically in combination regimens for lung cancer and thyroid carcinoma [1492,1493].
Collectively, it seems that this strategy has the potency to eliminate even apoptosis-resistant
CRC tumors by combining the mitotic catastrophe elicited by microtubule disruption with
the blockade of anti-apoptotic molecules [1476-1478].

5.4. Therapeutic Challenges and Emerging Approaches
5.4.1. Tumor Plasticity and Adaptive Resistance in CRC

One of the major challenges is the remarkable plasticity and adaptive abilities of CRC
tumors [1494]. The plasticity of CRC poses a significant hurdle because it allows tumors to
dynamically reprogram their signaling networks in response to therapies [1494,1495]. Even
when prominent pro-survival pathways are simultaneously inhibited, cancer cells retain
the capacity to engineer diverse backups that maintain proliferative and anti-apoptotic
drives [1494]. They can alter expression of downstream components, modify crosstalk be-
tween nodal points, or activate entirely different collateral routines [1496]. This remarkable
adaptability inflates the number of combinations needing investigation to comprehensively
disable fallback options [1495,1496].

Compounding this challenge is the ability of CRC to enact subtle compensatory shifts
that evade detection [1497,1498]. Current profiling resolution may miss low level changes to
signaling routing or alternative cascades recruited deep within signaling webs [1497,1499].
This enables adaptive survival transformations to initiate below profiling thresholds until
clinical resistance emerges [1340,1497,1499]. Developing higher sensitivity techniques and
more sophisticated analytics approaches is needed to track subtle rewiring over time [1498].

An additional layer of complexity arises from intratumoral heterogeneity [901,1500].
Different subclones within a tumor possess divergent genomic and epigenomic alter-
ations [1500]. This implies individual subpopulations could employ distinct escape routes
from combination therapies [1501,1502]. Treatments must eliminate resilient subclones
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without enriching rare resistant variants, requiring personalized strategies tuned to the
ever-evolving makeup of each patient’s unique cancer [1503]. Addressing such multifaceted
plasticity demands innovative investigative avenues [1503,1504].

The extensive crosstalk between tumor cells and the microenvironment allows survival
signaling to spread beyond cell-autonomous control [1505]. When inhibitors deactivate
survival circuits inside cancer cells, paracrine factors secreted by surrounding stromal
and immune cells can restore this lost functionality [1506]. Fibroblasts in particular play
a key role, releasing a diversity of cytokines, chemokines, and growth factors that revive
dormant proliferative pathways in tumor cells [1507]. Some of the primary factors in-
volved include IGF, IL-6, HGF, and FGFE which can reactivate downstream PI3K/AKT and
Ras/Raf/MEK/ERK cascades even when directly targeted. This restores anti-apoptotic
functions and circumvents cell-intrinsic pathway blockade [1508].

The stroma also participates in modifying the extracellular matrix to promote plastic-
ity [1509-1511]. Fibroblasts laying down new ECM components and remodeling fibrillar
architecture provide an infrastructure for proliferation cues [1509]. They interact through
integrins and other adhesion receptors to reestablish signal transduction in anchorage-
dependent cancer cells sheltered within favorable niches [1510]. The dynamic interplay
between tumor cells, fibroblasts, immune cells, and the ECM they construct greatly en-
hances phenotypic variability [1511].

5.4.2. Combination Approaches to Overcome Redundancy-Driven Resistance in CRC

As discussed, CRC cells have developed numerous mechanisms to evade apopto-
sis and survive [1512,1513]. Single targeted therapies often fail because when one pro-
survival pathway is inhibited, backup survival pathways often compensate to maintain
viability [1512,1513]. There is significant crosstalk and redundancy between key prolifer-
ation and survival signaling pathways in CRC like Wnt/b-catenin, EGFR/MAPK, and
PI3K/AKT [683]. When faced with cytotoxic drugs or molecularly targeted agents, CRC
cells can alter signaling through these pathways to continue propagating anti-apoptotic
signals [720,1512]. This redundancy has made inducing cell death through single agents a
significant challenge in CRC treatment [720,1512].

However, combination therapies may be able to overcome these survival adaptations
by simultaneously blocking multiple pro-survival nodes [1514,1515]. One approach is to
combine agents targeting the EGFR pathway with inhibitors of downstream signaling
molecules [1514-1516]. Cetuximab or panitumumab combined with MAPK pathway in-
hibitors like vemurafenib, which targets B-Raf, aim to simultaneously block both upstream
receptor activation and downstream signal propagation, which leaves no avenues for sur-
vival signals to continue [1516]. Ongoing studies are exploring EGFR inhibition paired
with PI3BK/AKT/mTOR blockade as another option, taking advantage of crosstalk between
these proliferation pathways [849]. For example, the combination of EGFR and mTOR
inhibitors (erlotinib and RADOO1, respectively) has modulated the growth and autophagy
level in SCLC cells [1517]. Similarly, the dual inhibition of PI3K and mTOR has been
effective in reducing renal cell carcinoma (RCC) proliferation and viability [1517]. In CRC,
the combination of a PI3K/mTOR inhibitor (PF-04691502 /PF-502) and a MEK blocker (PD-
0325901/PD-901) has demonstrated enhanced anti-proliferative effects [1518]. Furthermore,
the targeting of both EGFR and mTOR by a combination of erlotinib and temsirolimus,
respectively, has been effective in EGFR-resistant squamous cell carcinoma (SCC) [1519].
These findings suggest that the dual inhibition of EGFR and PI3K/AKT/mTOR pathways
may be a promising approach in solid tumors including CRC [849].

Immunotherapies are also being evaluated both alone and in combination with other
treatment strategies for their potential to enhance CRC outcomes [624]. One proposed
mechanism is that the use of chemotherapy and targeted therapies can make tumor cells
more recognizable to the immune system by damaging and killing tumor cells, which
increases the release of antigens from these dying cells [1520]. This antigen release then
makes the tumor cells a more visible target for immunotherapy agents to elicit an an-
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titumor immune response [1520]. In this accordance, studies are exploring the optimal
combinations and sequencing of immunotherapies, chemotherapy, and targeted therapies
to take advantage of these synergistic immune-mediated effects against CRC (Table 3).
Early studies on combinations of Cetuximab with anti PD-1 Avelumab [1520,1521] or the
combination of panitumumab with (anti PD-1 inhibitor) and ipilimumab (anti CTLA-4)
in CRC have shown promising response rates [1522]. Combining oncolytic viruses with
checkpoint therapy also aims to generate a similar one-two punch in which engineered
viruses selectively infect and lyse tumor cells while stimulating inflammatory signals to
recruit immune cells [1523], and immune checkpoint blockade ensures those attracted cells
can fully eliminate any remaining cancer cells [1524]. In this regard, the phase I/1I clinical
trial NCT01413295 was performed to evaluate the efficacy of combination of avelumab
(anti-PD-L1) plus autologous dendritic cell (ADC) vaccine in pre-treated MSS metastatic
CRC patients [1524]. The investigators reported that using the autologous dendritic cells
pulsed with autologous tumor antigens as a third-line therapy was found to be safe and
well tolerated, but exhibited only modest clinical activity in target patients [1524]. Table 3
provides more details of the clinical trials discussed in this section.
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Table 3. Summary of clinical trials investigating the combination therapeutic strategies in CRC.
St Clinical S . . s Clinical Trial . o
rategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
To assess the safety, tolerability,
pharmacokinetics,
pharmacodynamics, and
NCT02650713 RO6958688 Refractory prehmlnary efflcacy of I 38 12 NA NA [1525]
CEA-CD3 TCB (RO6958688)
monotherapy in
CRC participants
To assess the safety, tolerability,
pharmacokinetics,
pharmacodynamics, and
NCTO2324257  NO6938688 + Refractory preliminary efficacy of I 68 6 NA NA [1525]
Bispecific ezolizumab
pectt CEA-CD3 TCB (RO6958688)
antibodies combined with atezolizumab in
CRC participants
To assess the safety,
RO7122290 + N pharmzcokme.tlcs, q
NCT04826003 Cibisatamab + Refractory pharmacodynamics, and. I Recruiting NA NA NA Still ongoing
Obinutuzumab preliminary antitumor activity
of RO7122290 in combination
with Cibisatamab for mCRC
To assess the safety and efficacy
NCT04468607 BLYG8824A Refractory of BLYG8824A in treating locally I Recruiting NA NA NA Still ongoing
advanced colorectal cancer
Triplet
(Encorafenib + o
BRAF + MEK Binimetinib + To study the combination of 224 ve. 220 268 ve. 195 5 ve. 43 03 ve. 9.3
Cetuximab) vs. encorafenib and cetuximab with vs. .8 vs. 19. 5vs. 4. 3 vs. 9. =
and BOFR NCT02928224 Doublet Refractory or without binimetinib for the = and 221 and 1.8 and 15 and 5.9 [1526]
(Encorafenib + treatment of mCRC
Cetuximab) and
Control
. To provide insight into the
BRAF + MEK '%rfr’l?efg;‘i‘g N combining the PD-1, BRAF, and
inhibitors NCT03668431 Spartal- First-line MEK inhibition in treatment of I 37 243 4.3 13.6 [1527]
and ICI izumab/PDR001 patients with

BRAFV600E-mutated CRC
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St Clinical o e . . o Clinical Trial . o
rategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
To evaluate the survival benefit
Panitumumab + of panitumumab in combination
NCT01412957 BSC vs. Refractory with supportive care compared I 189 vs. 188 27 vs. 1.6 3.6vs. 1.7 10vs. 7.4 [1528]
BSC alone to supportive care alone in
patients with mCRC
To compare cetuximab and
. Cetuximab vs. panitumumab in terms of
EGFR Inhibitors NCT01001377 Paniturnumab Refractory effectiveness and safety in 111 504 vs. 506 19.79 vs. 22.02 44vs. 4.1 10 vs. 10.4 [1529]
mCRC patients
Panitumumab To evaluate the impact of
NCT00113763 ~ (ABX-EGF) plus Refractory ABX-EGF plus best supportive I 231 vs. 232 NA 2vs. 18 6.4vs. 63 [1530]
BSC vs. care versus best supportive care
BSC alone alone in patients with mCRC
Panit b To evaluate the efficacy of
chaeI;(;IthmeL;?a Vz panitumumab versus 122
NCT02394795 erapy vs. First-line bevacizumab when added to 111 400 vs. 402 749 vs. 67.3 £ VS 36.2vs. 31.3 [1531]
Bevacizumab + . . 114
chemothera standard first-line chemotherapy
Py for CRC
Cetuximab + To compare Cetuximab +
NCT01228734 FOLFOX4 vs. First-line FOLFOX4 efficacy with I 193 vs. 204 61.1vs. 39.5 9.2vs. 7.4 20.7 vs. 17.8 [1532]
FOLFOX4 alone in patients with
FOLFOX4 alone -
previously untreated mCRC
To evaluate the combination of
EGER Inhibitor + Panitumumab + panitumumab with FOLFIRI
Chemotherapy NCT00339183 FOLFIRI vs. Refractory chemotherapy compared to I 591 vs. 595 35vs. 10 59vs. 39 145vs. 125 [1533]
FOLFIRI alone FOLFIRI alone for patients
with mCRC
Cetuximab + To study the efficacy of
NCT00154102 FOLFIRI vs. First-line cetuximab plus FOLFIRI as III 599 vs. 599 46.9 vs. 38.7 8.9 vs. 8 199 vs. 18.6 [1534]
FOLFIRI alone treatment for mCRC
325 (Wild-type
KRAS) and 221
FOLFOX + To assess panitumumab with (Mutant KRAS) 96and 7.3 v 23.9and 15.5
NCT00364013 Panitumumab vs. First-line FOLFOX4 efficacy in 1T vs. 331 NA : 8a nd 8.8 s vs. 19.7 [1535]
FOLFOX mCRC patients (Wild-type and o and 19.3
KRAS) and 219

(Mutant KRAS)
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Clinical

Clinical Trial

Strategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
To investigate the combination
Panitumumab + of nivolumab and ipilimumab
NCT03442569 Ipilimumab + Refractory with panitumumab for patients II 56 35 5.7 NR [1522]
Nivolumab with unresectable, refractory,
KRAS/NRAS mutant CRC
To evaluate the efficacy of
Cetuximab + avelumab combined with 10 (RAS WT)
NCT03608046 Avelumab Refractory cetuximab and irinotecan for /11 vs. 13 30vs. 0 6vs. 3.4 13.7vs. 7.9 [1536]
treating microsatellite stable (RAS mutant)
. EGFR mCRC patients
inhibitors + ICT To test the combination of
Cetuximab + avelumab and cetuximab for
NCT04561336 Avelurnab Refractory mCRC patients with RAS il 77 8.5 3.6 11.6 [1521]
wild-type tumors
To check the efficacy and safety
Encorafenib + of the treatment combination in
NCT04017650 Cetuximab + Refractory mCRC patients, particularly /1 26 45 7.3 114 [1537]
Nivolumab those with BRAF
V600E mutation
To examine the combination of
EGEFR Inhibitor + Cetuximab + avelumab and cetuximab with
Immunotherapy NCT03174405 Avelumab + First-line FOLFOX chemotherapy in I 43 NA 11.1 329 [1538]
+ Chemotherapy FOLFOX patients with metastatic
colorectal cancer.
1.5
(atezolizumab
Atezolizumab To investigate the efficacy and + Cobl‘r;;etlmb
Monotherapy vs. safety of cobimetinib in fenib
Inhibitor + MKI Atezolizumab + Refractory combination with atezolizumab il 12Lvs. €land 22 vs. 27, regoraferd ) 85vs.89and [1539]
Cobimetinib, and versus regorafenib for (atezolizumab
vs. Regorafenib participants with CRC monotherapy
vs.

regorafenib)
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Strategy Ig::inntiicﬁaelr Combination Setting Primary Objective Clir})i}claalszrial Sample Size ORR (%) PFS (Months) OS (Months) Reference

To evaluate the safety and
efficacy of Durvalumab and
Durvalumab +

. . . tremelimumab in combination )
NCT03202758 Tremelimumab + First-line with FOLFOX chemotherapy Ib/1I 57 64.5 8.2 NA [1540]

mFOLFOX6 . - .
regimen for patients with
previously untreated mCRC
Ipilimumab + To provide insights into the
ICI+ NCT03832621 Nivolumab + Refractory ~ cfficacy and safety of combining i 33 45 7 184 [1541]
Chemotherapy Temozolomide Temozolomide (TMZ) with other
agents for treating mCRC
Pembrolizumab
Vs.
chemotherapy
(mFOLFOX6 or i1 To standard therapy for MSI-H .
NCT02563002 FOLFIRI with First-line advanced CRC I 153 vs. 154 42 vs. 33 16.5 vs. 8.2 NA vs. 36.7 [1542]
or without
bevacizumab or
cetuximab)

To evaluate the combination of
Avel b avelumab (anti-PD-L1) plus
NCT01413295 vemap + Refractory autologous dendritic cell (ADC) /1 19 0 3.1 122 [1543]
ADC vaccine .o .
vaccine in pre-treated mismatch
repair-proficient mCRC

mFOLFOX6 +
. Bevacizumab
ICI + Vaccines (standard of care, To Study the combination of
SOC) alone or mFOLFOX6 + bevacizumab
NCT03050814 WIth Avelumab alone or with avelumab 1I 10vs. 10 50 vs. 50 8.8 vs. 10.1 NR [1544]
immunotherapy immunothera%l and AdCEA
and AdCEA vaccine in mCRC patients
vaccine
(SOC +10)
Pembroli'zumab +
ﬁdowl(vgé%l To test the CEA(6D) VRP
therapy + vaccine’s safety in patients with y
NCT00529984 Cyclophos- Refractory advanced or metastatic CRC /1 21 NA NA NA [1545]
ICI + Vaccines + phamidg + conditions
Chemotherapy Fludarabine
Pembrolizumab
(anti-PD-1) + To investigate the efficacy of
GVAX colon GVAX colon vaccine combined /
NCT02981524 vaceine + low Refractory with pembrolizumab in patients I 17 0 0.82 7.1 [1546]
dose Cyclophos- with advanced MMR-p CRC

phamide
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Clinical o e . . o Clinical Trial . o
Strategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
To investigate the efficacy of
pembrolizumab in patients with
: advanced solid tumors that are )
NCT02060188 Pembrolizumab Refractory deficient in mismatch repair II 18 0 22 5 [1547]
(MMR), regardless of tissue
? orioi
Immunotherapy o oflgln
To evaluate the combination of
Durvalumab + durvalumab (PD-L1 inhibitor)
Tremelimumab + and tremelimumab (CTLA-4
NCT02870920 BSC vs. Refractory inhibitor) vs. best supportive I 119 vs. 61 1vs. 0 1.8vs. 1.9 6.6 vs. 4.1 [1548]
BSC alone care alone in patients with
advanced CRC
Duvalumab
(PD-L1) +
Tremelimumab
(ETL%A) + To test the combination of
ow-dose PD-L1/CTLA-4 inhibition with )
NCT02888743 Fractionated Refractory LDERT or HFRT for patients II 10 vs. 10 O0vs. 0 1.7vs. 1.8 3.5vs. 4 [1549]
RngOt?eraPY or with microsatellite-stable mCRC
ofraction-
Immunotherapy P ated
+ Radiotherapy Radiotherapy
Ipilimumab
(:gt‘:];%y};f‘f To evaluate the efficacy of
. combining radiation therapy
NCT03104439 1\(1;1%11;%?1; Refractory with ipilimumab and nivolumab 11 40 10 24 7.1 [1550]
antibody) + in treatin(g_ microsatellite stable
i RC patients
Radiation
therapy
To test the immunotherapy’s
efficacy using dendritic cells
Interleukin-2 :
Immunotherapy (IL-2) + . (DCs) pulsed with
+ Vaccines NCT00154713 DC-based cancer Refractory carcinoembryonic antigen (CEA) I 12 NA NA NA [1365]
vaccine and tetanus toxoid, followed by

interleukin-2 (IL-2) treatment
in mCRC
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Strategy Ig::inntiicﬁaelr Combination Setting Primary Objective Clir})i}claalszrial Sample Size ORR (%) PFS (Months) OS (Months) Reference
Interleukin-1oc Hon
(IL-1ox) NCTO1767857 ~ \ilonix (MABpl) Refractory To evaluate MABp] treatment I 411 vs. 200 NA 2.1vs. 2.1 5.6vs. 5.4 [1551]
neutraliser vs. Placebo impact for advanced CRC
MEK Inhibi Reggrafer_ﬁb s To investigate the efficacy and 90 vs. 183 and 2 vs. 1.91 and 851 vs. 8.87
ibitor + NCT02788279 Cobimetinib + Refractory safety of target drugs for I vs. an NA vs. Lo an 2L VS, ©. [1552]
IC1 Atezolizumab vs. . : 90 1.94 and 7.1
Atezolizumab participants with CRC
TAS-102 (Trifluri- To assess the efficacy and safety
NCT01607957 dine/Tipiracil) Refractory of TAS-102 in treating I 534 vs. 266 1.6 vs. 0.4 2vs. 1.7 7.1vs. 53 [1553]
Nucleoside vs. Placebo refractory mCRC
Metabolic -
Inhibitor To evaluate the efficacy and
NCT01955837 TAS-102 vs. Refractor safety of combining 1 271vs. 135 11vs. 0 2vs. 18 78vs. 7.1 [1554]
Placebo y trifluridine/tipiracil in Asian : T T e N
patients with mCRC
B e":;?;g; ab) To assess the efficacy of Avastin
plus combined with crossover
NCT00700102 chemotherapy vs. Refractory ﬂuoropyrimid'ine-ba.sed 11T 409 vs. 411 NA 5.7 vs. 4.1 11.2 vs. 9.8 [1555]
chemothera chemotherapy in patients
alone Py with mCRC
Fruquintinib
(HMPL-013) + -
TKIs Evaluate the efficacy and safety
NCT04322539 BSl(jf1 aCére%Lép+vs. Refractory of HMPL-013 in patients mCRC 1II 461 vs. 230 15 3.7vs. 1.8 74vs. 4.8 [1556]
BSC Group
Regorafenib Assessing regorafenib’s efficac
NCT01103323 +BSC vs. Refractory g regora y I 505 vs. 255 15 19vs. 17 6.4vs. 5 [1557]
Placebo + BSC and safety in mCRC
Fruquintinib + To evaluate the efficacy and
NCT02314819 BSC vs. Refractory safety of fruquintinib in 11T 278 vs. 138 209 vs. 4.3 3.71vs. 1.84 9.3 vs. 6.57 [1558]
placebo + BSC patients mCRC
- To evaluate the combination of
NCT03406871 Rl‘i]gor?femi* Refractory regorafenib plus nivolumab for B 25 36 79 NA [1559]
tvoluma gastric and colorectal cancers.
TKI + ICI ) To examine the combination of
NCT03657641 Regorafenib + Refractory regorafenib and pembrolizumab /1 73 0 2 109 [1560]

Pembrolizumab

in patients with advanced
MSS-CRC
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Strategy Ig::inntiicﬁaelr Combination Setting Primary Objective Clir})i}claalszrial Sample Size ORR (%) PFS (Months) OS (Months) Reference
Regorafenib + To assess the combination of
I % b regorafenib, ipilimumab, and
NCT04362839 vt b* Refractory nivolumab (RIN) for /1 39 36 5 22 [1561]
Nﬁﬁ{]ma chemotherapy-resistant
(RIN) MSS-mCRC
To test the combination of
Cagoltjn etyx cabometyx (Cabo) +
NCT03539822 D( a 10) + b Refractory durvalumab (Durva) for I 36 27.6 4.4 9.1 [1562]
l;gjrgg)la advanced
PMMR/MSS-CRC patients
To evaluate the efficacy and
NCT03332498 Ibrutinib + Refractory safety of pembrolizumab in 1/1 10 0 14 6.6 [1563]
Pembrolizumab combination with ibrutinib for
treating advanced CRC
TKI + ICI - To investigate the combination
NCT03712943 le]%"“l’ff;“z* Refractory of regorafenib and nivolumab in /b 52 10 43 11.1 [1564]
votuma patients with pMMR-CRC
To examine the efficacy and
NCT03797326 Lenvatinib + Refractor safety of combining lenvatinib 1 32 2 23 75 [1565]
Pembrolizumab y and pembrolizumab in patients ’ ’ o
with non-MSI-H/pMMR
To evaluate the combination of
Regorafenib + regorafenib plus nivolumab in
NCT04126733 Nivolumab Refractory patients with II 70 7 1.8 11.9 [1566]
dMMR/MSI-H CRC
To test the combination of
Cabozantinib + cabozantinib with atezolizumab
NCT03170960 aDozaninty Refractory in patients with previously Ib 31 9.7 3 14 [1567]
treated mCRC
Ad5 [E1- To evalgate ETBX—.Oll, a
NCTO01147965 E2b-]-CEA(6D) Refractory therapeutic vaccine, in adults /1 32 NR NR 48 [1568]
vaceine with CEA-expressing advanced
. or mCRC
Vaccines
To determine the use of
NCT01890213 AVX701 NA virus-like replicon particles I 12 NA NA NA [1569]

(VRP) deliverin% antigens
against stage Il CRC
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Clinical s . . o Clinical Trial . o
Strategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
T id To investigate adjuvant
ecemotide Adjuvant/post- immunotherapy with
NCT01462513 (L-BLP25) vs. ] /P Py I 79 vs. 42 NR 6.1vs. 11.4 62.8 vs. NR [1570]
Placebo operative tecemotide (L-BLP25) after
RO/R1 resection in CRC patients
Vaccines The FSP vaccine
included To assess the safety and
NCTO1461148 ~ Peptides derived Refractory immunogenicity of a frameshift 1/1la 2 NR NR NR [1571]
froArIn I\/}}ZIHI%-(IE _l%eorie& peptide (FSP)-based vaccine for
3 , MSI-H CRC.
and TAF1B.
To assess the efficacy and safety
of combining five
Five HLA-A2402- HLA-A2402-restricted peptide 50 (HLA-A*
Vaccines + restricted cocktail (derived from RNF43, 2402-matched)
Chemothera UMINO000001791  peptide cocktail + Refractory TOMM34, KOC1, VEGFR1, II vs. 46 (HLA-A 62 vs. 60.9 7.2vs. 87 20.7 vs. 24 [1572]
124 mFOLFOX6 or VEGFR2) in combination with * 2402-
XELOX oxaliplatin-based chemotherapy unmatched)
as a first-line therapy for
advanced CRC
. To evaluate the efficacy and
%%E;{%P t+ safety of aflibercept in
NCT00561470 Placebo ‘is‘ Refractory combination with irinotecan and I 614 vs. 612 19.8 vs. 11.1 6.9 vs. 4.67 13.5 vs. 12.06 [1573]
FOLFIRI fluorouracil in treating patients
with mCRC
To check the efficacy and safety
of ramucirumab plus FOLFIRI
VEGF Inhibitor + compared to placebo plus
Chemothera: . FOLFIRI as second-line
24 NCT01183780 Ranpgﬁ%}fﬁa" + Refractory treatment for in mCRC patients I 536 vs. 536 134 vs. 12.5 5.7 vs. 45 133 vs. 11.7 [1574]
whose disease had progressed
during or after first-line
treatment including
bevacizumab.
. To investigate aflibercept in
Aflibercept + combination with FOLFIRI in
NCT01661270 FOLFIRI"f' Refractory patients with mCRC who had I 223 vs. 109 18.4 vs. 3.7 6.93 vs. 5.59 14.59 vs. 11.93 [1575]
Placebo progressed on a prior

oxaliplatin regimen
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St Clinical o e . . o Clinical Trial . o
rategy Identifier Combination Setting Primary Objective Phase Sample Size ORR (%) PFS (Months) OS (Months) Reference
bFe 9&59&2}33': To investigate upfront
NCT03721653  atezolizumab vs. First-line FOLFOXIRI plus bevacizumab 1 73 vs. 145 NR 131 vs. 115 NR [1576]
FOLFOXIRI + and atezolizumab for
VEGEF Inhibitor + bevacizumab unresectable mCRC
ICI + A i b
Chemotherapy Ctae;gclif;li?rfe _:r To study the efficacy of
NCT02873195 Bevacizumab vs. Refractory capecitabine and bevacizumab I 82 vs. 46 8.5 vs. 4.4 44vs. 36 10.3 vs. 10.2 [1577]
Capecitabine with or w1_thout atezol}zumab in
+Bevacizumab treating CRC patients
VEGEF Inhibitor +
Nucleoside B ARFOX Jkr) To compare the efficacy of
Metabolic NCT03750786 ;‘%%lfgén)?ﬁ‘f‘ First-line arfolitixorin versus leucovorin I 245 vs. 245 48.2vs. 49.4 12.8 vs. 11.6 23.8 vs. 28 [1578]
Inhibitor + Bevacizumab in patients with mCRC
Chemotherapy
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Adoptive T-cell therapies are also undergoing investigation when combined with
other modalities [1579]. CAR T-cells engineered to target CRC-associated antigens show
potential but can be limited by the immunosuppressive tumor microenvironment [1580].
Combining CAR T-cells with targeted agents may help overcome this by inhibiting pro-
survival signaling and making the environment less hospitable to tumor cells [1579,1581].
Sequencing treatments with checkpoint therapy following T-cell infusion may also help
the adoptively transferred cells persist longer and mount a more effective antitumor re-
sponse [1582]. Overall, diverse combination regimens bringing together immunotherapies,
targeted drugs, and conventional therapies hold promise for overcoming resistance to
single treatments in CRC [1583].

Newer targeted agents are expanding the toolbox for combining treatments. MDM?2
inhibitors activate the TP53 pathway to induce apoptosis, and combining these drugs with
cytotoxic chemotherapy aims to trigger a one-two punch against cancer cells [1584,1585].
Bcl-2 family inhibitors also synergize with standard therapies by disabling a major anti-
apoptotic mechanism [1586-1588]. These novel targeted drugs may help bypass resis-
tance when paired with established approaches [1589]. Future combinations could also
incorporate immunotherapy and epigenetic modulators that downregulate pro-survival
genes [1402]. By simultaneously hitting cancer cells through multiple death pathways, like
proteolysis-targeting chimeras (PROTAC) technology, these diverse combination regimens
hope to achieve what single agents cannot [1590].

Sequence and schedule also impact the success of combinations [1591,1592]. Giving
agents together continuously may antagonize their effects through offsetting mechanisms of
action or toxicity [1591]. Alternating treatment periods or intermittent dosing using metro-
nomic schedules helps reduce antagonism while still attacking the tumor through different
vulnerabilities [1591]. This sequential approach also applies continuous selective pressure
over time to less resistant subclones [1592]. Properly spacing out components addresses
tumor heterogeneity by targeting diverse subpopulations sequentially as they evolve resis-
tance [1593]. Ongoing clinical investigations are defining optimal sequencing and schedules
to maximize benefit of priority combination partners for CRC patients [1594]. Through
rigorous evaluation of new combinations and administration schedules, researchers aim to
establish readily implementable multi-drug regimens as standard of care [1594]. This strat-
egy acknowledges the evolving nature of tumors and aims for effective adaptation [1595].

5.5. Necessity of Biomarker Development for Precision Care

The development of predictive biomarkers is critical as clinicians now have more treat-
ment options to combine targeted drugs, immunotherapies, and chemotherapy [1596-1599].
Without biomarkers to guide patient selection, combination regimens risk being adminis-
tered indiscriminately without accounting for inherent tumor vulnerabilities [1596,1597].
This could expose some patients to toxic side effects without meaningful benefit [1598-1600].
Biomarkers that can identify subgroups most sensitive or resistant to specific multi-drug
partnerships will optimize clinical outcomes and healthcare costs by ensuring only suitable
patients receive personalized therapies [1600].

In CRC, molecular profiling technologies have already identified several promising
predictive biomarkers to guide combinatorial regimens [1600]. RAS and BRAF mutations
are among the most well-validated predictive biomarkers used in the clinic today to person-
alize CRC treatment [1600]. Around 40-50% of mCRC tumors harbor mutations in KRAS
or NRAS which have been consistently associated with primary resistance to anti-EGFR
monoclonal antibody therapies like cetuximab and panitumumab [1601,1602]. Genomic
profiling tests for these predictive alterations are now the standard of care to select appropri-
ate patient populations for anti-EGFR targeted agents combined with chemotherapy [1601].
However, a significant percentage of RAS/BRAF wild-type tumors also fail to respond to
anti-EGFR therapies [1603]. This highlights the potential for additional predictive factors to
be identified [1603]. Emerging multi-omics approaches integrating genomic, transcriptomic,
and proteomic data promise to uncover new signatures beyond single genes [1604]. For
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example, dysregulation of downstream or parallel pathways due to epigenetic changes or
protein phosphorylation may also drive anti-EGFR resistance [1601,1605,1606].

Liquid biopsies, such as cell-free DNA (cfDNA) analysis, offer several advantages
for CRC management over traditional tumor tissue profiling [1607,1608]. They provide a
less invasive method to serially monitor tumor genetics throughout treatment [1607]. This
could help address tumor heterogeneity [1609] and track acquired resistance signatures
that emerge [1609], which tissue biopsies may miss. Several studies have demonstrated
high concordance between RAS/BRAF mutations detected in plasma ctDNA samples and
tumor tissue in mCRC patients [1610-1613]. These findings suggest that plasma-based
testing can be a viable alternative to tissue-based testing for determining RAS/BRAF
status in mCRC patients, with potential implications for treatment selection and moni-
toring [1610-1613]. By tracking alterations in resistance genes like EGFR or new drivers
of metastases like KRAS G12D, researchers hope to guide sequencing of targeted agents,
immunotherapies or chemotherapy [1596,1614,1615]. In this accordance, ongoing research
aims to expand liquid biopsy applications [1616-1619]. Large prospective clinical trials are
investigating whether serial ctDNA monitoring can predict response to first-, second- and
third-line therapies more accurately than baseline profiling alone [1616-1619]. For instance,
dynamic monitoring of ctDNA aids in prognosis, notably in first-line bevacizumab-based
chemotherapy for mCRC [1616]. It has also been found to accurately reflect tumor burden
and predict metastasis-free (PFS) survival in patients with locally advanced rectal cancer
(LARC) undergoing neoadjuvant chemoradiotherapy (nCRT) [1617]. In LARC patients,
the combination of ctDNA and MRI has been shown to improve the prediction of patho-
logical complete response (pCR) and recurrence risk [1618]. Furthermore, early changes
in ctDNA concentration have been linked to therapeutic efficacy in mCRC patients [1619].
Such findings underscore the importance of utilizing plasma ctDNA analysis for mutation
profiling in mCRC patients, offering a less invasive alternative to traditional tissue biopsy
methods [1607,1608].

Leveraging Computational Modeling and Machine Learning for CRC Personalized Therapy

As the armamentarium of targeted drugs and combinations expands rapidly, high-
throughput profiling technologies will become essential for parsing patient subgroups [1620,1621].
Next-generation sequencing technologies now allow comprehensive molecular profiling of
tumor samples through multiple omics lenses simultaneously [1621-1623]. For instance,
panel-based or targeted sequencing tests focus on genes associated with particularly rare
diseases, facilitating their causal mutation detection [1621-1623]. These tests have revealed
a range of mutations in CRC, including in genes such as APC, MLH1, MSH2, MSH6,
PMS2, MUTYH, NTHL1, KRAS, TP53, FBXW7, PIK3CA, BRAF, CTNNB1, ERBB2, and
SMAD4 [1621-1623]. Furthermore, a cost-effective DNA pooling next-generation sequenc-
ing (NGS) strategy has been employed to identify rare single nucleotide variants and small
indels in established and candidate CRC susceptibility genes [1624]. Accordingly, initiatives
like OCTANE utilize NGS to unify molecular profiling approaches in cancer care [1625]. It
facilitates identification of oncogenic driver mutations for targeted drug treatment through
integration of whole-genome tumor sequencing (WGTS) with immune profiling [1625].
Collectively, NGS provides an unprecedented view of the genomic, epigenomic and pro-
teomic alterations present in each patient’s unique cancer [1620,1621]. Combining these
diverse data types using multi-omics analytical approaches has the potential to uncover
novel biomarkers composed of sets of molecular features that more accurately predict
response or resistance to therapeutic combinations [1604,1626,1627]. Rather than relying
on single genes or pathways, these composite biomarkers may capture the multi-factorial
determinants of treatment outcome in complex cancers like CRC [1604,1626,1627].

Computational modeling provides a way to simulate the complex dynamic interplay
of pathways that gives rise to plasticity like the influence of the tumor microenvironment
and the crosstalk between cancer cells and macrophages [1628,1629]. These models aid in
mechanistically understanding complex biological systems, facilitating insight into cellular
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signaling dynamics [1630]. They are crucial for analyzing the operation of biochemical
networks, including cell signaling pathways [1631]. Mathematical modeling assesses the
dynamics and robustness of regulatory networks, offering a comprehensive approach
to studying cellular behavior [1631,1632]. Moreover, computational models elucidate the
interplay between extracellular matrix and signaling networks, shedding light on regulatory
mechanisms [1633]. In addition, these modeling allows for the simulation of dynamic
pathways, aiding in the identification of critical nodes, bypass routes, and activation
patterns for adaptive survival [1634]. This allows in silico experimentation to identify
critical nodes, bypass routes, and sequential activation patterns involved in adaptive
survival [1635]. Simulations may predict currently unknown effectors or routes that emerge
as compensatory strategies [1636]. Computational models integrate mathematical equations
with computational resources, aiding in the investigation of biological mechanisms [1636].

An important application of modeling is optimizing drug orderings to limit pathway
flux rerouting. By simulating pathway responses to sequential versus concurrent thera-
pies, models may determine how to progressively block shifting signaling conduits over
time. Araujo et al. (2005) and Saez-Rodriguez et al. (2015) both highlight the potential
of computational models in understanding and optimizing cancer therapies [1514,1637].
Araujo’s work specifically demonstrates the enhanced attenuation of biochemical signals
when multiple upstream processes are inhibited, particularly in serially-connected tar-
get points [1514]. This finding suggests that sequential therapies, which progressively
block shifting signaling conduits over time, may be more effective than concurrent thera-
pies [1514]. Eduati et al. (2020) further supports this idea by using patient-specific logic
models to predict personalized combination therapies, indicating the potential for tailored
sequential treatments [1638]. Calder et al. (2006) also contributes to this discussion by
emphasizing the importance of accurate computational modeling in simulating pathway
responses to different therapeutic strategies [1639]. These findings and similar reports
shed a light on this debate that how computational approaches and molecular pathway
data integration could improve researchers’ insights into drug responses and optimize
therapeutic outcomes [1640].

Computational models can also evaluate factors like treatment schedules, durations,
and combinations to identify protocols maximally disabling long-term pathway plastic-
ity [1641,1642]. As dynamic omics data from clinical trials of rational sequencing regimens
becomes available, models can incorporate new biological insights to iteratively improve
predicted guidance strategies [1641]. In this regard, a recent computational model has been
developed to quantify the global effects of mutations and drug treatments in the signaling
networks of CRC cells [1642]. This model, based on a chemical reaction network, can
simulate the impact of single or multiple mutations on protein concentrations and identify
potential therapeutic targets [1642]. The model was further extended to account for the
effects of targeted drugs, demonstrating its potential in personalized medicine [1642]. This
work complements Roumeliotis et al. (2017), who used isobaric labeling to characterize
the proteomic landscapes of CRC cell lines and identify the functional consequences of
somatic genomic variants [1643]. Accordingly, new modeling approaches, like those devel-
oped at the University of Illinois Urbana-Champaign, provide insights into understanding
colon cancer, including its long-term effects and responses to treatment protocols [1644].
Ultimately, computational approaches aim to give physicians a roadmap visualizing how
best to guide CRC signaling networks toward a state where adaptive survival capacity is
most constrained [1641,1645]. By simulating plasticity network-wide rather than focusing
on isolated nodes or routes, these emerging techniques may revolutionize strategies to
pre-emptively intercept tumor adaptation [1641,1645].

Applying machine learning (ML) to the huge volumes of integrated multi-omics data
being generated by clinical trials offers a way to discover extremely complex predictive
models [1646]. Algorithms can train on datasets containing molecular profiles paired with
patient treatment exposures and clinical course [1647]. Techniques such as dimensionality
reduction, autoencoders, random forests, and support vector machines are commonly
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used to handle the high feature count and relatively few samples in these datasets [1648].
Bayesian models, tree-based methods, kernel methods, network-based fusion methods,
and matrix factorization models have also been explored for integrating multi-view biolog-
ical data in machine learning systems [1649]. This allows the software to autonomously
identify intricate response-predictive patterns spanning multiple levels of biological infor-
mation [1647]. The models developed through deep learning may far surpass human ability
to detect subtle inter-related predictive signatures [1647,1650]. As clinical trial datasets
accumulate over time with additional patient-treatment-outcome trios, the predictive
performance of these data-driven machine learning biomarkers is expected to steadily
improve [1650].

A range of studies have demonstrated the potential of ML in predicting clinical
outcomes in CRC [1651-1654]. Griindner et al. (2018) and Chowdary et al. (2023) both
highlight the success of ML models in predicting disease-free survival, relapse, and response
to radio-chemotherapy, with accuracies ranging from 0.70 to 0.86 [1651,1652]. These models
have the potential to aid in decision-making and improve survival prognosis [1651,1652].
Alboaneen et al. (2023) further emphasizes the benefits of ML and deep learning in early
diagnosis, particularly in the analysis of medical texts and images [1653]. Achilonu et al.
(2021) extends this research to the South African population, demonstrating the high
discriminative accuracies of ML algorithms in predicting CRC recurrence and patient
survival [1654]. Together, these studies underscore the potential of ML in leveraging multi-
omics data to improve clinical decision-making in clinical outcomes in CRC [1651-1654].

In summary, adoption of multi-omics profiling and machine learning approaches has
the potential to truly transform cancer treatment by enabling rational upfront selection
of optimal personalized combination therapies [1626,1655]. By precisely pairing each
patient to the specific regimens their tumor biology profile indicates they have the highest
chance of benefiting from, these advances promise to minimize exposure to ineffective toxic
treatments [1656]. This personalized precision oncology approach aims to optimize clinical
benefit for CRC patients in the era of expanding combination options [1657-1660].

6. Conclusions

Taken together, this extensive review presents a comprehensive perspective on the mul-
tifaceted challenges posed by CRC, a formidable global health burden. The review sheds
light on the distinct clinical and molecular features that distinguished colon from rectal
cancers, emphasizing the critical role of tumor location in guiding treatment. It elucidates
the intricate architecture of colonic crypts and their vital functions in intestinal homeostasis.
Unraveling the complex pathways of carcinogenesis, this review navigates the conventional
adenoma—carcinoma sequence, the serrated neoplasia route, and colitis-associated cancer.
The influential Vogelstein model, proposing sequential APC, KRAS, and TP53 alterations
as drivers, was extensively explored. Notably, the review spotlighted the CMS1-CMS4
molecular subtypes, capturing disease heterogeneity and guiding personalized approaches.

Ultimately, this comprehensive review synthesized the current knowledge while
highlighting the invaluable contributions of experimental models, from mouse models
to organoids and xenografts. These powerful tools dissected CRC’s intricate molecular
landscapes, accelerating the quest for novel targets and strategies. As researchers con-
tinue unraveling this disease’s complexities, this review beacons future endeavors toward
improving outcomes and more effectively managing this formidable challenge.
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