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Abstract: Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots,
can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While
extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the
specific contributions of phosphatases to these processes require further elucidation. This article
reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current
understanding of how phosphatases mediate these effects, such as the induction of defense structures
in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion
and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and
provides prospective future research directions in this field.

Keywords: mycorrhizal fungi; phosphatase; plant disease resistance; signal transduction;
transcription factors

1. Introduction

Plants in the natural world are continually under the threat of pathogens, which can
cause diseases that affect crop yield and quality. To counter these biotic stresses, plants
have evolved a complex immune system.

The German scholar Frank discovered that the roots of some plants form symbiotic
relationships with fungi. These fungi, while obtaining carbohydrates from the plants, help
the plants absorb mineral elements and water from the soil. This symbiotic relationship
is known as mycorrhiza [1]. Based on morphological characteristics, mycorrhizae can be
mainly divided into ectomycorrhizae and endomycorrhizae. Among them, arbuscular myc-
orrhizae represent a special form of endomycorrhizae which are formed by Glomeromycetes
fungi. These fungi play a vital role in enhancing the survival rate of plant seedlings [2],
promoting plant growth [3], bioremediation [4], nutrient absorption [5,6], and increasing
plant disease resistance [7,8] (Figure 1).

Phosphorus (P), as an essential nutrient element for plant growth, is mainly absorbed
and utilized by plants in the form of inorganic phosphates (e.g., HPO4

2−, H2PO4
−) [9]. It

also participates in various physiological and biochemical metabolic processes within the
plant body, including energy transfer, signal transduction, redox reactions, and photosyn-
thesis [10]. Improving the plant utilization of organic and insoluble inorganic phosphorus
from the soil has been a longstanding agricultural challenge. Research indicates that, in
addition to modulating the morphology and physiological characteristics of their root
systems, plants have evolved a variety of mechanisms to cope with phosphorus deficiency,
one of which is the formation of mycorrhizal symbioses to enhance phosphorus uptake
from the soil [11]. Mycorrhizal fungi form a physical connection with plant roots through
their extramatrical mycelium and extend in the soil to increase the plant’s absorption area
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for water and nutrients. Among them, the phosphatases secreted by mycorrhizal fungi can
transform organic phosphorus in the soil into inorganic phosphorus that can be directly
absorbed by plants, thereby improving the nutritional status of the plants. In addition,
phosphatases may also enhance the plant’s defense against pathogens [12] by regulating
the levels of plant hormones, activating plant defense-related genes [13], and enhancing
systemic acquired resistance (SAR) [14–17].
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Figure 1. The functions of mycorrhizal fungi. (A) In the mycorrhizal symbiotic system, the organic
carbon produced by plants through photosynthesis is primarily in the form of carbohydrates, such
as glucose, fructose, and sucrose, which are transferred to mycorrhizal fungi via plant roots. In
return, mycorrhizal fungi assist plants in more effectively absorbing water and mineral nutrients
from the soil, particularly key elements like phosphorus and nitrogen. Additionally, mycorrhizal
fungi form an extensive underground network through their hyphae, connecting different plant root
systems to create a shared mycorrhizal network. Through this network, mycorrhizal fungi can engage
in material exchange and signal transmission. (B) Comparative visualization of ectomycorrhizal
and endomycorrhizal mycelia: ectomycorrhizal hyphae depicted on the left, with endomycorrhizal
hyphae illustrated on the right.

This review aims to provide a comprehensive analysis of the biological functions
of phosphatases in mycorrhizal fungi and their key roles in the plant disease defense
mechanism, in order to deeply understand their molecular mechanisms and regulatory
networks. By discussing the diversity and specificity of these key enzyme classes, this
study aims to provide a theoretical basis and practical guidance for the development of
new plant disease management strategies.
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2. Mycorrhizal Fungi-Induced Host Plant Resistance to Disease
2.1. The Array of Plant Pathologies That Mycorrhizal Fungi Can Suppress

Plant pathogens encompass a vast array of categories, including Viruses, Prokaryotes,
Fungi, Oomycota (such as Albuginales and Peronosporaceae), Nematodes, parasitic plants
(like Cuscuta spp.) [18–20] (Figure 2).
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Figure 2. Categories of plant pathogens.

It is known that there are more than 30,000 species of Fungi that cause plant diseases,
accounting for approximately 70% to 80% of all plant diseases. They are distributed across
multiple phyla, classes, orders, families, and genera, such as Ascochyta, Didymella, Epicoccum,
and so on. Oomycota belong to the Stramenopila group; although morphologically similar to
fungi, they are biologically distinct in terms of classification [21,22]. They are eukaryotic
organisms but not classified as fungi and can cause diseases such as late blight caused by
Phytophthora spp. [23]. Prokaryotes, including bacterial pathogens, can induce a variety of
plant diseases, exemplified by Pseudomonas syringae [24].

Ahmed et al. [25] found that the interaction between mycorrhizal fungi and plants can
affect plant–nematode interactions, thereby enhancing the plant’s resistance to nematodes,
highlighting the potential of mycorrhizal fungi in improving plant resistance to diseases.
Mycorrhizal fungi-induced disease resistance spans a variety of pathogen-induced diseases
(Table 1). Mycorrhization by arbuscular mycorrhizal fungi (AMF) can significantly enhance
the growth parameters, photosynthetic pigments, and flavonoid content in tomato plants,
while reducing the severity and incidence of Tomato mosaic virus (ToMV) infection [26].
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Table 1. Types of plant diseases inhibited by mycorrhizal fungi.

Pathogen Disease
Name Pathogen Host Plant Mycorrhizal

Fungal Names
Mycorrhizal

Types Mechanism of Disease Resistance

Oomycota
Late

blight
disease

Phytophthora
infestans

Solanum
tuberosum Glomus sp. Arbuscular

mycorrhizae

Inducing systemic acquired
resistance by activating plant

defense genes (such as PR1 and
PR2), reducing the leaf infection

index, and enhancing resistance to
late blight [23]

Fungi

Fusarium
wilt

Fusarium
oxysporum

Solanum
lycopersicum Glomus mosseae Arbuscular

mycorrhizae

Combating soil-borne pathogens in
tomatoes, providing bioprotection

effects [27]

Fusarium
oxysporum

Salvia
miltiorrhiza

Glomus
versiforme

Arbuscular
mycorrhizae

Mycorrrhizal colonization enhances
the host plant’s resistance to fungal

pathogens by strengthening
photosynthesis, root structure, and
inducing the expression of defense
enzymes and defense-related genes

to combat infection [28]

Fusarium
oxysporum

Musa
acuminate

Rhizophagus
irregularis

Arbuscular
mycorrhizae

Promoting the growth of banana
plants, inducing the expression of

defense-related genes, aiding in the
suppression of wilt disease [29]

Fusarium
oxysporum

Citrullus
lanatus

Funneliformis
mosseae or

Glomus
versiforme

Arbuscular
mycorrhizae

By inducing the root exudation of
phthalic esters, altering soil enzyme

activity and bacterial community
composition, wilt disease in
watermelon is mitigated [30]

White Rot Erysiphe
alphitoides

Quercus
robur

The
commercially

available
mycorrhizal

inoculant
Ectovit®, which

contains a
variety of

mycorrhizal
fungi, was used

Multiple
mycorrhizal

fungi

Mycorrhizal fungi can significantly
increase the levels of polyamines,

soluble osmotic regulators (such as
proline), and phenolic compounds
in plant leaves, thereby enhancing
the plant’s resistance to powdery

mildew [31]

Rust
infection

Melampsora
larici-

populina

Populus
trichocarpa
× deltoides

Hebeloma
mesophaeum Ectomycorrhizae

By mitigating the reduction in the
synthesis of phenolic compounds

triggered by rust disease, the
negative impact of rust on the host

plant is compensated for [32]

Verticillium
wilt

Rhizoctonia
solani

Cucumis
sativus

Glomus mosseae
and Glomus

clarum

Arbuscular
mycorrhizae

Mycorrhizal fungi significantly
reduced disease severity and

increased plant biomass, potentially
through mechanisms such as
improving nutritional status,

reducing direct competition with
pathogens, and inducing plant

immunity [33]

Verticillium
dahliae

Gossypium
hirsutum

Glomus
etunicatum,

Glomus
intraradices,

Glomus
versiforme

Arbuscular
mycorrhizae

Mycorrhizal fungi exhibit
competitive interactions with the

pathogen V. dahliae, which can
alleviate the disease effects of V.

dahliae on cotton and enhance the
plant’s resistance to the disease [34]



Int. J. Mol. Sci. 2024, 25, 9491 5 of 22

Table 1. Cont.

Pathogen Disease
Name Pathogen Host Plant Mycorrhizal

Fungal Names
Mycorrhizal

Types Mechanism of Disease Resistance

Verticillium
dahliae

Gossypium
hirsutum

Rhizophagus
irregularis

Arbuscular
mycorrhizae

By inducing the expression of plant
resistance-related genes and the

potential release of volatile
compounds by mycorrhizal fungi

symbionts, which directly affect the
growth of pathogenic fungi [35]

Early
blight

disease

Alternaria
solani

Solanum
lycopersicum

Glomus
intraradices

Arbuscular
mycorrhizae

Reducing the susceptibility of
tomatoes to A. solani, diminishing
disease symptoms, is akin to the
induction of systemic resistance

(ISR) [36]

Damping
off

Rhizoctonia
solani

Pinus tabu-
laeformis

Suillus laricinus,
S. tomentosus,

Amanita
vaginata,

Gomphidius
viscidus

Ectomycorrhizae

Inhibiting the growth of pathogens
by producing hydrolytic enzymes

(chitinase, β-1,3-glucanase, and
β-glucosidase) that participate in
the parasitic action on the fungi,
altering the morphology of the

pathogen [15]

Black pod
disease

Phytophthora
megakarya

Theobroma
cacao

Gigaspora
margarita and
Acaulospora
tuberculata

Arbuscular
mycorrhizae

Promoting the growth of cocoa,
enhancing resistance to black pod

disease, and increasing plant
growth parameters, such as height,
root, and stem weight, as well as

phosphorus uptake [37]

Black foot
disease

Cylindrocarpon
macrodidy-

mum

Vitis
Rupestris

Glomus
intraradices

Arbuscular
mycorrhizae

Reducing the susceptibility of
grapevine roots to black foot

disease, enhancing the plant’s
resistance to abiotic or biotic

stresses, and mitigating the severity
of the disease [38]

Decline
syndrome

Phytophthora
cinnamomi Quercus ilex Tomentella spp.,

Russula spp. Ectomycorrhizae

Affecting the vitality of oak roots
and the abundance of mycorrhizal

fungi, the interplay of soil
properties, topography, and root

infection by P. cinnamomi influences
the abundance of mycorrhizal fungi

[7]

Prokaryotes
Bacterial

wilt
disease

Ralstonia
solanacearum

Solanum
lycopersicum

Glomus mosseae,
Scutellospora sp.,

Gigaspora
margarita

Arbuscular
mycorrhizae

The integration of Glomus mosseae
with the pathogen significantly

enhanced the height and biomass of
tomato plants, with no occurrence of

disease symptoms [39]

Ralstonia
solanacearum

Nicotiana
tabacum Glomus mosseae Arbuscular

mycorrhizae

The combined application of
Trichoderma harzianum-amended

bio-organic fertilizer and the
mycorrhizal fungus Glomus mosseae

reduced the abundance of the
pathogen, and increased the

activities of polyphenol oxidase
(PPO), phenylalanine

ammonia-lyase (PAL), and
peroxidase (POD) in the plants,

promoting plant growth [40]
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Table 1. Cont.

Pathogen Disease
Name Pathogen Host Plant Mycorrhizal

Fungal Names
Mycorrhizal

Types Mechanism of Disease Resistance

Bacterial
wilt

Ralstonia
solanacearum

Solanum
lycopersicum Glomus mosseae Arbuscular

mycorrhizae

Tomatoes inoculated with Glomus
mosseae, when combined with the

use of organic fertilizers, have
exhibited increased plant survival

rates and yields [41]

Ralstonia
solanacearum

Solanum
lycopersicum

Rhizophagus
irregularis

Arbuscular
mycorrhizae

By activating the plant’s defense
mechanisms [42]

Nematodes

Root-knot
nematode

disease

Meloidogyne
incognita

Solanum
lycopersicum Glomus mosseae Arbuscular

mycorrhizae

Inducing systemic acquired
resistance reduced the number of
root-knot nematodes, mitigating

their damage to tomato root systems
[43]

Root-
lesion

nematode
disease

Pratylenchus
penetrans

Solanum
lycopersicum Glomus mosseae Arbuscular

mycorrhizae

Inducing systemic resistance
significantly reduced the number of

root-lesion nematodes, decreased
their reproduction rate, and

lessened the damage to tomato root
systems [43]

False
root-knot
nematode

Nacobbus
aberrans

Solanum
lycopersicum

Glomus
intraradices

Arbuscular
mycorrhizae

Reducing root damage caused by
nematodes (decreasing the number

of root galls) and inhibiting
nematode reproduction [44]

Viruses

Tomato
yellow

leaf curl
disease

Tomato
yellow leaf

curl
Sardinia

virus
(TYLCSV)

Solanum
tuberosum

Funneliformis
mosseae

Arbuscular
mycorrhizae

Mitigating the severity of viral
symptoms, reducing the

concentration of viral DNA in
tomatoes, and enhancing the

tolerance of tomatoes to TYLCSV
[45]

Simultaneously, in the context of fungal diseases, mycorrhizal fungi have been ob-
served to enhance the resistance of plants to Fusarium wilt diseases caused by specific
pathogenic Fusarium species. These pathogenic species, when infecting plants, can typically
result in symptoms such as root rot and desiccation of the plant body [46]. Moreover,
mycorrhizal fungi can also strengthen the plant’s defense against root rot caused by Rhi-
zoctonia spp., a disease that is widespread in many crops and causes necrosis of the roots
and stunted growth of the plant [47]. Regarding bacterial diseases, mycorrhizal fungi have
also been demonstrated to reduce the incidence of leaf spot and canker diseases caused by
bacteria such as Pseudomonas syringae [48].

2.2. The Molecular Mechanisms Underlying the Activation of Plant Disease Resistance by
Mycorrhizal Fungi

The molecular mechanisms by which mycorrhizal fungi induce plant disease resistance
involve a multitude of molecular changes and signal transduction pathways. Upon contact
with plant roots, mycorrhizal fungi secrete signaling molecules [49], such as short-chain
fatty acids and sugars, which are recognized by receptors on the root surface, initiating inter-
nal signal transduction pathways within the plant [50,51]. During this process, changes in
intracellular calcium ion concentrations activate calcium-binding protein kinases (CDPKs),
which further phosphorylate a series of downstream signaling molecules [52].These signal-
ing molecules may include jasmonate synthases (JAS), which, under the action of CDPKs,
convert precursor substances into jasmonic acid. As a signaling molecule, jasmonic acid
activates its downstream signaling pathways, including jasmonic acid receptors (e.g., COI1)
and related signaling molecules. The activation of the jasmonic acid signaling pathway
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leads to the phosphorylation and activation of specific transcription factors (e.g., MYC2).
The activated transcription factors enter the nucleus and regulate the expression of genes
related to disease resistance, including pathogenesis-related proteins (PR proteins) and
other defense-related genes [53–57]. The expression of these genes enhances the plant’s
defense mechanisms, including the reinforcement of cell walls, the production and activity
of pathogen-associated proteins, and the generation of reactive oxygen species.

The presence of mycorrhizal fungi activates the antioxidant system within plants,
potentially enhancing the activity of antioxidant enzymes such as cytosolic ascorbate perox-
idase (cAPX), superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase
(GR) [58]. These enzymes help to eliminate reactive oxygen species produced during
pathogen invasion, with cAPX being a primary scavenger of reactive oxygen. cAPX cat-
alyzes the dehydrogenation reaction of H2O2 with ascorbate residues, converting H2O2
into water, thereby protecting plant cells from oxidative damage [59]. Phosphatases further
enhance the plant’s antioxidant capacity by regulating the phosphorylation state of these
antioxidant enzymes [60]. Hashem et al. [61] demonstrated that AMF can enhance plant
disease resistance by promoting the activity of phosphatases. In this study, inoculation with
AMF not only increased the activity of plant phosphorus metabolism-related enzymes but
also enhanced the defense system by increasing chlorophyll content and improving water
status, combating oxidative stress caused by Fusarium oxysporum f. sp. lycopersici (FOL).
Furthermore, AMF can elevate the activity of the antioxidant enzyme system, which helps
to eliminate reactive oxygen species and protect plants from oxidative damage, ensuring
an effective response to pathogen attacks.

Mycorrhizal fungi also increase the absorption area of plant roots for nutrients in the
soil through their mycelial network [62], especially key nutrients such as phosphorus and
nitrogen, which are essential for the plant immune system [63]. Phosphatases can catalyze
the hydrolysis of organic phosphorus compounds in the soil, releasing inorganic phosphate
that is readily available for plant uptake, thereby enhancing the nutritional status of the
plant [64]. This process not only improves the nutritional status of the plant but may also
regulate the levels of plant hormones [65], such as salicylic acid (SA) and jasmonic acid
(JA), indirectly enhancing the plant’s disease resistance.

In summary, the molecular mechanisms by which mycorrhizal fungi induce plant
disease resistance involve a series of molecular changes at various levels, from signal recog-
nition and transduction to gene expression regulation and the activation of the antioxidant
system. Phosphatases play a key regulatory role in this process, enhancing plant resistance
by finely tuning signal transduction pathways and gene expression.

3. The Role of Phosphatases in the Induction of Plant Disease Resistance by
Mycorrhizal Fungi

Phosphatases play a multifaceted regulatory role in the plant disease resistance in-
duced by mycorrhizal fungi, not only participating in the activation and modulation of
signaling pathways, but also affecting the levels of plant hormones and the activity of the an-
tioxidant system, together forming a complex defense network for plants against pathogens.

3.1. The Decomposition of Insoluble and Sparingly Soluble Phosphorus in the Soil

In soil, inorganic phosphorus, particularly that in mineral form, is readily adsorbed and
fixed by soil particles, resulting in plant-available free phosphate concentrations typically
below 10 µmol/L [66]. In acidic soils, phosphorus predominantly exists as iron-bound,
aluminum-bound, and occluded forms, while in calcareous soils, it is mainly present in the
form of insoluble calcium phosphates.

Mycorrhizal fungi, through their extensive mycelial networks, can expand the contact
area between plant roots and soil [67], enhancing the activation and absorption of soil phos-
phorus [68,69]. Under acidification conditions, AMF play a crucial role in soil phosphorus
cycling and plant nutrition, participating in the regulation of soil pH and the availability of
phosphorus through various mechanisms. For instance, AMF can secrete organic acids and
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other chelating agents that compete with iron and aluminum ions in the soil, reducing the
adsorption and fixation of phosphorus, thereby releasing more available phosphorus for
plant uptake [70]. Simultaneously, mycorrhizal fungi secrete phosphatases that catalyze
the hydrolysis of organic phosphorus compounds in the soil, thereby facilitating the disso-
lution and mineralization of insoluble phosphorus [71–78]. Consequently, phosphatases
are considered key factors affecting the nutritional exchange between mycorrhizal fungi
and their plant hosts [79].

Improved phosphorus nutrition promotes the growth of plant root systems, aiding in
the adaptation to environmental stresses, such as drought and saline–alkali conditions, and
enhances resistance to pathogens [80,81].

3.2. Involvement in the Regulation of Plant Defense and Immune Responses

Pattern recognition receptors (PRRs) on the surface of plant root cells perceive pathogen-
associated molecular patterns (MAMPs), triggering an initial immune response known as
pattern-triggered immunity (PTI) [82,83].

PTI involves the activation of intracellular signaling pathways, including the opening
of calcium ion channels, the activation of protein kinases, and the production of reactive
oxygen species (ROS), leading to the upregulation of defense-related gene expression, such
as PR proteins and antimicrobial peptides [84–86], as well as the significant enhancement
of defense-related genes (PR2a, PAL, and AOS) and the key gene BX9 in the DIMBOA (2,4-
Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) biosynthetic pathway [87]. During
the process of mycorrhiza formation, plant defense responses and molecular reprogram-
ming are modulated to effectively activate the plant’s immune response and the expression
of defense genes, which is highly similar to induced systemic resistance (ISR) [88,89]
(Figure 3). This induced resistance is termed mycorrhiza-induced resistance (MIR). Phos-
phatases play a crucial role in ISR [90,91] and programmed cell death (PCD) by regulating
the phosphorylation status of related proteins [92].
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Figure 3. Plant root and shoot defense initiation mechanism. (A) The mechanisms underlying induced
systemic resistance (ISR) and systemic acquired resistance (SAR) involve distinct yet interconnected
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pathways. (B) Systemic acquired resistance represents an immune state established throughout
the plant following local infection. SAR is primarily activated through the salicylic acid (SA) sig-
naling pathway, endowing the plant with enhanced resistance to subsequent pathogen infections.
(C) Induced systemic resistance is an immune response triggered by beneficial microbes or chemical
substances perceived by the plant’s roots. This response is activated through signaling pathways
mediated by plant hormones such as jasmonic acid (JA) and ethylene (ET), strengthening the plant’s
defense against a broad spectrum of pathogens. Abbreviations: EIN3, Ethylene Insensitive 3; JAZ,
Jasmonate Zim-Domain Protein; PAMPs, pathogen-associated molecular patterns; PRRs, pattern
recognition receptors; JA, jasmonic acid; ET, ethylene; PRs, pathogenesis-related proteins; SA, salicylic
acid; NPR1, non-race-specific disease resistance 1.

Phosphatases are primarily derived from fungal hyphae and hyphal sheaths (fungal
cellular structures enveloping plant root tips), functioning by removing phosphate groups
from signaling molecules [93]. It can modulate the activity and stability of immune-related
proteins in plants, control the intensity and duration of signaling, and prevent excessive
immune responses, thereby influencing plant’s pattern-triggered immunity (PTI) and
effector-triggered immunity (ETI) responses [83].

In the intricate network of plant immunity, the mitogen-activated protein kinase
(MAPK) cascade is a central signaling pathway. The activity of the MAPK can promote
a local cell death mechanism known as the hypersensitive response (HR), which is part
of the plant’s defense strategy [94]. Phosphatases regulate the PTI and ETI responses by
dephosphorylating key components of the MAPK cascade, such as MAPKKK, MAPKK,
and MAPK (Figure 4). This regulation not only affects the transmission of immune signals
but also involves the activity and stability of specific transcription factors, such as WRKY
transcription factors, thereby influencing the expression of genes related to SAR [95,96].
After the initial infection, WRKY transcription factors activate downstream resistance genes,
helping the plant to establish systemic resistance in tissues distant from the site of primary
infection [97]. Among them, the transcription factor WRKY33 is activated by the MPK3/6
kinase and directly binds to the promoter of the ALD1 gene, regulating its expression. The
enzyme encoded by the ALD1 gene is responsible for the synthesis of pipecolic acid, a key
mobile signal molecule in SAR [98].

Wei et al. [99] found that the phosphatase C-terminal domain phosphatase-like 1 (CPL1)
plays a negative regulatory role in plant immunity, enhancing the plant’s immune response.
CPL1 is localized in the nucleus and can interact with MKK4, MKK5, MPK3, and MPK6,
disrupting the interaction between MKK4/MKK5 and MPK3/MPK6, and weakening the
transmission of immune signals, thus negatively regulating Arabidopsis resistance to bac-
teria. This interference depends on the phosphatase activity of CPL1, revealing a new
function of phosphatases in the regulatory network of plant immunity.

In addition, 2C-type protein phosphatases (PP2Cs) have been identified as key regu-
lators of the antiviral defense mechanism [100–102]. Diao et al. [103] found that PP2C15
acts as a negative regulator of plant immunity by targeting the BRI1-associated receptor
kinase 1 (BAK1). Among the 56 PP2Cs, 14 significantly suppressed the immune response in-
duced by flg22, a bacterial pattern recognition molecule, with PP2C15 negatively regulating
the immune response by interacting with BAK1 and dephosphorylating it.

Hence, it is clear that phosphatases play a critical role in modulating various aspects
of plant defense and immune responses, such as signal transduction, regulation of tran-
scription factor activity, and control of PR gene expression, making them an indispensable
component of the plant’s disease resistance regulatory network.
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Figure 4. The immune response process of plant root systems against pathogenic agents. (A) Pattern-
triggered immunity (PTI) process: Plant cells recognize pathogen-associated molecular patterns
(PAMPs) through pattern recognition receptors (PRRs), which initiate a series of downstream sig-
naling pathways. This includes the activation of mitogen-activated protein kinase kinase kinases
(MAPKKKs), which in turn activate mitogen-activated protein kinase kinases (MAPKKs) and mitogen-
activated protein kinases (MAPKs). The activation of these kinases leads to the conversion of ADP to
ATP, providing energy for signal transduction. The signaling pathways activate calcium-dependent
protein kinases (CDPKs) and other protein kinases, which further phosphorylate substrate pro-
teins, facilitating intracellular signal transduction. These signals ultimately lead to the activation of
transcription factors (TFs) in the nucleus, thereby inducing the expression of pathogenesis-related
proteins (PRPs) and enhancing the plant’s defense response. Effector-triggered immunity (ETI)
process: To combat PTI, pathogens secrete effector proteins. The recognition of these effectors by NLR
proteins leads to their activation, which may involve oligomerization or conformational changes. The
activation of NLR proteins initiates a potent immune response, characterized by intracellular signal
transduction and changes in gene expression. This results in the binding of the activated NLR proteins
to the effectors, inducing programmed cell death, such as the hypersensitive response (HR). (B) In the
process of intracellular signal transduction in plant cells, the phosphorylation and dephosphorylation
of proteins occur. This process is crucial for the regulation of various cellular functions and responses
to environmental stimuli. Abbreviations: ROS, reactive oxygen species; CDPKs, calcium-dependent
protein kinases; PPRs, pentatricopeptide repeats; TF, transcription factor; NB, nucleotide-binding site;
LRR, leucine-rich repeat; PRPs, pathogenesis-related proteins; NLR, nucleotide-binding leucine-rich
repeat; CPKs, calcium-dependent protein kinases; RBOHD, Respiratory Burst Oxidase Homologue D;
RLP, receptor-like protein; NLRs, nucleotide-binding leucine-rich repeats.

3.3. The Interplay with Hormonal Signaling

Plant hormones such as jasmonic acid (JA), salicylic acid (SA), auxin, and gibberellin
(GA) are pivotal signaling molecules in the plant immune system. The transcription factor
OsARF17, a key player in the auxin signaling pathway, is implicated in the regulation
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of plant responses to various biotic stresses, including viral infections [104]. Plants may
balance immune responses and growth through such hormonal crosstalk. Specifically, the
salicylic acid receptor NPR1, as a subunit of the ubiquitin E3 ligase, can promote the polyu-
biquitination and degradation of the GA receptor GID1, enhancing the stability of DELLA
proteins, which are negative regulators of the GA signaling pathway [105]. Meanwhile,
CPL3, a phosphatase associated with the GA response, interacts with DELLA proteins and
is involved in the phosphorylation of RNA polymerase II, playing an important role in the
regulation of plant growth and development [106]. Phosphatases may also enhance the
systemic resistance of plants by regulating the SA and JA signaling pathways [107,108].
For example, by participating in the synthesis, signal transduction, or response of proteins
involved in SA, they can affect plant resistance to diseases. This regulatory effect may
involve the phosphorylation status of multiple levels of proteins in the SA signaling path-
way [109], thereby affecting the plant’s recognition of pathogens, signal amplification, and
the activation of the final defense response [103]. In addition to SA, other oxylipins may
also be involved in signal transduction during the interaction between mycorrhizal fungi
and pathogens in the roots [110].

It can be seen that the roles of plant hormones and phosphatases in the plant immune
system are interconnected and interdependent. Together, they form a complex regulatory
network that interacts with other hormonal signaling pathways, either directly or indirectly,
and participates in the plant’s defense mechanisms against pathogens.

3.4. Restriction the Invasion and Spread of Pathogens

Fernandes et al. [111] have discovered that Fusarium oxysporum can induce rapid
alkalinization of the extracellular space in the host by secreting a functional homologue
of the plant’s Rapid ALkalinizing Factor (RALF), known as the F-RALF peptide. This
alkalization effect is crucial for the pathogen’s infection process, as it not only facilitates
the invasive growth of the fungus but also activates cellular signaling pathways associated
with pathogenicity, thereby enhancing its virulence.

Specifically, such alkalinization can shift the pH milieu within host tissues, thereby
providing a more propitious environment for pathogen proliferation. Additionally, this
alkalization may indirectly impact the functionality of the host cells, including intracellular
signaling pathways, potentially aiding the efficacy of effector proteins secreted by the
pathogen to manipulate the host’s cellular machinery. However, phosphatases secreted
by mycorrhizal fungi can dephosphorylate these effector proteins, reducing their activity
and thereby limiting the infection and spread of pathogens [112–114]. In addition, specific
phosphatases secreted by mycorrhizal fungi can hydrolyze polysaccharides in the pathogen
cell wall, weakening the pathogen’s ability to infect [115], and activating the plant’s immune
response, providing an effective defense mechanism for the plant [116].

Simultaneously, there is competition between mycorrhizal fungi and pathogens for
resources around the plant roots, which helps to restrict the growth and spread of pathogens.
Mycorrhizal fungi can reduce the chances of pathogen infection through competition
and antagonism. Phosphatases may also interfere with the quorum-sensing mechanism
of pathogens by hydrolyzing quorum sensing signal molecules, such as AHLs (N-acyl
homoserine lactones) [117], reducing the production of virulence factors by pathogens and
thus decreasing their pathogenicity to the host.

3.5. The Interaction between Mycorrhizal Fungi and Beneficial Microorganisms
3.5.1. Mycorrhizal Fungi and Beneficial Microbes Synergize to Enhance Crop
Disease Resistance

Caravaca et al. [118] found that the Streptomyces AcH505 strain enhances the growth
of oak trees by increasing the abundance of saprotrophic and ectomycorrhizal fungi in the
rhizosphere (an increase of 158% compared to the control group), which can counteract
the damage caused by nematodes by promoting the growth of oak micro-cuttings. This
indicates that mycorrhizal fungi form a symbiotic relationship with plant roots, which not
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only promotes the absorption of nutrients by the plant but also changes the composition
of the microbial community in the plant’s rhizosphere [119–124]. Through interactions
with various beneficial microorganisms, they inhibit the activity of pathogens and jointly
enhance the plant’s disease resistance [125–128] (Table 2).

Beneficial microorganisms can promote the formation of mycorrhizae by secreting
compounds that stimulate the growth of mycorrhizal fungi, such as hormones, enzymes,
and organic acids [129–131]. At the same time, they can also degrade toxic substances in the
soil [132], protecting mycorrhizal fungi from the effects of harmful substances. During the
interaction process, mycorrhizal fungi and these beneficial microorganisms can inhibit the
growth of pathogens by producing antibiotics, siderophores, and SAR signaling molecules,
improve the nutritional status of plants, activate various defense-related genes in plants,
and change the composition of root exudates to regulate the plant’s sensitivity to pathogens,
thereby enhancing the plant’s physiological health and resistance to environmental stress,
and thus improving the plant’s resistance to pathogens [133–139].

Table 2. Mechanisms by which mycorrhizal fungi synergize with beneficial microbes to enhance crop
resistance to diseases.

Disease
Name

Pathogenic
Microorgan-

ism

Beneficial
Microbial

Species

Host
Plant

Mycorrhizal
Fungal Names

Mycorrhizal
Types Synergistic Mechanism

Bacterial
wilt

Ralstonia
solanacearum

Trichoderma
harzianum

Nicotiana
tabacum Glomus mosseae Arbuscular

mycorrhizae

The synergistic action of
these two factors has led to a
reduction in the abundance

of soil-borne pathogenic
microorganisms and a

concomitant enhancement of
the activity of plant systemic

resistance-related
enzymes [40]

Ralstonia
solanacearum

Bacillus spp.,
Pseudomonas

spp.,
Azotobacter

spp.

Solanum
tuberosum

Glomus
intraradices, G.
etunicatum, G.

mosseae

Arbuscular
mycorrhizae

The combination of
biocontrol agents (BCA) and

arbuscular mycorrhizal
fungi (AMF) may mitigate
disease severity through

antagonistic interactions and
influence the microbial

community by altering root
exudates [140]

Spring black
stem and
leaf spot

Phoma
medicaginis

Sinorhizobium
medicae

Medicago
sativa

Funneliformis
mosseae

Arbuscular
mycorrhizae

The mutual promotion
between mycorrhizal fungi

and other microbes enhances
the formation of root

nodules and mycorrhizal
colonization, which in turn

boosts the plant’s
phosphorus and nitrogen

uptake. This interaction also
augments the activity of

plant defense compounds
and enzymes, consequently

reducing the disease
index [141]



Int. J. Mol. Sci. 2024, 25, 9491 13 of 22

Table 2. Cont.

Disease
Name

Pathogenic
Microorgan-

ism

Beneficial
Microbial

Species

Host
Plant

Mycorrhizal
Fungal Names

Mycorrhizal
Types Synergistic Mechanism

Anthracnose Colletotrichum
orbiculare

Phoma sp.,
Penicillium
simplicissi-

mum

Cucumis
sativus Glomus mosseae Arbuscular

mycorrhizae

The interplay between Plant
growth-promoting fungi
(PGPF) and arbuscular

mycorrhizal fungi (AMF)
may influence the level of
disease protection through
competitive interactions for

space or nutrients [142]

Fusarium
wilt

Fusarium
oxysporum

Trichoderma
harzianum

Cucumis
melo

Glomus
constrictum, G.

mosseae, G.
claroideum, G.
intraradices

Arbuscular
mycorrhizae

Trichoderma harzianum and
arbuscular mycorrhizal

fungi (AMF) may
synergistically control
diseases by enhancing
nutrient uptake and

inducing systemic resistance
in plants [143]

Bipolaris
sorokiniana

Bipolaris
sorokiniana

Epichloë
festucae

Lolium
perenne

Claroideoglomus
etunicatum

Arbuscular
mycorrhizae

Endophytic fungi and
mycorrhizal fungi enhance
the resistance of plants to

diseases by activating
defense-related enzymes,
increasing the activity of

plant hormones, and
elevating the content of

lignin [144]

Root rot and
charcoal rot

Macrophomina
phaseolina

Brettanomyces
naardensis

Helianthus
annuus

Acaulospora
bireticulata

Arbuscular
mycorrhizae

Yeasts facilitate the
development of arbuscular

mycorrhizal fungi (AMF) by
supplying vitamin B12. The

combined action of these
two organisms alters the
pattern of root exudates,

impacting the plant’s
rhizosphere microbial

community and inhibiting
the invasion and growth of

pathogenic fungi [145]

Late blight Phytophthora
infestans

Pseudomonas
sp.

Solanum
tuberosum

Rhizophagus
irregularis

Arbuscular
mycorrhizae

The co-inoculation of plant
growth-promoting microbes
and arbuscular mycorrhizal

fungi may activate the
plant’s systemic defense

system, leading to the
upregulation of ethylene

response factor 3 (ERF3) and
thereby enhancing the

plant’s resistance to
diseases [146]
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Table 2. Cont.

Disease
Name

Pathogenic
Microorgan-

ism

Beneficial
Microbial

Species

Host
Plant

Mycorrhizal
Fungal Names

Mycorrhizal
Types Synergistic Mechanism

Take-all Gaeumannomyces
graminis

Pseudomonas
fluorescens

Triticum
aestivum Glomus mossea Arbuscular

mycorrhizae

Mycorrhizal fungi enhance
the plant’s resistance to

diseases, while beneficial
microbes influence plant
metabolism or directly

inhibit pathogen growth
through their metabolic

byproducts [147]

Root-knot
nematode

disease

Meloidogyne
incognita

Bacillus
polymyxa,

Bacillus sp.

Solanum
lycoper-
sicum

Glomus
versiforme,

Glomus mosseae

Arbuscular
mycorrhizae

Beneficial microbes augment
the colonization of

arbuscular mycorrhizal (AM)
fungi in the roots, and in

turn, AM fungi enhance the
population of beneficial

microbes in the rhizosphere;
together, they suppress
nematode damage and

promote plant growth [148]

Sphaeropsis
Shoot Blight

Sphaeropsis
sapinea

Bacillus
pumilus

Pinus
thunbergii

Hymenochaete
sp. Rl Ectomycorrhizae

Mycorrhizal fungi elicit
systemic defense responses

in plants. In concert,
beneficial bacteria facilitate
the formation of symbiotic

structures between the
mycorrhizal fungi and their

host plants [149]

White rot Sclerotinia
sclerotiorum PGPR Fragaria AMF Arbuscular

mycorrhizae

The combined application of
mycorrhizal fungi and plant

growth-promoting
rhizobacteria (PGPR)

enhances plant biomass,
promotes vegetative growth,

and reduces disease
indices [150]

3.5.2. The Role of Phosphatases in the Synergistic Process

Abdel-Fattah et al. [151] found that Sorghum bicolor inoculated with the arbuscular
mycorrhizal fungus Glomus intraradices no. LAP8 had significantly higher acid and alkaline
phosphatase activities in root extracts compared to non-mycorrhizal plants not inoculated
with the fungus. The increase in phosphatase activity leads to the enhanced availability
of phosphorus in the soil [152], which can improve soil fertility [153], create more suitable
living conditions for beneficial microbes, provide more nutrients, promote the growth and
metabolic activities of beneficial microbes, and thus affect the structure and diversity of the
soil microbial community [154,155].

Furthermore, the enhancement of phosphatase activity can protect the host plant from
changes induced by ionic and osmotic stress [156], and promote the growth and extension
of mycorrhizal fungal hyphae [157], thereby increasing the opportunities for contact with
other beneficial microbes in the soil, forming a more complex microbial network, and
enhancing the plant’s disease resistance.

Thus, the activity of phosphatases is closely related to soil fertility, the symbiotic
relationship with mycorrhizal fungi, and the structure and function of the soil micro-
bial community.
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4. Perspectives

Current research collectively underscores the pivotal role of mycorrhizal fungi in
the absorption and translocation of essential nutrients within symbiotic relationships.
Mycorrhizal fungi enhance plant immunity by improving the nutritional status of the host,
particularly in terms of phosphorus uptake. Moreover, the mycelial networks formed
by mycorrhizal fungi facilitate the exchange of materials and signal transmission among
plants, aiding in the collective defense against diseases within plant communities.

The resistance conferred by mycorrhizal fungi through the action of phosphatases
is a relatively complex process. Although phosphatases themselves do not directly com-
bat pathogenic organisms, they contribute to the plant defense system by modulating
plant hormone signaling pathways, enhancing nutritional status, disrupting the quorum-
sensing mechanisms of pathogens, and activating plant immune responses. The role of
phosphatases in immune regulation is multifaceted; they are involved not only in the
fundamental physiological processes of the plant but also in the response and modulation
to pathogen attacks. However, the mechanisms underlying resistance remain contentious,
necessitating further integration of molecular techniques and physiological experiments to
elucidate the specific mechanisms by which phosphatases enhance plant disease resistance
in mycorrhizal associations.

The involvement of phosphatases in induced plant resistance encompasses a variety
of signaling molecules and metabolic pathways, providing significant clues for further
dissection of the molecular mechanisms underlying plant-microbe interactions. However,
the specific roles and molecular mechanisms of phosphatases in different mycorrhizal
fungi and plant systems remain to be further elucidated. Additionally, how phosphatases
interact with other plant defense signaling pathways and how these interactions influence
plant resistance to various pathogens are key points for future research. Furthermore, the
impact of environmental factors such as soil pH, nutrient status, and climate change on
the secretion of phosphatases by mycorrhizal fungi, and how these factors regulate plant
resistance, are also important directions for future investigation.

Further research in this field can pave new avenues and methods for plant disease
control and the study of mycorrhizal fungi, offering valuable insights for sustainable
strategies to enhance crop productivity.
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