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Abstract: Nanotechnology has gained popularity in recent years due to its wide-ranging applications
within the scientific community. The three main methods for synthesizing nanoparticles are physical,
chemical, and biological. However, the adverse effects associated with physical and chemical methods
have led to a growing interest in biological methods. Interestingly, green synthesis using plants has
gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles
(ZnO NPs) produced using environmentally friendly methods are more biocompatible and have
potential applications as antibacterial agents in the biomedical field. As a result, this review discusses
the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques,
and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and
analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing
and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights
the challenges and prospects in this innovative research area.

Keywords: green synthesis; zinc oxide nanoparticles; phytochemical compounds; antibacterial
activity; biogenic nanoparticles

1. Introduction

Nanotechnology has garnered significant attention due to its cutting-edge capabilities
in producing materials on a nanoscale (1–100 nm) [1–3]. Over the last several decades,
several industries, including food, agriculture, pharmaceuticals, medicine, and others, have
exploited metallic oxide nanoparticles [4]. Zinc oxide (ZnO), among other components,
has been identified by the Food and Drug Administration (FDA) as a safe, or Generally
Recognized As Safe “GRAS”, chemical and is an important semiconductor [5]. Zinc
oxide (ZnO) is an inorganic compound utilized in sunscreens, paints, pharmaceuticals,
and ceramics, among other applications [6]. Zinc oxide is an excellent economic and
commercial choice due to its unique physicochemical features, thus making it suitable
for various applications [7]. Remarkably, ZnO NPs have lately gained prominence in
the scientific community because of their several potential applications, especially in
biology, the environment, and electronics [8]. ZnO NPs are widely investigated for use
in a multitude of applications among metal NPs owing to their optical properties, low
cost, safety, biocompatibility, minimal cytotoxicity, ease of manufacture, semi-conductivity,
piezoelectric, spintronic, photonic abilities, vulcanization stimulator, and antibacterial
activity [9,10]. Considering their strong excitonic binding energy (60 meV) and broad and
straight band gap semiconductor (3.37 eV) [3,11], ZnO NPs can function well in optical
systems at or above room temperature [12]. Owing to their distinctive ability to disperse
UV rays, they are often utilized in sunscreen [13]. In a recent study by Jha et al. [14], it was
revealed that ZnO NPs demonstrate exceptional biocompatibility, minimal toxicity, and
cost-effectiveness, further solidifying their extensive potential for biological applications.

The preparation of nanoparticles is an important topic that has recently gained pop-
ularity. There are three methods for synthesizing ZnO NPs: physical, chemical, and
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biological [15]. However, the high energy consumption and pressure required to generate
NPs via a physical approach make the production costs too expensive, and this method
involves the use of sophisticated equipment and well-trained personnel to operate; there-
fore, its usage for production is discouraged [16]. Furthermore, chemical methods are
conventionally used because the cost of their synthesis is less expensive and involves the
use of light equipment compared to physical methods. Nevertheless, the chemicals used as
reducing agents and stabilizing or capping agents in chemical methods are toxic and not
eco-friendly; as a result, this adverse effect necessitates searching for safer alternatives that
are less toxic, simple, sustainable, economically viable, and environmentally benign [17].

This review focuses on the biological synthesis of ZnO NPs and the factors that
influence successful synthesis and characterization. In addition, the antibacterial properties
of various plant-mediated ZnO NPs were summarized, and the mechanism of antibacterial
action was articulated. The constraints and opportunities in providing significant insights
into this emerging research topic were also highlighted.

2. Green Synthesis of ZnO NPs

To achieve sustainable development goals and reduce waste, there is an urgent demand
for green nanoparticle production technologies [18]. One of the primary purposes of
using green sources to produce nanomaterials is to harness natural resources to solve
environmental challenges [1]. Biological synthesis stands as a superior bionanotechnology
tool, replacing chemical and physical processes. It offers cost-effectiveness, environmental
friendliness, speed, simplicity, and economic viability [10,19]. In this method, non-toxic
chemicals that are environmentally acceptable are employed [17,20]. According to the
report by Rahman et al. [21], advances in nanotechnology help decrease pharmaceuticals’
adverse effects on human health and improve the clinical efficacy of medicine. Leveraging
nanobiotechnology alongside therapeutic research has significantly boosted the potency
of therapeutic molecules [22]. In green synthesis, substrates used include different plant
parts (leaves, fruits, flowers, stem, rhizome, and aerial), bacteria, fungi, and marine algae
(Figure 1). By employing plants, bacteria, fungi, and algae as substrates, an environmentally
friendly synthesis process can be achieved that effectively lowers the toxicity of both the
final product and the manufacturing process [14]. The exploration of microorganisms for
green synthesis of nanoparticles has been established to be associated with some limitations,
including contamination from culturing and cost implications [23].

On the contrary, because they promote the large-scale production of stable nanopar-
ticles in a variety of sizes and forms, plants offer the simplest and ecologically benign
method for synthesizing nanoparticles [24–26]. Plant extracts contain phytochemical com-
pounds that can serve as both stabilizing and reducing agents. The utilization of plants
for green synthesis has drawn a lot of biotechnological attention [27,28]. Different sec-
ondary chemical components, including carbohydrates, alkaloids, amino acids, glycosides,
phenolic compounds, oils, lipids, and saponins, may be present in the plant extract. The
green synthesis method produces nanoparticles (NPs) that are functionalized with various
phytochemicals. This enhances the biocompatibility and bioactivity of the NPs, making
them effective for many biomedical applications [29]. It has been reported that using
biomolecules as reducing agents can cause particle aggregation due to the electrostatic
interaction between metal ions and biomolecules [5]. These biomolecules help control the
size and shape of the particles, functionalize the surface of the NPs, and enhance their
biocompatibility and bioactivity [30].
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Green synthesis offers a powerful approach to producing nanoparticles (NPs) that are
functionalized with diverse phytochemicals. This method enhances the biocompatibility
and bioactivity of NPs, making them ideal for a wide range of biomedical applications [29].
It has come to light that utilizing biomolecules as reducing agents can lead to particle
aggregation because of electrostatic interactions between metal ions and biomolecules [5].
These biomolecules play a crucial role in regulating particle size and shape, modifying the
surface of the NPs, and amplifying their biocompatibility and bioactivity [30].

The green synthesis method, an environmentally friendly approach, involves the
use of plant-derived phytochemicals to functionalize nanoparticles (NPs). This process
results in NPs with enhanced biocompatibility and bioactivity, making them highly suitable
for a myriad of biomedical applications [29]. It has been observed that the utilization
of biomolecules as reducing agents can lead to particle aggregation due to electrostatic
interactions between metal ions and biomolecules [5]. These biomolecules play a pivotal
role in not only controlling the size and shape of nanoparticles but also in modifying the
surface of NPs, thereby enhancing their biocompatibility and bioactivity [30]. Research
has primarily been conducted in a controlled laboratory environment, where a range
of experiments has been carried out to explore the potential applications of plant-based
extracts in the synthesis of zinc oxide nanoparticles. This research has generated substantial
interest in commercial sectors due to the reduced need for heavy equipment and the
considerable advancements in our understanding of the composition of biological extracts
and their interactions with metal ions.

A plethora of studies have demonstrated the successful synthesis of biogenic ZnO
NPs from various plant extracts, as evidenced by previous studies conducted by other
researchers [31,32]. Moreover, the proven antibacterial effects of ZnO NPs against both
gram-positive and gram-negative bacteria have generated substantial interest in their
potential uses [5,33–35]. For example, a green synthesis of ZnO NPs is represented in
Figure 2.
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2.1. Optimization of Green Synthesis Conditions

Several important factors influence the synthesis of ZnO NPs through plant-mediated
methods. These factors encompass the concentration of biomass, or the volume of plant
extract utilized in the synthesis, the specific pH level of the reaction mixture, the duration
required for the completion of the nanoparticle formation process, the temperature during
the reaction, the subsequent calcination temperature, and the precise concentration of salt
present. Each of these factors plays a significant role in dictating the outcome of ZnO
NP synthesis, and their careful consideration is essential for achieving the desired results.
Optimizing these growth components to achieve the necessary NP size and shape for suc-
cessful biological applications plays an important role [1]. The most widely acknowledged
method for optimizing key factors responsible for biomolecule synthesis is response surface
methodology (RSM). It is successfully used to optimize conditions in food, chemical, and
biological processes [36]. Employing RSM has the benefits of saving raw materials, time,
and space. It also produces a mathematical model (Box–Behnken design) that accurately
describes the entire procedure, excluding the analysis of the impact of independent factors.
Several other researchers have indicated that they have optimized several parameters in
RSM-based nanoparticle production [37,38]. According to the report by Nithya et al. [39],
physicochemical factors such as pH, temperature, and incubation duration are important
for the microbial-mediated production of nanoparticles employing RSM. Typically, in green
synthesis, a metal salt, such as zinc salt, is mixed with aqueous plant extracts, and the
mixture is subjected to magnetic stirring for some time, and a colour change indicates
the formation of nanoparticles [1]. Optimization of the following parameters is neces-
sary to achieve the best yields: pH, time, temperature, extract concentration, and salt
concentration [1].

2.1.1. pH

One of the most significant effects of reaction pH is its ability to modulate the elec-
trical charges of biomolecules. This modulation can have a profound influence on the
biomolecules’ capacity to encapsulate and stabilize nanoparticles and subsequently con-
tribute to the development and growth of the nanoparticles [40]. The development of
nucleation centers is additionally controlled via temperature and pH. As the pH level
rises, the number of nucleation centers increases simultaneously, which are the sites where
the formation of metal nanoparticles begins. This increase is crucial as it promotes and
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enhances the formation of metal nanoparticles. Additionally, it is widely recognized that
pH plays a major role in determining both the size and the structural shape of the nanopar-
ticles [41]. Arif et al. [42] reported the synthesis of Clinopodium vulgare L.-mediated ZnO
NPs at pH 9. Fernandes et al. [43] reported the synthesis of Terminalia catappa Fruit Pericarp-
mediated ZnO NPs at pH 10. Notably, their research sheds light on the intricate process
of nanoparticle synthesis and its correlation with pH levels. Another study investigated
by Naiel et al. [44] synthesized ZnO NPs using Limonium pruinosum L. Chaz. extract at
pH 8. Furthermore, existing literature by other researchers documents diverse instances
of ZnO NP synthesis spanning pH levels from 8 to 12 [3,45,46]. This range underscores
the significance of pH as a pivotal factor in the synthesis of ZnO NPs, warranting further
exploration and elucidation in this area of study (Figure 3).
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2.1.2. Temperature

Temperature has a significant effect on the synthesis of nanoparticles (Figure 3). Several
studies have highlighted that an increase in temperature increases the rate of synthesis of
nanoparticles (reduces synthesis time) [47]. Higher temperatures can cause the breakdown
of active phytochemicals found in the plant extract used for synthesis [48]. According to
previous studies, the optimum temperature for zinc oxide nanoparticles ranges from 60 to
80 ◦C [49]. This optimum temperature results in maximum absorbance at the characteristic
Lmax of ZnO NPs. High temperatures (>100 ◦C) produce larger particles (60–100 nm).
On the other hand, one possible explanation for the improved nanoparticle sizing at
low temperatures may be a decrease in the growth and aggregation of the nanoparticles.
Kahsay [50] states that the biosynthesis of ZnO NPs is not adversely affected by low
temperatures and short synthesis periods. Pistacia lentiscus-mediated ZnO NPs were
synthesized at 78 ◦C [51], while ZnO NPs using Myristica fragrans were conducted at
60 ◦C [52].

2.1.3. Salt Concentration

The salt concentration used in ZnO NP synthesis influences their morphological fea-
tures and size (Figure 3) [53,54]. The production of nanoparticles is also significantly
influenced by the concentration of metal ions, which are usually obtained from metal salt
solutions [55]. Variations in metal ion concentration can alter particle size, distribution,
and composition by influencing the nucleation and growth processes. Increased metal ion
concentrations have the potential to accelerate particle nucleation and growth, but they can
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also lead to unintended crystal formations or increased particle aggregation. The stability
and optical characteristics of the nanoparticles can also be affected by variations in the con-
centration of metal ions. Controlling the properties of nanoparticles requires determining
the optimum concentration of metal ions [55]. The higher the salt concentration (0.1–2 M)
used, the bigger the size of the nanoparticles and vice versa. The size of the nanoparticles
has a great influence on biological activity, and several researchers have highlighted in the
literature that the smaller the nanoparticles, the higher the therapeutic potential because
small-sized nanoparticles can transport faster across biological membranes as compared to
the larger ones [56–58].

2.1.4. Reaction Time

The reaction conditions greatly influence the physicochemical properties of nanoparti-
cles through green synthesis (Figure 3) [59,60]. Therefore, the effects of synthesis conditions
and associated factors on the reactivity, structure, and other features of the generated
nanoparticles are investigated. The reaction time for plant-mediated synthesis of nanoparti-
cles differs from one plant to another, the reason being the variations in the phytochemical
compounds in different plants [61]. The types of phytochemical compounds in plants
differ because of differences in climatic conditions, soil types, and other factors that play a
significant role in the variation of these secondary metabolites. The level of stress to which
these plants are exposed can influence the concentration of secondary metabolites they
produce to protect them. It has been reported in the literature that when plants are exposed
to certain stress, they secrete secondary metabolites for protection [62].

The use of plant extracts as reducing agents in green chemistry has been widely ac-
cepted by researchers in this field, and the reaction time for the phytochemical compounds
in these plants to reduce metallic salts to nanoparticles depends on their type and concen-
trations. The compounds contained within the extract play a crucial role in influencing both
the size and size distribution of metallic nanoparticles. The extract’s powerful reductant
significantly accelerates the reaction rate, which in turn leads to the formation of smaller
nanoparticles, as demonstrated in a study by Roy et al. [63]. Several researchers have
reported in the literature that some plants have the potential to mediate the reduction of
metallic salts to nanoparticles immediately, and others have documented different times
for the completion of nanoparticle synthesis [16,64,65]. Combining different plants usually
reduces the reaction time, as the synergistic effect of the phytochemical compounds in
the plants aids in faster bioreduction of metallic salts to nanoparticles compared to single
plants [25]. The longer the reaction time for the synthesis of nanoparticles, the larger
the synthesized nanoparticles tend to come together and aggregate to form larger parti-
cles [55]. Plant extracts include phytochemicals that are primarily responsible for increasing
dispersion and ultimately reducing agglomeration [66].

2.2. Purification of ZnO NPs

Purification of plant-mediated ZnO nanoparticles is a crucial step in green synthesis.
After observing the complete reduction of zinc salts to zinc oxide nanoparticles, white
precipitates usually form and settle at the bottom of the flask used for the synthesis. These
precipitates are subsequently collected via centrifugation; for example, Mbenga et al. [67]
reported collecting ZnO NPs synthesized using an extract of Tulbaghia violacea at 4300 rpm
for 30 min, whereas Gamedze et al. [68] documented collecting ZnO NPs synthesized
using an extract of Mucuna pruriens (utilis) at 5000 rpm for 30 min. The precipitate is
then resuspended and thoroughly washed with distilled water to remove any associated
impurities, a process that should be repeated at least three times. In addition, several
researchers have first rewashed the precipitate with ethanol and later washed it in distilled
water several times [68,69]. The obtained wet precipitates are normally subjected to drying
in an oven at a temperature between 60 and 70 ◦C for several hours or overnight to produce
powdered ZnO NPs [3]. The dried sample can be calcined subsequently or kept at room
temperature in an airtight container for future analysis and use. The purification of biogenic
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nanoparticles is a crucial step that must be carefully conducted; if not, the quality and
purity of the synthesized nanoparticles will be compromised.

2.3. Calcination

Calcination, often called annealing, can eliminate and fix defects or impurities, activate
the dopant atom, and enhance ZnO NPs’ electrical and optical properties [70]. Depending
on the intended usage, these features may alter in different ways [1]. Calcination temper-
ature greatly influences the size and quality of ZnO NPs, which are hexagonal wurtzite
structures. The report by Karam and Abdulrahman [1] highlighted that an increase in
calcination temperature from 150 to 450 ◦C resulted in larger particles (35.202 to 43.30 nm).
It can be shown that varying the calcination temperature significantly affects the interplanar
distance of biosynthesized ZnO NPs.

2.4. Phytochemical Screening

To identify the phytochemical compounds responsible for the stability and reduction
of ZnO NPs, Liquid Chromatography Mass Spectrometry (LCMS), high-performance
liquid chromatography (HPLC), and Gas Chromatography (GC) are crucial analytical
tools commonly employed for this purpose. LCMS, a powerful technique, provides both
qualitative and quantitative information about phytochemical compounds. HPLC, on the
other hand, is instrumental in separating, identifying, and quantifying each component in a
mixture. Gas Chromatography (GC) is particularly useful for analyzing volatile compounds.
Together, these analytical methods enable the identification of phytochemical compounds
involved in the reduction of metallic salts to nanoparticles, as well as those acting as
stabilizing or capping agents on the surface of the synthesized nanoparticles [71,72].

A wide variety of bioactive substances, such as terpenoids, flavonoids, and polyphe-
nols with reducing abilities, are found in plant extracts. These substances can function as
stabilizing and reducing agents while synthesizing nanoparticles. They play a significant
role in the reduction process by actively transferring electrons to the metal ions present
in the precursor solution. This electron donation supports and accelerates the forma-
tion of nanoparticles, contributing to the overall efficiency of the process [73]. Analytical
instruments can identify the phytochemical compounds that stabilize the synthesized
nanoparticles [10,68,74]. These biomolecules attach themselves to the nanoparticle surface,
stabilizing and preventing them from aggregating. It is also important to acknowledge
that the size, shape, and surface properties of the generated nanoparticles are significantly
influenced by the capping agents. As an essential component of nanoparticle synthesis,
these capping agents control the final characteristics of the nanoparticles, including their
stability, chemical reactivity, and interactions with other materials [55].

2.5. Physicochemical Characterization of Nanoparticles

Choosing a suitable technique for characterizing nanoparticles from the options avail-
able for determining their size, shape, aggregation, chemistry, and other characteristics
is crucial because while fabricating nanoparticles, various issues arise regarding the char-
acterization [25]. It is very important to determine the characteristics of any synthesized
nanoparticles to understand their behavior and create new materials with certain qualities;
thus, characterization techniques are employed to gather data on the chemical, physical,
mechanical, and electrical characteristics of materials. Some of the common analytical
instruments used for characterizing biogenic metallic nanoparticles are discussed below.

2.5.1. Ultraviolet–Visible (UV–Vis) Spectrophotometry

Plant extracts produce nanoparticles with varying forms, sizes, and crystallinity due
to their unique reactions with metal ions [75]. The investigation observed a notable change
in the colour of the metal ion solution from clear to pale brown, indicating the formation
of smaller particles. This alteration can be attributed to the phytochemicals present in the
plant extract, which possess the capability to convert metal ions into metal nanoparticles. By
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functioning as a stabilizing and reducing agent, the plant extract plays a crucial role in this
process. Furthermore, the advancement of the reaction is carefully monitored and analyzed
using UV–Vis spectroscopy, allowing for a comprehensive understanding of the dynamics
involved in the conversion of metal ions to metal nanoparticles [76]. In the UV–visible
spectroscopic spectrum, peak absorption is associated with surface plasmon resonance
(SPR), which reflects metal ion reduction and nanoparticle development by interacting
electromagnetic waves with the electron conduction band oscillation (Figure 4) [77].
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The plant extract is a complex mixture containing tannins, phenolic acids, flavonoids,
and essential oils. These components are believed to have significant potential as bio-
reducing and stabilizing agents. This is attributed to the presence of multiple hydroxyl
(-OH) groups, which can play a key role in the synthesizing of nanoparticles. Based on
qualitative evidence, band-gap energy is shown to decrease with increasing calcination tem-
perature [78]. The relationship between the narrowing band gap in ZnO nanoparticles and
the presence of oxygen vacancies is noteworthy. It is suggested that the oxygen vacancy in
these nanoparticles results from the disordered crystal structure caused by exposure to high
calcination temperatures [79]. This finding underscores the importance of understanding
the impact of synthesis conditions on the properties of ZnO nanoparticles. For example,
Al-Askar et al. [10] reported that surface plasmon resonance (SPR) for biosynthesized ZnO
NPs using Pluchea indica was recorded at 360 nm after 24 h. In another work conducted by
Mbenga et al. [67], the absorption spectra of biosynthesized ZnO NPs using an extract of
Tulbaghia violacea displayed the highest peak at 273 nm. Also, the biosynthesis of Spirulina
platensis-mediated ZnO NPs was confirmed using a UV–Vis absorbance peak at 372 nm [80].

2.5.2. Fourier Transform Infrared (FT-IR) Spectroscopy

The infrared absorption and molecular vibrations of NPs are examined using FT-IR
spectroscopy. The analytical method can offer comprehensive information about the exact
chemical composition and the intricate interactions between the nanoparticles (NPs) and
the molecules in their vicinity. Additionally, it can precisely identify the specific functional
groups that are present on the surface of the nanoparticles [55]. Metal ions can be reduced
in size to a nanometer by reacting with several functional groups found in plant phytocon-
stituents, including hydroxyl, carboxyl, and amine [61,81]. The reduction of metal ions into
nanoparticles is thought to be caused by the -OH group found in flavonoids. Furthermore,
these substances are crucial in the process of capping nanoparticles, ensuring their stability
and biocompatibility and enabling the biological reduction of ions to nanoscale levels.
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This is essential for the functional and biomedical applications of nanoparticles in vari-
ous fields [82]. FT-IR spectra of ZnO NPs may be obtained by absorbing electromagnetic
radiation at 400–4000 cm−1. ZnO NPs exhibit a remarkable ability to effectively absorb
electromagnetic waves spanning a wide spectrum of frequencies and intensities. This
characteristic enables precise and detailed characterization of specific functional groups
and intricate chemical structures, providing valuable insights into their properties and
behavior [17].

Plant extracts include a wide range of phytochemicals that serve as functional groups
for metal reduction. The most common are flavonoids, which may be found in all parts of
plants and have lower molecular weights. The flavonoid content of plants is an important
consideration when employing them for biogenic synthesis. According to Shafey [83],
flavonoids stabilize nanoparticles and minimize their toxicity. Enzymes, vitamins, and phe-
nolic compounds are essential phytochemicals that contribute to green synthesis. Recent
pharmacological studies have extensively demonstrated that primary active constituents,
such as alkaloids (such as caffeine and morphine), flavonoids (such as quercetin and cat-
echins), and phenolic acids (such as gallic acid and caffeic acid), possess a wide range of
beneficial properties. These properties include powerful antioxidant effects that help com-
bat oxidative stress and reduce the risk of chronic diseases. Additionally, these constituents
have shown potential in managing diabetes, combating various pathogens, and exhibiting
promising anticancer activities [3].

In a single procedure, phenolic molecules, sterols, and alkaloids (nicotine) function as
reducing agents, capping and stabilizing Zn metal ions to ZnO NPs. An indication of the
ZnO nanostructure’s stretching was found by the FT-IR spectrum at 523 cm−1 [84]. Maher
et al. [3] affirm that the Zn-O stretching vibration is what produces the 400–600 cm−1 peak
(Figure 5). Furthermore, Pluchea indica-mediated ZnO NPs’ FT-IR measurement showed a
significant signal at 432.05 cm−1, suggesting the presence of a Zn-O bond [85]. The Zn-O
vibrations at 566 cm−1 were validated by Khan et al. [86].
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2.5.3. X-ray Diffraction (XRD) Analysis

XRD is a widely employed technique to analyze the structural properties of materials.
For instance, in the context of ZnO samples, XRD can be employed to verify the sample’s
purity and characterize its hexagonal wurtzite structure. This method is particularly benefi-
cial in nanostructure research as it offers detailed insights into the underlying structure of
materials. The breadth and shape of reflections obtained from XRD analysis can provide
comprehensive information about various factors, including crystallite sizes, which are
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crucial for understanding the material’s properties and behavior [87]. Several scientists
have utilized X-ray diffraction (XRD) to analyze and characterize ZnO NPs, with findings
documented in various studies (Figure 6). Amin et al. [15] and El-Fallal et al. [33] have
contributed to this area of study. Naiel et al. [44] reported that the XRD pattern of ZnO
NPs mediated by Limonium pruinosum exhibited diffraction peaks at approximately 31.45◦,
34.66◦, 36.26◦, 47.48◦, 56.29◦, 62.7◦, and 68.31◦. Similarly, Maher et al. [3] observed four
main peaks at 2θ values of 31.8◦, 34.5◦, 36.27◦, 47.5◦, 56.7◦, 62.8◦, and 67.5◦ in their study.
Additionally, Ihsan et al. [20] reported various peaks at 2θ values of 32.76◦, 34.43◦, 36.24◦,
47.59◦, 57.61◦, 63.87◦, and 68.9◦ from their XRD patterns of biosynthesized ZnO NPs. Fur-
thermore, Alyamani et al. [88] observed several diffraction peaks at 2θ = 31.8341◦, 34.4911◦,
36.321◦, 47.6034◦, 56.6643◦, 62.9192◦, 66.4384◦, 68.0045◦, 69.1421◦, 72.6285◦, and 77.0281◦,
in their investigation of Phlomis leaf-mediated ZnO NPs.
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2.5.4. Scanning Electron Microscopy (SEM)

Using an electron beam, SEM provides high-resolution surface imaging that may be
utilized to understand an object’s nano- and micro-scale characteristics [89]. SEM images
provide a larger field of view and a higher magnification, which makes them useful for
assessing the topology of ZnO NP surfaces [90]. For morphological identification, this
technique depends on visual assessment [91]. When ZnO NPs are exposed to electron
beams, the detector generates and records signals. The shape, orientation, and crystalline
structure of the ZnO NPs may be inferred from the signal [92]. According to the study
by Abdelbaky et al. [27], the ZnO NPs synthesized using Pelargonium odoratissimum had
excellent distribution and spherical and hexagonal shapes (Figure 7). Mbenga et al. [67]
observed that the ZnO NPs mediated by Tulbaghia violacea were spherical and closely
packed. Similarly, Ahmed and Othman [80] reported that SEM images indicated that ZnO
NPs exhibited excellent dispersion and were hexagonal, with some rough aggregations.
The SEM of ZnO NPs prepared from Beta vulgaris showed that the particles are almost
spherical and clustered together to form a sponge-like accumulation of particles [93]. Faisal
et al. [94] revealed that the ZnO NPs synthesized in the aqueous fruit extract of Myristica
fragrans had particles that were strongly agglomerated and had a semispherical shape. This
makes it abundantly evident that the particles are homogenous and that their functions
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depend significantly on their homogeneity. ZnO NPs synthesized from Pistacia lentiscus
L. exhibited an aggregated, dried cotton-like appearance [51]. The majority of these ZnO
NPs synthesized using Cocos nucifera leaf extract exhibited an aggregated, dried cotton-like
appearance [21]. The hydrogen bonding and electrostatic interactions between bioorganic
capping molecules and the NPs have caused them to accumulate together. The SEM images
of ZnO NPs showed that they are not in direct contact with each other, indicating the
stability of NPs by capping agents. Amin et al. [15] observed that ZnO NPs synthesized
from Lentinula edodes demonstrated that the bulk of components are spherical, and they
aggregate into larger particles with unclear geometry. The SEM and size distribution of ZnO
NPs show a restricted range of particle sizes, with a diameter of approximately 200 nm. The
findings of Alghamdi et al. [5] found that the Celosia argentea-mediated ZnO NPs showed a
non-uniform spherical shape and an accumulation of the formed semispherical particles.
It was reported that using biomolecules as reducing agents increases particle aggregation
due to the electrostatic interaction between metal ions and biomolecules. Furthermore,
SEM images of Pelargonium odoratissimum (L.)-mediated ZnO NPs showed that they were
spherical and hexagonal in morphology, with good distribution and an average size of
21.6 nm [27]. ZnO NPs prepared from Riobotrya japonica leaf extract showed irregular
spherical shapes and most likely to be hexagonal shapes that agglomerated into large
network structures [34].
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2.5.5. Energy-Dispersive X-ray (EDX)

The analytical technique known as EDX is normally used to determine the purity and
chemical composition of NPs [93]. In EDX, NPs are subjected to an intense electron beam
bombardment, and the X-rays they release are monitored. Since the rays are produced based
on the characteristics of the elements, the atomic structure of each element results in unique
peaks in the X-ray spectrum [17]. In a study conducted by Vijayakumar et al. [92], the com-
position of ZnO NPs synthesized using Plectranthus amboinicus extract was analyzed using
EDX spectroscopy. The results revealed that the ZnO NPs contained 75.12% zinc, 23.55%
oxygen, and a small peak that was attributed to the presence of bound bio-compounds
from the Plectranthus amboinicus extract. This detailed chemical analysis provided valuable
insights into the elemental composition and potential functional groups associated with
the synthesized ZnO NPs. Furthermore, Al-Askar et al. [10] studied ZnO NPs synthesized
using Pluchea indica. The analysis showed that these nanoparticles comprised 20.5% carbon,
29.3% oxygen, and 50% zinc (Figure 8). This comprehensive characterization shed light on
the specific elemental ratios and constituents present in the ZnO NPs synthesized using
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Pluchea indica, providing a deeper understanding of their chemical structure and potential
properties. In another investigation, Gamedze et al. [68] explored the synthesis of ZnO NPs
using Mucuna pruriens (utilis). The results demonstrated that these nanoparticles primarily
consisted of zinc and oxygen, highlighting the high purity of the synthesized ZnO NPs.
This thorough analysis of the elemental composition and purity of ZnO NPs synthesized
using Mucuna pruriens (utilis) has contributed to the growing body of knowledge regarding
diverse approaches to nanoparticle synthesis and their resulting properties. In another
study conducted by Naiel et al. [44], the presence of zinc in its oxide state and the purity
of the produced ZnO NPs were verified using EDX results. At around 1 keV, 8.6 keV, and
9.6 keV, strong emission peaks for zinc were found. Carbon and oxygen emission maxima
at 0.3 and 0.5 keV may result from plant biomass used in phyto-synthesis. Zn and O were
confirmed to be present in ZnO NPs produced from Pistacia lentiscus L., with approximate
weight percentages of 38.15% for Zn and 52.13% for O [51]. Rahman et al. [21] observed
the presence of a large percentage of Zn and O as an indication of ZnO formation in the
biogenic ZnO NPs synthesized from Cocos nucifera leaf extract. Also, the EDX analysis of
Pelargonium odoratissimum (L.)-mediated ZnO NPs revealed that they contain Zn (80.71%)
and O (19.29%) by weight [27]. Elemental mapping analysis of ZnO NPs prepared from
Erminalia catappa fruit pericarp revealed that the quantities of Zn and O were 77.67 and
22.33% when measured in weight percentage [43]. The existence of Zn and O in the ZnO
NPs produced from Pistacia lentiscus L. is confirmed via the EDX analysis, which shows
approximate weight percentages of approximately 38.15% for Zn and 52.13% for O [51].
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2.5.6. Thermogravimetric Analysis (TGA)

In this analysis, the samples are subjected to high temperatures of up to 900 ◦C to
determine the thermal decomposition of the biosynthesized ZnO NPs. The TGA spectra
of ZnO NPs show that the sample decomposes significantly as temperature increases. For
instance, Faisal et al. [94] observed that the initial weight loss of the sample was attributed
to the presence of both ethanol and water, as supported by findings from Pomastowski
et al. [95] and Yusof et al. [96]. Yusof et al. [96] further documented a 2.78% weight loss
at a temperature of 237 ◦C, indicating the potential elimination of coordinated water
molecules. Additionally, a total weight loss of 2.79% at 660 ◦C was observed, suggesting
the possible involvement of the hydroxide group on the ZnO NPs and the breakdown
of an organic component. Faisal et al. [94] reported that the Myristica fragrans-mediated
ZnO NPs completely decomposed when subjected to 600 ◦C. This observation could be
due to the presence of volatile compounds in the sample originating from the plant extract
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used in the synthesis, and no further noticeable changes were noted (Figure 9). Moreover,
Sana et al. [97] reported that the loss of humidity in Crotalaria verrucosa-mediated ZnO
NPs was shown by a weight decrease at about 120 ◦C. The sample’s minimal number of
organic components was eliminated and decayed between ~340 and 550 ◦C, which is when
the weight loss was noticed. This phenomenon was attributed to the presence of diverse
volatile components from the extract, which acted as capping agents for the nanoparticles.
Interestingly, the biogenic ZnO NPs retained a high weight at 1000 ◦C, suggesting the
sample’s remarkable level of thermal stability [30].
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2.5.7. Dynamics Light Scattering (DLS)

DLS is an advanced, non-invasive technique that accurately determines the size distri-
bution of small particles or polymers in a solution. This method measures the scattering
of laser light caused by the Brownian motion of particles, providing detailed information
about their size and distribution. By applying the Stokes–Einstein relationship, DLS enables
precise quantification of particle size, making it a valuable tool in various scientific and
industrial applications. By analyzing individual scattering events, DLS sheds light on
the dynamic characteristics of soft materials and is an effective method for investigating
particle diffusion in a range of settings [98,99]. ZnO NPs are usually measured into the
cuvette after being diluted in deionized water and vigorously vortexed for five minutes.
This analytical tool has been employed in several studies in the literature [5,43,95,100]. For
example, the study by Alyamani et al. [88] observed a small aggregation with an average
hydrodynamic diameter of 165 ± 3.0 nm. According to the report by Al-Askar et al. [10],
the average particle size of the ZnO NPs synthesized using Pluchea indica extract was
50.7 nm (Figure 10).
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2.5.8. Zeta Potential

The zeta potential magnitude reveals information about the surface charge of ZnO
NPs and the potential stability of nanoparticles in colloidal suspension [101]. Nanoparticles’
stability, pharmacokinetics, and bioactivity are all influenced by their surface charge. A
high zeta potential value suggests higher electrostatic repulsion between nanoparticles,
resulting in improved colloidal stability [102]. According to research, particles with zeta
potential values less than −30 mV or larger than +30 mV tend to form stable suspension
due to comparable charges repelling and preventing aggregation [103]. Nanoparticles with
low zeta potential values frequently agglomerate because of Van der Waals forces between
individual particles [104]. The possible capping of bioorganic components present in the
plant extracts might be the cause of the negative zeta potential value displayed by the
zinc oxide nanoparticles. The development of stable ZnO NPs free from agglomeration
is facilitated by high negative zeta potential values, which indicate electrostatic repulsion
between the particles.

For instance, Tectona grandis-mediated ZnO NPs have a zeta potential of 25 mV [105].
This value suggests the stability of the generated ZnO NPs. The authors believed the
unfavorable outcome is caused by the reducing and stabilizing components, such as
phenolic compounds, found in T. grandis extract. According to the report by Abdelbaky
et al. [27], ZnO NPs obtained from the extract of Pelargonium odoratissimum (L.) exhibited
a zeta potential of −19.3 mV, which suggests their possible stability [105] (Figure 11).
This indicates that the phenolic and flavonoid components of the leaf extract function as
reducing agents and are responsible for the ZnO NPs’ negative charge potential. It also
indicates that the substance that was produced has significant electrostatic effects.
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2.5.9. Transmission Electron Microscopy (TEM)

The size and crystalline characteristics of the produced nanoparticles were identified
via TEM examination. ZnO NPs’ TEM images demonstrated their hexagonal shape and
minimal thickness fluctuation, which is consistent with the SEM findings. Their physio-
chemical characteristics greatly influence the solubility and absorption of nanoparticles.
Small-sized nanoparticles have higher absorption and uniform distribution and are often
removed via urine [106]. Size influences the overall pharmacokinetic behavior of nanopar-
ticles. The sizes of ZnO NPs ranging from 1–100 nm synthesized using plant extract have
been well documented by several researchers in previous studies [74,107,108].

For instance, Alghamdi et al. [5] highlighted that the Celosia argentea-mediated ZnO
NPs showed a non-uniform spherical shape (Figure 12). Also, Naiel et al. [44] noted that
hexagonal/cubic forms of green-produced ZnO NPs, with an average size of approximately
41 nm, were visible in the TEM images of ZnO NPs prepared from an extract of Limonium
pruinosum L. Chaz. According to Khan et al. [86], ZnO NPs generated from strawberry
waste extract were well-distributed, homogenous, mostly spherical, and well-crystalline,
with an average size of 50 nm. For example, Gamedze et al. [68] reported an average size
of 30.50 nm for ZnO NPs synthesized using an aqueous extract of Mucuna pruriens (utilis),
whereas Chan et al. [109] reported an average size of 14.21 nm for ZnO NPs synthesized
from the leaf extract of mangosteen (Garcinia mangostana L.). Also, a study conducted
by Mbenga et al. [67] documented an average size of 45.26 nm for ZnO NPs synthesized
using an extract of Tulbaghia violacea. Naiel et al. [44] established that ZnO NPs synthesized
using an aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing
agent, showed a hexagonal/cubic shape with an average size of ~ 41 nm in TEM analysis.
Also, in another study, ZnO NPs synthesized from Myristica fragrans showed spherical-
to hexagonal-shaped particles with a grain size of 35.5 nm [94]. The investigation by
Mohamed et al. [12] revealed that ZnO NPs synthesized using fruit extracts of Hyphaene
thebaica showed a quasi-spherical morphology on HR-TEM analysis. Also, Pelargonium
odoratissimum (L.)-mediated ZnO NPs displayed hexagonal shapes with an average size
of 34.12 nm in TEM analysis [27]. The study by Velsankar et al. [91] found that ZnO
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NPs prepared from Echinochloa frumentacea grain powder extract were hexagonal with
definite edges and sizes ranging from 35 to 85 nm. Furthermore, TEM analysis of Mentha
piperita-ZnO NPs revealed globular and oblong-shaped nanoparticles with sizes ranging
from 15 to 27 nm. The even distribution and capping of biomolecules in the extract were
demonstrated by the size and shape of the ZnO NPs. The investigation by Abduljabbar
et al. [110] found that ZnO NPs prepared from Euphorbia retusa extract were spherical,
trigonal, and tetragonal shapes.
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3. Biocompatibility and Cytotoxicity Testing

Zinc plays a vital function in maintaining cell homeostasis and is a significant cofactor
in various biological processes, making zinc oxide biocompatible. ZnO either participates
in the body’s active nutritional processes or degrades fast. ZnO NPs are innately more
cytotoxic to in vitro cancer cells compared to other metal nanoparticles. Although extracel-
lular zinc oxide is innocuous, higher intracellular zinc oxide concentrations may indicate
increased cytotoxicity due to zinc-mediated protein synthesis mismatch and oxidative
stress [111]. The biocompatibility of ZnO NPs in blood was evaluated through hemolytic
activity testing. Hemolysis consistently indicates a substance’s biological incompatibility
since it depends on the direct or indirect adverse impact on the red blood cell membrane.
Assessing a biomaterial’s safety in blood contact is one test used to determine its hemolytic
potential [112]. Hemolysis occurs when red blood cells break down and release hemoglobin.
For example, Neamah et al. [113] found that ZnO NPs generated from Capparis spinosa fruit
extract had lower hemolytic activity compared to the control at dosages ranging from 7.5
to 120 µg/mL.

The cytotoxicity test is usually conducted using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay [114]. For example, ZnO NPs produced using
fruit extract from Capparis spinosa L. showed no cytotoxic activity against normal cells (a
healthy L929 fibroblast cell line) in a dose-dependent manner [113]. Majeed et al. [115]
recorded less cytotoxic activity of ZnO NPs synthesized from Artocarpus heterophyllus
against Vero cells. According to Abduljabbar et al. [110], ZnO NPs produced with Euphorbia
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retusa extract demonstrated moderate activity against hepatocellular carcinoma (HePG-2)
and breast cancer (MCF-7) cells, with IC50 values of 31.75 and 30.05 µg/mL, respectively,
and a cytotoxic effect on the human prostate (PC3) cell line (IC50 = 16.04 µg/mL). In a
different study, ZnO NPs produced from pomegranate peel considerably reduced the
viability of colon cancer cell lines (HCT116) and MCF7 in a dose-dependent manner. By
reducing cell viability to 0% at 50 µg/mL, ZnO NPs can eliminate MCF7. Neamah et al. [113]
reported that ZnO NPs from Capparis spinosa demonstrated a low cytotoxic effect on L929
normal fibroblast cells.

Al-darwesh et al. [17] highlighted that reducing the rate of dissolution of ZnO nanopar-
ticles by adding Fe atoms or coating their surface with a protective layer might increase
their biocompatibility. Therefore, efforts have been made to improve ZnO NPs’ suitability
for use in clinical settings by covering their surface with biocompatible macromolecules
such as polyethylene glycol (PEG), chitosan, and poly(lactic) acid. A different idea is to
employ clinically confirmed biodegradable and biocompatible materials to create ZnO
nanoplatforms. Biocompatible polymers such as liposomes, aptamers, and dendrimers
have been approved for use in clinical settings.

4. Antibacterial Activity of ZnO NPs

Despite enormous progress in the prevention and treatment of infectious diseases,
which are increasing daily, infections continue to be one of the leading causes of mortality
worldwide [116,117]. Microbial resistance has increased because of antibiotic overuse in
recent decades. Antimicrobial resistance was one of the top ten worldwide public health
problems identified by the World Health Organization in 2021. In 2019, six important bacte-
rial infections, including methicillin-resistant Staphylococcus aureus and third-generation
cephalosporin-resistant Escherichia coli, were linked to the highest resistance-related mor-
tality rates. Most pathogenic microbes can become resistant to at least some antimicrobial
agents [118]. Several factors contribute to antibiotic resistance in bacteria, including active
excretion of antibiotics from cells, changes in antibiotic targets [119,120], and prevention of
drug penetration into a cell [121,122].

The number of newly approved antibacterial drugs with unique modes of action has
decreased recently [123]. In addition to having negative side effects, antibiotic misuse is a
major factor in the rise of bacteria that are resistant to antibiotics [124]. Moreover, bacteria
that form biofilms and cause persistent infections have become increasingly resistant
to human defense systems and antibiotic treatment [125]. Therefore, developing new
antibiotics that are exceptionally effective, have low toxicity, and have fewer serious side
effects seems crucial for enhancing infection control [74]. The use of drug delivery systems
and nanoscience to develop novel pharmaceutical technologies seems to be a potential
way to address this urgent demand for action against microbial resistance, especially
considering recent advances, particularly in medicinal biology. The primary reason for
the antibacterial activity of biogenic ZnO NPs against different strains of bacteria is their
physicochemical features, which include their size, shape, surface chemistry, and high
surface-to-volume ratio. This increased contact may strengthen the antibacterial activity of
the NPs by facilitating easier penetration of the bacterial cell wall and disrupting cellular
processes [5,126]. Several medicinal plants have been explored for synthesizing ZnO NPs
in previous studies, and some of the investigations are summarized in Table 1. Biogenic
ZnO NPs are safer and have minimal cytotoxic effects compared to conventional antibiotics,
in which their usage is associated with several cytotoxic effects. The cost of production
of biogenic zinc oxide nanoparticles is cheaper compared to the cost of conventional
antibiotics. Biogenic zinc oxide nanoparticles have multiple target sites for action compared
to antibiotics specifically designed to target one site.
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Table 1. List of some green synthesized ZnO NPs using plant extracts.

Plant Part Used Concentration
of Salt Average Size (nm) Shape Reaction Time

Reaction
Temperature

and pH
Test Bacteria Reference

Limonium
pruinosum Whole plant 0.5 M zinc acetate

dihydrate ~41 nm Hexagonal/cubic 30 min 70 ◦C
pH 8

Bacillus subtilis (ATCC 6633),
Staphylococcus aureus (ATCC 6538), Gram
negative bacteria (Escherichia coli (ATCC

8739), and Enterobacter aeruginosa

[44]

Cassia fistula and
Melia azadarach Leaves 0.01 M zinc acetate

dihydrate
68.1 nm and

3.62 nm Spherical 60 min 70 ◦C Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus) [127]

Cocos nucifera Leaves
0.05 M aqueous

solution of
Zn(NO3)2·6H2O

16.6 nm Spherical/hexagonal 3 h 12
Staphylococcus aureus (cars-2), Bacillus

megaterium (BTCC-18), and Bacillus cereus
(carsgp-1)

[21]

Myristica fragrans
(Jaiphal) Fruit zinc acetate

dihydrate 41.23 nm Flower-shaped 2 h 60 ◦C
Klebsiella pneumoniae, Escherichia coli,

Pseudomonas aeruginosa, and
Staphylococcus aureus

[94]

Ziziphus mauritiana
Lam Leaves (Zn(NO3)2·6H2O) 63–83 nm Spherical - 60 ◦C Staphylococcus aureus and Escherichia coli [128]

Viscum
album Leaves 0.01 M zinc acetate

dihydrate 13.5 nm Quasi-spherical 30 min 70 ◦C

Pseudomonas aeruginosa (ATCC 10145),
Escherichia coli (ATCC 10799),

Staphylococcus aureus (ATCC 29213), and
Bacillus subtilis (ATCC 11774)

[129]

Pistacia lentiscus Leaves

0.1 mol/L
(Zn(CH3COO)2

and
2H2O)

33.90 nm Dried cotton-like
appearance 30 min 78 ◦C

Staphylococcus aureus, Bacillus cereus,
Escherichia coli, and Pseudomonas

aeruginosa
[51]

Cymbopogon
citratus Leaves (Zn(NO3)2 6H2O) 20–24 nm Hexagonal

rod-like shape 5 min Room temperature S. aureus (MTCC 9760) and E. coli
(MTCC 443) [130]

Clitoria ternatea Flower Zn (NO3)2·6H2O 41 nm Partially/roughly
spherical 2 h 60 ◦C Escherichia coli and Staphylococcus aureus [131]

Artemisia aucheri Leaves 1g in 15 mL of
Zn(NO3)2

76 nm Spherical and
granular 20 min Room temperature Escherichia coli and Staphylococcus aureus [132]

Lavandula
pubescens Shoots 2.5 M ZnCl2 10.76–20.42 nm Rod-shaped 30 min 60 ◦C Pseudomonas aeruginosa (ATCC 27853) and

Staphylococcus aureus (ATCC 29213) [133]

Parthenium
hysterophorus Leaves 1 mM zinc nitrate 10 nm Spherical 8 h 90 ◦C

Staphylococcus aureus, Streptococcus
pneumoniae, Escherichia coli, and Klebsiella

pneumoniae
[134]



Int. J. Mol. Sci. 2024, 25, 9500 19 of 34

Table 1. Cont.

Plant Part Used Concentration
of Salt Average Size (nm) Shape Reaction Time

Reaction
Temperature

and pH
Test Bacteria Reference

Laurus nobilis Leaves 0.1 mol/L zinc
acetate 29.983 nm Spherical 1 h Room temperature Staphylococcus aureus, S. epidermidis,

Escherichia coli, and Klebsiella spp. [135]

Lepidium sativum Seed zinc nitrate 24.2 nm Hexagonal 75 min - Escherichia coli and Staphylococcus aureus [136]

Averrhoa bilimbi Fruit Zn(NO3)2·4H2O 35.4 to 59.5 nm Round shape 5 h 70 ◦C Escherichia coli [137]

Aloe vera leaves 10 mM
ZnSO4·7H2O 50 to 220 nm Hexagonal 24 h Room temperature Staphylococcus epidermidis, Staphylococcus

aureus, K. pneumoniae, and Escherichia coli [138]

Ocimum lamifolium Leaves 0.06 M zinc acetate 22.8 nm Spherical 2 h pH 12
30 ◦C

E. coli, S. aureus, P. aeruginosa, and
S. pyogen [139]

Ocimum
tenuiflorum and

Ocimum sanctum
Leaves 30 mM zinc nitrate - - 10 min Room temperature Streptococcus mutans, Enterococcus faecalis,

Staphylococcus aureus, and Lactobacillus [140]

Orange peel Peel
2 g of zinc nitrate
with 42.5 mL of
Zn(NO3)2·6H2O

10–20 nm Spherical 60 min 60 ◦C Escherichia coli and Staphylococcus aureus [141]

Cinnamomum
verum Fruit zinc acetate

dehydrate (0.1 M) 56–71 nm Spherical 60 min 50 ◦C E. coli O157:H7 (02–0628) and
L. monocytogenes (ATCC 7644) [52]

Myristica fragrans Fruit 6.0 g in 100 mL of
(Zn(NO3)2·2H2O) 41.23 nm Spherical or

elliptical 2 h 60 ◦C K. pneumoniae, E. coli, P. aeruginosa, and
S. aureus [94]

Pistacia lentiscus L. Leaf

0.1 mol/L zinc
acetate dihydrate
(Zn(CH3COO)2

and
2H2O)

33.90 nm Dried cotton shape 30 min pH 12
78 ◦C

Staphylococcus aureus (ATCC 6538),
Bacillus

cereus (ATCC 10876), Escherichia coli
(ATCC 8739), and Pseudomonas aeuroginosa

[51]

Cnidoscolus
aconitifolius Leaves 0.5 M

Zn(CH3COO)2
100 nm Spherical 9 h 50 ◦C

Escherichia coli ATCC 35218 and ATCC
25922, Pseudomonas aeruginosa ATCC

27853, Klebsiella pneumonia ATCC 700603
and Chromobacterium violaceum ATCC

12472, Staphylococcus aureus ATCC 43300
and ATCC 29213, Enterococcus faecalis

ATCC 51299, and Bacillus cereus
ATCC 29212

[142]

Avicennia marina Leaves 10 mM ZnS - - 24 h Room temperature Klebsiella sp., Staphylococcus aureus, and
Streptococcus mutans [143]



Int. J. Mol. Sci. 2024, 25, 9500 20 of 34

Table 1. Cont.

Plant Part Used Concentration
of Salt Average Size (nm) Shape Reaction Time

Reaction
Temperature

and pH
Test Bacteria Reference

Lawsonia inermis Leaves Zn(NO3)2 100 nm Hexagonal 2 h Room temperature Escherichia coli, Pseudomonas aeruginosa,
Staphylococcus aureus, and Bacillus subtilis [144]

Euphorbia petiolata Leaves 1 M zinc nitrate - Spongy shape 2 h 80 ◦C Escherichia coli [145]

Ailanthus altissima Fruit 10 g in 200 mL of
[(ZnNO3)2·6H2O] 5 to 18 nm Spherical Not specified 27 ◦C Escherichia coli and Staphylococcus aureus [146]

Matricaria
chamomilla L. Flower 1 M zinc oxide 48.2 nm Cubic structures 4 h Room temp Xanthomonas oryzae pv. Oryzae [147]

Lippia adoensis
(Koseret) Leaves 0.45 M zinc acetate

dihydrate 19.78 nm Spherical 2 h Room temp
Staphylococcus aureus and Enterococcus

faecalis and Gram-negative (Escherichia coli
and Klebsiella pneumonia)

[148]

Malus pumila Fruit 0.2 M zinc acetate
dihydrate 12 nm

Spherical/grain
rice-like (ellip-

soidal)/cylindrical,
dumbbell and

needle-like shape

2 h pH 6
70 ◦C E. coli, K. pneumoniae and P. aeruginosa [149]

Catharanthus roseus
L. Flower 0.1 g in 10 mL of

ZnCl2 - Spherical 3 Room temp Staphylococcus aureus B23 and
Pseudomonas aeruginosa 424 [150]

Berberis aristata Leaves 0.1 M zinc acetate
dihydrate Needle like Not specified 70 ◦C

Escherichia coli, Staphylococcus aureus,
Klebsiella pneumoniae, Bacillus subtilis,
Bacillus cereus, and Serratia marcescens

[151]

Bauhinia tomentosa Leaves 2 mM ZnSO4 22–94 nm Hexagonal 4 days - Escherichia coli and Pseudomonas aeruginosa [152]

Trifolium pratense Flower 0.5 M ZnO 60–70 nm - 24 h 90 ◦C S. aureus ATCC 4163, E. coli ATCC 25922,
and P. aeruginosa ATCC 6749 [153]

Cassia alata Leaves 0.01 M Zinc acetate 60–80 nm Spherical 3 h 80 ◦C Escherichia coli [154]

Melia azedarach Leaves

0.006 M zinc
nitrate

hexahydrate
(Zn(NO3)·6H2O)

33–96 nm Hexagonal and
spherical 24 h 50 ◦C

Escherichia coli (ATCC 25922),
Staphylococcus aureus (ATCC 25923),

Pseudomonas aeruginosa (ATCC 27853),
Sphingobacterium thalpophilum (NCTC

11429), Bacillus subtilis (ATCC 6051), and
Klebsella pneumonia (ATCC 13883)

[155]
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Table 1. Cont.

Plant Part Used Concentration
of Salt Average Size (nm) Shape Reaction Time

Reaction
Temperature

and pH
Test Bacteria Reference

Salvadora persica L. Root
0.1 M zinc acetate

dihydrate
(Zn(CH3COO)2·2H2O)

165–287 nm Spherical 4.5 h pH 8
70 ◦C

Staphylococcus aureus NRRL B-767,
Acinetobacter baumannii 2.3, Escherichia coli
ATCC 25922, Enterococcus faecalis ATCC

29212, Klebsiella pneumoniae NRRL B-4420,
Proteus vulgaris NRRL B-123, and
Streptococcus mutans (wild type)

[156]

Saussurea lappa Rhizome, root 1 M hexahydrate
zinc nitrate 123.5 nm Hexagonal 2 h 70–80 ◦C

Streptococcus aureus, Bacillus subtilis,
Sphingobacterium thalpophilum,

Staphylococcus aureus, E. coli, Pseudomonas
aeruginosa, Sphingobacterium sp.,

Acinetobacter sp., and Ochrobactrum sp.

[157]

Pongamia pinnata Leaves 0.1 M zinc nitrate
hexahydrate 10 to 120 nm Spherical 24 h Room temp S. aureus and E. coli [158]

Murraya koenigii Leaves 1 M zinc acetate 15 nm Spherical 2 h pH 12
35–40 ◦C

Staphylococcus aureus, Bacillus subtilis, and
Salmonella typhii; Escherichia coli, and

Klebsiella pneumoniae
[159]

Peltophorum
pterocarpum Flower zinc nitrate 69.45 nm Spherical and

irregular shaped - 80 ◦C

(Bacillus cereus (BC) ATCC 11778, Bacillus
subtilis (BS) ATCC 6633, Staphylococcus

aureus (SA) ATCC 29737, Corynebacterium
rubrum (CR) ATCC 14898), (Escherichia coli
(EC) NCIM2931, Pseudomonas aeruginosa

(PA) ATCC 9027, Klebsiella pneumoniae
(KP) NCIM2719, and Salmonella
typhimurium (ST) ATCC 23564)

[160]

Cinnamomum
verum Bark zinc nitrate

hexahydrate ~45 nm Spherical - 45–60 ◦C Staphylococcus aureus (MTCC 7443) and
Escherichia coli (MTCC 7410) [161]

Tecoma castanifolia Leaves 1 mM zinc
sulphate 70–75 nm Spherical 4 days Room temp

Bacillus subtilis, Staphylococcus aureus,
Escherichia coli, and Pseudomonas

aeruginosa
[162]

Garcinia cambogia Leaves 0.01 M Zn
(NO3)2·6H2O

131.5
nm

Rod-
like/hexagonal 12 h 60 ◦C

Escherichia coli (E. coli) ATCC 10536 and
Staphylococcus aureus (S. aureus)

ATCC 6538
[163]

Camellia sinensis Leaves 1.5 g of zinc acetate
dihydrate in 20 mL 10–20 nm

Spherical
rods/needle and

particle-like
1 h Room temp E. coli and S. aureus [164]
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Table 1. Cont.

Plant Part Used Concentration
of Salt Average Size (nm) Shape Reaction Time

Reaction
Temperature

and pH
Test Bacteria Reference

Brassica oleracea var.
botrytis Leaves

5 g of
Zn(NO3)2·6H2O in

50 ml
52 nm Flower like 24 h 70 ◦C K. pneumonia and E. coli [165]

Scoparia Dulcis Leaves
2 g of

Zn(NO3)2·6H2O in
60 ml

~20 nm Pebble-like - 60 ◦C Staphylococcus aureus-902 and E. coli-443 [166]

Piper guineense seeds

0.25 g of
Zn(CH3COO)2·2H2O
was dissolved in

25 mL

7.39 nm Hexagonal/spherical 2 h 60 ◦C E. coli (ATCC 25922) [167]

Lupinus albus and
Lupinus pilosus Leaves 40 mM zinc nitrate 19.70 nm and 28.13

nm Rod-like 30 min 90 ◦C E. coli, P. aeruginosa and S. aureus [168]

Ceratonia
siliqua L. Pods 0.1 M zinc acetate

dehydrate - Spherical/hexagonal 2 h 80 ◦C

Staphylococcus aureus ATCC 25923,
Micrococcus luteus NCIMB8166, Salmonella

enterica, Typhimurium ATCC 1408, and
Escherichia coli ATCC 35218

[169]

Basella alba Leaves 0.1 M zinc acetate 28.64 nm Spherical 24 h 60 ◦C
Pseudomonas aeruginosa, Escherichia coli,

Enterobacter aerogenes, Staphylococcus
aureus, and Proteus vulgaris

[170]

Bergenia
ciliata Rhizome

1 M
zinc acetate
dihydrate

30 nm Flower shape 2 h pH 12
60 ◦C

Yersenia enterocolitica, Pseudomonas
aeruginosa, Salmonella typhi, Escherichia coli,

Staphylococcus aureus, and Bacillus
subtilis

[171]
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5. Antibacterial Assays

The disk diffusion method is generally employed to evaluate the in vitro antibacterial
activity of biogenic ZnO NPs against different pathogenic bacteria in the literature [20,21].
In this method, Mueller–Hinton broth agar is used to form an agar medium for cultur-
ing bacteria, and after the bacteria is resuscitated in LB broth or nutrient broth to reach
the log phase of growth, the suspension is standardized by adjusting to 0.5 McFarland
standards (equivalent to 1–2 × 108 CFU/mL). Subsequently, the bacterial suspensions
are inoculated onto a Mueller–Hinton agar and incubated at 37 ◦C for 24 h. Thereafter,
wells with a diameter of 6 mm are created in the agar using a sterile cork borer. Different
concentrations of ZnO NPs are then applied to the wells and incubated overnight at 37 ◦C
for 24–72 h. Afterward, the zone of inhibition is measured in mm using a standard metric
ruler. Antibiotic discs are usually used as positive controls, while DMSO always serves as
the negative control.

The broth microdilution method is another method to determine the antibacterial
activity of biogenic ZnO NPs [51]. In this method, distinct bacterial colonies are inoculated
in Mueller Hinton broth and incubated overnight at 37 ◦C for 24 h. After that, the bacterial
suspension is standardized to the 0.5 McFarland standard using sterile saline water; 100 µL
of the suspensions is added to each well, and ZnO NPs are prepared and added to the first
well in the microtiter plate, and two-fold serial dilutions are made subsequently. Later,
microtitre plates are sealed using parafilm and incubated at 37 ◦C for 24 h. Next, the
incubated microtitre plate wells are filled with 0.01% resazurin sodium salt indicator and
incubated for 2 h at 37 ◦C. This salt reacts with viable bacteria to produce colour changes.
A purple or blue colour change indicates bacterial inhibition, while colourless or pink
colour changes indicate viable bacteria that can reduce resazurim sodium salt to resorufin.
Therefore, the minimum inhibitory concentration (MIC) is the lowest concentration of ZnO
NPs, which can prevent bacteria from growing visibly after overnight incubation. The
minimum bactericidal concentration (MBC) can be established by streaking 10 µL of the
bacterial suspension from the well, which is greater or equal to the lowest MIC on the
Mueller Hinton agar, and incubating for 24 h. Subsequently, the plates are investigated
for possible bacterial growth, and the minimum concentration of ZnO NPs with no visible
growth indicates the minimum bactericidal concentration (MBC).

6. Possible Mechanism of Action of ZnO NPs

The surface area of membranes is increased by nanoparticles, which improves their
antibacterial action [172]. Reactive hydroxyl radicals, which can cause irreversible damage
by oxidizing proteins and damaging RNA and DNA, are introduced by the nanoparticles
after interacting with compounds such as phosphorus and sulfur [173–175]. This ultimately
changes and destroys the helical structure of nucleic acids. Toxic metal ions are released
during the breakdown of proton efflux bombs, influencing the respiratory system’s per-
meability and infectious membranes. Furthermore, nanoparticles have a bactericidal or
inhibitory effect because they inhibit cell membrane enzymes due to their attraction to the
membrane [81,176,177]. This helps NPs that are electrostatically attached to membrane-
based plasma reductases oxidize. Once within the cytosol, these ions penetrate lipid layers,
generating oxygen species such as O2, which then transforms into H2O2, leading to the
oxidation of proteins and lipids (Figure 13) [178]. According to Jayaseelan et al. [179], there
is yet another theory that suggests ZnO NPs are lethal because they attach themselves to
bacterial cell membranes and build up inside the cytoplasm, damaging the membrane’s
integrity and allowing its contents to leak out, ultimately resulting in cell death. The surface
area and, thus, the antibacterial activity of nanoparticles increase with decreasing NP size.
Bacterial cell membranes are typically nanometers in size. According to Naseer et al. [127],
nanoparticles smaller than cell membrane pores can penetrate the cell membrane barrier
and prevent bacterial growth (Figure 13).
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Improving drug delivery for treating illnesses is becoming increasingly popular [180].
Thus, candidates such as biogenic metal-based nanoparticles with enhanced pharmacoki-
netics and biodistribution have a rare potential because of this interest [181]. According to
Sutradhar and Amin [182], metallic nanoparticles inspired by nature are a novel class of
nanomedicines that are designed to mimic natural circulation cells. It has been reported that
these substances may increase the time a drug remains in blood circulation and enhance
the drug’s distribution to cells and tissues. According to Sutradhar and Amin [182], the
use of nanotechnology in targeted treatment of illnesses that frequently have less severe
side effects has the potential to positively influence clinical practice and advance lifesaving
methods. Nevertheless, throughout clinical trials, their immunogenicity, scaling up, and
characterization continue to be significant obstacles [183]. In addition to scaling-up issues,
government restrictions and the general cost-effectiveness of nanomedicines relative to
currently existing chemotherapies are significant barriers to their development.

How Biofilms Mediate Antimicrobial Resistance

The complex antimicrobial resistance (AMR) process is mostly driven by biofilms [184].
Biofilm-forming bacteria can exhibit a 10 to 1000-fold increase in antibiotic resistance
compared to corresponding bacteria in a planktonic environment [185]. One of the most
significant advantages of the biofilm environment for bacteria is the close connection of
several species to one another [186]. This facilitates the transmission of mobile genetic
elements and bacterial communication through techniques like quorum sensing [187]. The
biofilm environment promotes plasmid stability and facilitates the easier transmission
of resistance information among organisms [188]. To make matters worse, many of the
transposable DNA elements transmitted by bacteria encode biofilm-promoting proteins,
which contribute to the biofilm’s persistence and infection in patients [189].

Surgeons, doctors, and other healthcare workers may find it challenging to diagnose
infections driven on by biofilms on medical equipment, even though biofilm-associated
diseases can pose a persistent and sometimes fatal risk to patients [190]. It frequently
entails sampling the surfaces of medical devices, which may involve invasive techniques
like aspiration or biopsy (removal of the device by surgery). Blood cultures, bodily fluids,
or other tissues linked to the illness, however, could also be useful. Sampling is followed
by standard microbiological culture for identification and antibiotic susceptibility testing.
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Unfortunately, fastidious (difficult to cultivate) or uncommon microbial cultures frequently
make this challenging. Furthermore, a polymicrobial biofilm could exist. Identifying the
appropriate antibiotic treatment regimen can be tricky when dealing with mixed cultures,
particularly if the drug is targeting a dominating bacterium that is growing faster than
the polymicrobial community. As antimicrobial stewardship and infection prevention
programs evolve, it will become increasingly important to comprehend the threats posed
by biofilms and how limiting the transmission and acquisition of biofilm-forming organisms
may negatively impact the emergence of antimicrobial resistance (AMR) [191].

Both antibiotic tolerance and resistance can occur in biofilms. Microorganisms develop
resistance mechanisms against antibiotics through horizontal gene transfer (HGT) within
biofilm extracellular polymer systems (EPS), genetic mutation, or the acquisition of foreign
genetic material that codes for resistant determinants [192]. Several mechanisms, including
decreased permeability or access to antimicrobials, target alteration or mutation, and enzy-
matic destruction of antimicrobials via hydrolysis or chemical change, cause antimicrobial
resistance (AMR) (Figure 14).
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7. Conclusions, Challenges, and Future Prospects

Currently, efforts are focused on developing more environmentally friendly processes
for producing ZnO NPs for different therapeutic purposes. Green-manufactured zinc
oxide nanoparticles are highly valued for their affordability, biocompatibility, and reduced
adverse environmental effects compared to their chemical and physical counterparts. ZnO
NPs may be sustainably synthesized using a range of plant extracts, including phytochem-
icals such as tannins, alkaloids, polyphenols, terpenoids, and flavonoids. This process
makes ZnO NPs more stable, and their distinct physicochemical properties may be exam-
ined. Several investigations have shown that the distinctive phytochemicals on the surfaces
of ZnO nanoparticles produced using eco-friendly methods result in outstanding biological
activity. ZnO NPs have exceptional antibacterial ability, making them extremely promising
for treating diseases caused by drug-resistant bacteria. Furthermore, zinc is an essential
trace element present in the human physiological system, and its solubility results in low
toxicity and biodegradability, making it ecologically useful.

Green nanotechnology has many advantages, but it also presents several challenges.
Scaling up is a major challenge; now, the only way to produce green nanomaterials is
through laboratory-scale research, and it is difficult to translate these findings into large-
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scale production procedures. The main challenge is selecting the bioresource that will
optimally produce the necessary nanoparticles. Separating synthesized nanoparticles from
their fundamental biological constituents is another significant difficulty. The chemical
composition of plant extracts can be significantly influenced by various factors, including
plant species, growth environments, and the nature of the extraction solvent. This inconsis-
tency hampers quality control and reproducibility, and it might result in differences in the
synthesis process and properties of the nanoparticles produced. Plant extracts may include
a range of bioactive chemicals that interact with nanoparticle formation. The presence of
numerous chemicals may influence the kinetics and mechanics of nanoparticle growth,
making it difficult to accurately manage the synthesis parameters. Also, green synthesis can
involve relatively longer synthesis times and variability in nanoparticle properties due to
the natural variability of plant extracts, which can affect the consistency and reproducibility
of the nanoparticles produced.

Also, it is common practice to prepare plant aqueous extracts fresh for the synthesis
of ZnO NPs, as aqueous extracts cannot be refrigerated due to fungal contamination.
Therefore, to preserve the integrity of the physiochemical compounds in the plant extract,
it would be beneficial for future research in this area to consider the use of lyophilized
plant extract for ZnO NP synthesis. Several options are being investigated by researchers
to address these challenges. To maximize ZnO NPs’ antibacterial activity and reduce
cytotoxicity, one strategy is to optimize the synthesis and surface modification. Modifying
ZnO NPs’ size, shape, and surface chemistry to enhance their interactions with bacteria and
lessen their effects on mammalian cells might be one way to achieve this. More research is
needed to understand how ZnO NPs work effectively and to determine their antibacterial
effect on specific pathogens.

Furthermore, although ZnO NPs have the potential to improve human health, bringing
these materials to the clinic presents several hurdles. One of the challenges is a prevalent
misunderstanding about the biological effects and ZnO NP cytotoxicity. Disparities in the
literature are most likely due to a lack of shared knowledge between biological scientists
and materials scientists about each other’s limitations and capabilities. Nanoparticles are
not always similar between batches and may differ in surface chemistry or size distribution,
there is no common understanding between materials scientists and biological scientists
regarding the synthesis of nanoparticles and the sensitivity of their biological applications.
Likewise, the stability of nanoparticles is an important issue that could limit the clinical
use of ZnO NPs, and this issue can be overcome by surface functionalization to improve
their stability.

All these challenges need to be addressed to foster the industrial synthesis of plant-
based nanoparticles that can meet the clinical demand for novel, safe, and cost-effective
antibacterial agents that could be used to fight against multidrug-resistant bacteria, which
pose a serious threat to public health.
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