Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients—Preliminary Report
Abstract
:1. Introduction
2. Results
2.1. Preoperative Patient Analysis
2.2. Citrullinated Histone 3 (CH3) Measurements
2.3. Correlation between Preoperative Characteristics and Plasma CH3 Concentration
2.4. Time-Related Changes in Citrullinated Histrone 3 Concentration Represeting NET Formation
3. Discussion
Study Limitation
4. Materials and Methods
4.1. Patients and Method
4.2. NET Methodology
4.3. Statistical Analysis
4.4. Bioethics Committee
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truby, L.K.; Rogers, J.G. Advanced Heart Failure: Epidemiology, Diagnosis, and Therapeutic Approaches. JACC Heart Fail. 2020, 8, 523–536. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e876–e894. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Siniarski, A.; Gąsecka, A.; Borovac, J.A.; Papakonstantinou, P.E.; Bongiovanni, D.; Ehrlinder, H.; Giustozzi, M.; Guerreiro, R.A.; Parker, W.A.E. Blood Coagulation Disorders in Heart Failure: From Basic Science to Clinical Perspectives. J. Card. Fail. 2023, 29, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Tang, X.; Wang, P.; Zhang, R.; Watanabe, I.; Chang, E.; Vinayachandran, V.; Nayak, L.; Lapping, S.; Liao, S.; Madera, A.; et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J. Clin. Investig. 2022, 132, e147191. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, X.; Zhang, J.; Zhang, L.; Akram, Z.; Zhang, B.; Sun, S. A Potential Driver of Disseminated Intravascular Coagulation in Heat Stroke Mice: Neutrophil Extracellular Traps. Int. J. Environ. Res. Public Health 2022, 19, 12448. [Google Scholar] [CrossRef]
- Tsigkou, V.; Oikonomou, E.; Anastasiou, A.; Lampsas, S.; Zakynthinos, G.E.; Kalogeras, K.; Katsioupa, M.; Kapsali, M.; Kourampi, I.; Pesiridis, T.; et al. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int. J. Mol. Sci. 2023, 24, 4321. [Google Scholar] [CrossRef]
- Chung, I.; Choudhury, A.; Patel, J.; Lip, G.Y. Soluble, platelet-bound, and total P-selectin as indices of platelet activation in congestive heart failure. Ann. Med. 2009, 41, 45–51. [Google Scholar] [CrossRef]
- Halade, G.V.; Lee, D.H. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine 2022, 79, 103992. [Google Scholar] [CrossRef]
- Bai, B.; Xu, Y.; Chen, H. Pathogenic roles of neutrophil-derived alarmins (S100A8/A9) in heart failure: From molecular mechanisms to therapeutic insights. Br. J. Pharmacol. 2023, 180, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Langseth, M.S.; Andersen, G.Ø.; Husebye, T.; Arnesen, H.; Zucknick, M.; Solheim, S.; Eritsland, J.; Seljeflot, I.; Opstad, T.B.; Helseth, R. Neutrophil extracellular trap components and myocardial recovery in post-ischemic acute heart failure. PLoS ONE 2020, 15, e0241333. [Google Scholar] [CrossRef]
- Moschonas, I.C.; Tselepis, A.D. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis 2019, 288, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Petri, B.; Salina, D.; Jenne, C.N.; Scott, B.N.; Zbytnuik, L.D.; Pittman, K.; Asaduzzaman, M.; Wu, K.; Meijndert, H.C.; et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 2012, 18, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Obama, T.; Itabe, H. Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 8312. [Google Scholar] [CrossRef]
- Masuda, S.; Nakazawa, D.; Shida, H.; Miyoshi, A.; Kusunoki, Y.; Tomaru, U.; Ishizu, A. NETosis markers: Quest for specific, objective, and quantitative markers. Clin. Chim. Acta 2016, 459, 89–93. [Google Scholar] [CrossRef]
- Li, P.; Li, M.; Lindberg, M.R.; Kennett, M.J.; Xiong, N.; Wang, Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010, 207, 1853–1862. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Borregaard, N. Neutrophil extracellular traps—The dark side of neutrophils. J. Clin. Investig. 2016, 126, 1612–1620. [Google Scholar] [CrossRef]
- Shah, A.D.; Denaxas, S.; Nicholas, O.; Hongorani, A.D.; Hemingway, H. Neutrophil counts and initial presentation of 12 cardiovascular diseases: A CALIBER cohort study. J. Am. Coll. Cardiol. 2017, 69, 1160–1169. [Google Scholar] [CrossRef]
- Itescu, S.; Schuster, M.; Burke, E.; Ankersmit, J.; Kocher, A.; Deng, M.; John, R.; Lietz, K. Immunobiologic consequences of assist devices. Cardiol. Clin. 2003, 21, 119–133. [Google Scholar] [CrossRef]
- Itescu, S.; John, R. Interactions between the recipient immune system and the left ventricular assist device surface: Immunological and clinical implications. Ann. Thorac. Surg. 2003, 75, S58–S65. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Kocher, A.; John, R.; Hoffman, M.; Ankersmit, J.; Lietz, K.; Edwards, N.; Oz, M.; Itescu, S. B-cell activation and allosensitization after left ventricular assist device implantation is due to T-cell activation and CD40 ligand expression. Hum. Immunol. 2002, 63, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ankersmit, H.J.; Tugulea, S.; Spanier, T.; Weinberg, A.D.; Artrip, J.H.; Burke, E.M.; Flannery, M.; Mancini, D.; Rose, E.A.; Edwards, N.M.; et al. Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet 1999, 354, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, C.; Li, Q.; Shen, Q.; Zeng, L. Exploring key genes associated with neutrophil function and neutrophil extracellular traps in heart failure: A comprehensive analysis of single-cell and bulk sequencing data. Front. Cell Dev. Biol. 2023, 11, 1258959. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.K.; Olasińska-Wiśniewska, A.; Michalak, M.; Straburzyńska-Migaj, E.; Jemielity, M. Neutrophil to lymphocyte ratio as noninvasive predictor of pulmonary vascular resistance increase in congestive heart failure patients: Single-center preliminary report. Adv. Clin. Exp. Med. 2020, 29, 1313–1317. [Google Scholar] [CrossRef]
- Sorvillo, N.; Cherpokova, D.; Martinod, K.; Wagner, D.D. Extracellular DNA NET-Works With Dire Consequences for Health. Circ. Res. 2019, 125, 470–488. [Google Scholar] [CrossRef]
- Saadat, S.; Noureddini, M.; Mahjoubin-Tehran, M.; Nazemi, S.; Shojaie, L.; Aschner, M.; Maleki, B.; Abbasi-Kolli, M.; Rajabi Moghadam, H.; Alani, B.; et al. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front. Cardiovasc. Med. 2021, 7, 588347. [Google Scholar] [CrossRef]
- Martinod, K.; Witsch, T.; Erpenbeck, L.; Savchenko, A.; Hayashi, H.; Cherpokova, D.; Gallant, M.; Mauler, M.; Cifuni, S.M.; Wagner, D.D. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp. Med. 2017, 214, 439–458. [Google Scholar] [CrossRef]
- Maruchi, Y.; Tsuda, M.; Mori, H.; Takenaka, N.; Gocho, T.; Huq, M.A.; Takeyama, N. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock. Crit. Care 2018, 22, 176. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.L.; Tablin, F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front. Vet. Sci. 2018, 5, 291. [Google Scholar] [CrossRef]
- Abrams, S.T.; Morton, B.; Alhamdi, Y.; Alsabani, M.; Lane, S.; Welters, I.D.; Wang, G.; Toh, C.H. A Novel Assay for Neutrophil Extracellular Trap Formation Independently Predicts Disseminated Intravascular Coagulation and Mortality in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2019, 200, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yu, Y.; Ren, Y.; Xu, L.; Wang, H.; Ling, X.; Jin, L.; Hu, Y.; Zhang, H.; Miao, C.; et al. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021, 12, 984. [Google Scholar] [CrossRef]
- Vulesevic, B.; Sirois, M.G.; Allen, B.G.; de Denus, S.; White, M. Subclinical Inflammation in Heart Failure: A Neutrophil Perspective. Can. J. Cardiol. 2018, 34, 717–725. [Google Scholar] [CrossRef]
- Mayadas, T.N.; Cullere, X.; Lowell, C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014, 9, 181–218. [Google Scholar] [CrossRef]
- Tao, G.; Liao, W.; Hou, J.; Jiang, X.; Deng, X.; Chen, G.; Ding, C. Advances in crosstalk among innate immune pathways activated by mitochondrial DNA. Heliyon 2024, 10, e24029. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, S.; Wu, X.; Li, Y.; Han, X. Neutrophil extracellular traps in acute coronary syndrome. J. Inflamm. 2023, 20, 17–28. [Google Scholar] [CrossRef]
- Liesdek, O.C.D.; Urbanus, R.T.; de Maat, S.; de Heer, L.M.; Ramjankhan, F.Z.; Sebastian, S.A.E.; Huisman, A.; de Jonge, N.; Vink, A.; Fischer, K.; et al. Insights in the Prothrombotic Changes after Implantation of a Left Ventricular Assist Device in Patients with End-Stage Heart Failure: A Longitudinal Observational Study. ASAIO J. 2023, 69, 438–444. [Google Scholar] [CrossRef]
- Granja, T.; Magunia, H.; Schüssel, P.; Fischer, C.; Prüfer, T.; Schibilsky, D.; Serna-Higuita, L.; Wendel, H.P.; Schlensak, C.; Häberle, H.; et al. Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction. Platelets 2022, 33, 132–140. [Google Scholar] [CrossRef]
- Jorde, U.P.; Saeed, O.; Koehl, D.; Morris, A.A.; Wood, K.L.; Meyer, D.M.; Cantor, R.; Jacobs, J.P.; Kirklin, J.K.; Pagani, F.D.; et al. The Society of Thoracic Surgeons Intermacs 2023 Annual Report: Focus on Magnetically Levitated Devices. Ann. Thorac. Surg. 2024, 117, 33–44. [Google Scholar] [CrossRef]
- Tang, S.; Xu, L.; Li, H.; Wu, Z.; Wen, Q. Anticoagulants in adult extracorporeal membrane oxygenation: Alternatives to standardized anticoagulation with unfractionated heparin. Eur. J. Clin. Pharmacol. 2023, 79, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, B.; Cowger, J.; Jennings, D.L.; Grafton, G.; Loyaga-Rendon, R.; Cogswell, R.; Klein, L.; Shah, P.; Kiernan, M.; Vorovich, E. HFSA Expert Consensus Statement on the Medical Management of Patients on Durable Mechanical Circulatory Support. J. Card. Fail. 2023, 29, 479–502. [Google Scholar] [CrossRef]
- Marshall, D.; Sanchez, J.; Yuzefpolskaya, M.; Sayer, G.T.; Takeda, K.; Naka, Y.; Colombo, P.C.; Uriel, N.; Topkara, V.K. Safety of reduced anti-thrombotic strategy in patients with HeartMate 3 left ventricular assist device. J. Heart Lung Transplant. 2021, 40, 237–240. [Google Scholar] [CrossRef]
- Zhalbinova, M.R.; Rakhimova, S.E.; Kozhamkulov, U.A.; Akilzhanova, G.A.; Chinybayeva, A.A.; Akilzhanov, K.R.; Shaimardanov, N.K.; Kuanysheva, A.G.; Lee, J.H.; Kairov, U.Y.; et al. Role of Genetic Polymorphisms in the Development of Complications in Patients with Implanted Left Ventricular Assist Devices: HeartWare, HeartMate II, and HeartMate 3. J. Clin. Med. 2023, 12, 7235–7251. [Google Scholar] [CrossRef]
- Ahmad, T.; Wang, T.; O’Brien, E.C.; Samsky, M.D.; Pura, J.A.; Lokhnygina, Y.; Rogers, J.G.; Hernandez, A.F.; Craig, D.; Bowles, D.E.; et al. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail. 2015, 3, 30–39. [Google Scholar] [CrossRef]
- Lesouhaitier, M.; Gregoire, M.; Gacouin, A.; Coirier, V.; Frerou, A.; Piau, C.; Cattoir, V.; Dumontet, E.; Revest, M.; Tattevin, P.; et al. Neutrophil function and bactericidal activity against Staphylococcus aureus after cardiac surgery with cardiopulmonary bypass. J. Leukoc. Biol. 2022, 111, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Cheko, J.; Patsalis, N.; Kreutz, J.; Divchev, D.; Chatzis, G.; Schieffer, B.; Markus, B. The Impact of Positive Inotropic Therapy on Hemodynamics and Organ Function in Acute Heart Failure: A Differentiated View. J. Pers. Med. 2023, 14, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Husebye, T.; Eritsland, J.; Arnesen, H.; Bjørnerheim, R.; Mangschau, A.; Seljeflot, I.; Andersen, G.Ø. Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS ONE 2014, 9, e112359. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Yamashita, H.; Oka, N.; Ueda, T.; Kohama, K.; Nakao, A.; Kotani, J. Antithrombin III improved neutrophil extracellular traps in lung after the onset of endotoxemia. J. Surg. Res. 2017, 208, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Ferré-Vallverdú, M.; Latorre, A.M.; Fuset, M.P.; Sánchez, E.; Madrid, I.; Ten, F.; Vallés, J.; Santos, M.T.; Bonanad, S.; Moscardó, A. Neutrophil extracellular traps (NETs) in patients with STEMI. Association with percutaneous coronary intervention and antithrombotic treatments. Thromb. Res. 2022, 213, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, M.; Kagawa, S.; Kajioka, H.; Taniguchi, A.; Kuroda, S.; Kikuchi, S.; Kakiuchi, Y.; Yagi, T.; Nogi, S.; Teraishi, F.; et al. Dual antiplatelet therapy inhibits neutrophil extracellular traps to reduce liver micrometastases of intrahepatic cholangiocarcinoma. Cancer Lett. 2023, 567, 216260. [Google Scholar] [CrossRef]
Parameter | n = 10 |
---|---|
Laboratory tests: | |
1. Whole blood count analysis | |
WBC (K/uL) (median (Q1–Q3)) | 7.23 (6.61–7.74) |
Neutrophil (K/uL) (median (Q1–Q3)) | 4.80 (4.64–4.97) |
Lymphocyte (K/uL) (median (Q1–Q3)) | 1.07 (0.92–1.71) |
Monocyte (K/uL) (median (Q1–Q3)) | 0.55 (0.52–0.59) |
LUC (K/uL) (median (Q1–Q3)) | 0.13 (0.08–0.13) |
Hemoglobin (mmol/L) (median (Q1–Q3)) | 7.3 (7.1–9.0) |
Hct (%) (median (Q1–Q3)) | 36 (34–43) |
MCV (fl) (median (Q1–Q3)) | 88 (86–91) |
MCHC (g/dL) (median (Q1–Q3)) | 20.79 (20.38–20.90) |
NLR | 4.5 (2.5–5.6) |
MLR | 0.36 (0.311–0.48) |
SIRI | 2.25 (1.27–2.61) |
2. Liver function tests | |
ALT (U/L) (median (Q1–Q3)) | 32 (20–45) |
AST (U/L) (median (Q1–Q3)) | 26 (23–36) |
3. Kidney function tests | |
Creatinine (umol/L) (median (Q1–Q3)) | 146 (93–151) |
Urea (mmol/L) (median (Q1–Q3)) | 8.9 (6.2–10.2) |
Sodium (mmol/L) (median (Q1–Q3)) | 141 (138–142) |
GFR (mL/min) (median (Q1–Q3)) | 48 (46–74) |
4.. HF tests | |
BNP (pg/mL) (median (Q1–Q3)) | 1321 (1024–2822) |
Parameter | n = 10 |
---|---|
Echocardiographic dimensions | |
LV (mm) (median (Q1–Q3)) | 71 (60–75) |
RV (mm) (median (Q1–Q3)) | 35 (33–38) |
LA (mm) (median (Q1–Q3)) | 48 (45–57) |
IVs (mm) (median (Q1–Q3)) | 9 (9–10) |
LVEF (%) (median (Q1–Q3)) | 20 (17.5–26.0) |
TAPSE (mm) (median (Q1–Q3)) | 15 (14–15) |
RHC results: | |
CI (l/min/m2) (median (Q1–Q3)) | 1.8 (1.7–2.0) |
PVR (dynes/sec/cm5) (median (Q1–Q3)) | 260 (180–421) |
PAP systolic (mmHg) (median (Q1–Q3)) | 41 (31–64) |
PAP diastolic (mmHg) (median (Q1–Q3)) | 16 (13–29) |
PAWP (mmHg) (median (Q1–Q3)) | 17 (14–26) |
CO (L/min) (median (Q1–Q3)) | 3.62 (3.33–4.25) |
SV (dynes/sec) (median (Q1–Q3)) | 54.8 (50–71.6) |
SVR (dynes/sec/cm5) (median (Q1–Q3)) | 1661 (1372–1830) |
Parameter | n = 10 |
---|---|
Demographical: | |
Age (years) (median (Q1–Q3)) | 61 (57–65) |
Sex (M/F) (n/(%)) | 10/1 |
BMI (median (Q1–Q3)) | 28.4 (25.7–28.7) |
Cardiomyopathy: | |
ICM (n/(%)) | 6 (60) |
DCM (n/(%)) | 4 (40) |
Pulmonary hypertension (n/(%)) | 7 (70) |
Co-morbidities: | |
Arterial hypertension (n/(%)) | 2 (20) |
AF persistent (n/(%)) | 5 (50) |
AF paroxysmal (n/(%)) | 3 (30) |
DM (n/(%)) | 5 (50) |
Hypercholesterolenia (n/(%)) | 6 (60) |
Kidney dysfunction * (n/(%)) | 5 (50) |
Peripheral artery disease (n/(%)) | 2 (20) |
Stroke (n/(%)) | 1 (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Olasińska-Wiśniewska, A.; Wojtasińska, E.; Filipiak, K.J.; Tomaszewska, M.; Sikora, J.; Krama, M.; Radek, Z.; Grodecki, K.; Krasińska-Płachta, A.; et al. Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients—Preliminary Report. Int. J. Mol. Sci. 2024, 25, 9633. https://doi.org/10.3390/ijms25179633
Urbanowicz T, Olasińska-Wiśniewska A, Wojtasińska E, Filipiak KJ, Tomaszewska M, Sikora J, Krama M, Radek Z, Grodecki K, Krasińska-Płachta A, et al. Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients—Preliminary Report. International Journal of Molecular Sciences. 2024; 25(17):9633. https://doi.org/10.3390/ijms25179633
Chicago/Turabian StyleUrbanowicz, Tomasz, Anna Olasińska-Wiśniewska, Ewelina Wojtasińska, Krzysztof J. Filipiak, Małgorzata Tomaszewska, Jędrzej Sikora, Marta Krama, Zofia Radek, Kajetan Grodecki, Aleksandra Krasińska-Płachta, and et al. 2024. "Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients—Preliminary Report" International Journal of Molecular Sciences 25, no. 17: 9633. https://doi.org/10.3390/ijms25179633
APA StyleUrbanowicz, T., Olasińska-Wiśniewska, A., Wojtasińska, E., Filipiak, K. J., Tomaszewska, M., Sikora, J., Krama, M., Radek, Z., Grodecki, K., Krasińska-Płachta, A., Krasińska, B., Krasiński, Z., Tykarski, A., Jemielity, M., & Rupa-Matysek, J. (2024). Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients—Preliminary Report. International Journal of Molecular Sciences, 25(17), 9633. https://doi.org/10.3390/ijms25179633