The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19
Abstract
:1. Introduction
2. Expression Profiles of SARS-CoV-2 Receptors
3. Receptor-Based Implications for T2D-Associated COVID-19 Severity
3.1. ACE2
3.2. CD147
3.3. GRP78
3.4. DPP4/CD26
3.5. TfR
3.6. Integrins α5β1 and αvβ3
3.7. CD4
3.8. mGluR2
3.9. ACE2 Co-Receptors
3.9.1. NRP1/NRP2
3.9.2. Vimentin
3.9.3. Sialic Acid
3.10. Other Receptors and Co-Receptors of ACE2
4. SARS-CoV-2 Spike Protein Cleavage: Diabetes-Related Implications
5. Soluble Receptors in SARS-CoV-2 Infection
6. Other Factors
7. Diabetes and Long COVID-19
8. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Floyd, J.S.; Walker, R.L.; Kuntz, J.L.; Shortreed, S.M.; Fortmann, S.P.; Bayliss, E.A.; Harrington, L.B.; Fuller, S.; Albertson-Junkans, L.H.; Powers, J.D.; et al. Association Between Diabetes Severity and Risks of COVID-19 Infection and Outcomes. J. Gen. Intern. Med. 2023, 38, 1484–1492. [Google Scholar] [CrossRef]
- Novida, H.; Soelistyo, S.A.; Cahyani, C.; Siagian, N.; Hadi, U.; Pranoto, A. Factors Associated with Disease Severity of COVID-19 in Patients with Type 2 Diabetes Mellitus. Biomed. Rep. 2023, 18, 8. [Google Scholar] [CrossRef]
- Russo, A.; Pisaturo, M.; Zollo, V.; Martini, S.; Maggi, P.; Numis, F.G.; Gentile, I.; Sangiovanni, N.; Rossomando, A.M.; Bianco, V.; et al. Obesity as a Risk Factor of Severe Outcome of COVID-19: A Pair-Matched 1:2 Case–Control Study. J. Clin. Med. 2023, 12, 4055. [Google Scholar] [CrossRef]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The Protein Expression Profile of ACE2 in Human Tissues. Mol. Syst. Biol. 2020, 16, e9610. [Google Scholar] [CrossRef]
- Huang, Y.; Harris, B.S.; Minami, S.A.; Jung, S.; Shah, P.S.; Nandi, S.; McDonald, K.A.; Faller, R. SARS-CoV-2 Spike Binding to ACE2 Is Stronger and Longer Ranged Due to Glycan Interaction. Biophys. J. 2022, 121, 79–90. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, K.; Chen, T.; Lin, R.; Chen, Q.; Chen, C.; Tong, M.; Chen, J.; Yu, J.; Lou, Y.; et al. Temporal Patterns of Organ Dysfunction in COVID-19 Patients Hospitalized in the Intensive Care Unit: A Group-Based Multitrajectory Modeling Analysis. Int. J. Infect. Dis. 2024, 144, 107045. [Google Scholar] [CrossRef]
- Ali, H.; Alterki, A.; Sindhu, S.; Alahmad, B.; Hammad, M.; Al-Sabah, S.; Alghounaim, M.; Jamal, M.H.; Aldei, A.; Mairza, M.J.; et al. Robust Antibody Levels in Both Diabetic and Non-Diabetic Individuals After BNT162b2 mRNA COVID-19 Vaccination. Front. Immunol. 2021, 12, 752233. [Google Scholar] [CrossRef]
- Tawinprai, K.; Siripongboonsitti, T.; Porntharukchareon, T.; Dechates, B.; Monprach, H.; Sornsamdang, G.; Wittayasak, K.; Soonklang, K.; Mahanonda, N. Persistence of Immunogenicity, Contributing Factors of an Immune Response, and Reactogenicities after a Single Dose of the ChAdOx1 (AZD1222) COVID-19 Vaccine in the Thai Population. Hum. Vaccin. Immunother. 2022, 18, 2035573. [Google Scholar] [CrossRef]
- Marfella, R.; D’Onofrio, N.; Sardu, C.; Scisciola, L.; Maggi, P.; Coppola, N.; Romano, C.; Messina, V.; Turriziani, F.; Siniscalchi, M.; et al. Does Poor Glycaemic Control Affect the Immunogenicity of the COVID-19 Vaccination in Patients with Type 2 Diabetes: The CAVEAT Study. Diabetes Obes. Metab. 2022, 24, 160–165. [Google Scholar] [CrossRef]
- van den Berg, J.M.; Remmelzwaal, S.; Blom, M.T.; van Hoek, B.A.C.E.; Swart, K.M.A.; Overbeek, J.A.; Burchell, G.L.; Herings, R.M.C.; Elders, P.J.M. Effectiveness of COVID-19 Vaccines in Adults with Diabetes Mellitus: A Systematic Review. Vaccines 2022, 11, 24. [Google Scholar] [CrossRef]
- Molnár, G.A.; Vokó, Z.; Sütő, G.; Rokszin, G.; Nagy, D.; Surján, G.; Surján, O.; Nagy, P.; Kenessey, I.; Wéber, A.; et al. Effectiveness of SARS-CoV-2 Primary Vaccines and Boosters in Patients with Type 2 Diabetes Mellitus in Hungary (HUN-VE 4 Study). BMJ Open Diabetes Res. Care 2024, 12, e003777. [Google Scholar] [CrossRef]
- He, Y.-F.; Ouyang, J.; Hu, X.-D.; Wu, N.; Jiang, Z.-G.; Bian, N.; Wang, J. Correlation between COVID-19 Vaccination and Diabetes Mellitus: A Systematic Review. World J. Diabetes 2023, 14, 892–918. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Van Cleemput, J.; van Snippenberg, W.; Lambrechts, L.; Dendooven, A.; D’Onofrio, V.; Couck, L.; Trypsteen, W.; Vanrusselt, J.; Theuns, S.; Vereecke, N.; et al. Organ-Specific Genome Diversity of Replication-Competent SARS-CoV-2. Nat. Commun. 2021, 12, 6612. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.; Lei, Z.; Dicker, J.; Cao, Y.; Zhang, X.F.; Im, W. Differential Interactions between Human ACE2 and Spike RBD of SARS-CoV-2 Variants of Concern. J. Chem. Theory Comput. 2021, 17, 7972–7979. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.; Ziarnik, M.; Seo, S.; Cao, Y.; Zhang, X.F.; Im, W. Binding of Human ACE2 and RBD of Omicron Enhanced by Unique Interaction Patterns among SARS-CoV-2 Variants of Concern. J. Comput. Chem. 2023, 44, 594–601. [Google Scholar] [CrossRef]
- Gawish, R.; Starkl, P.; Pimenov, L.; Hladik, A.; Lakovits, K.; Oberndorfer, F.; Cronin, S.J.; Ohradanova-Repic, A.; Wirnsberger, G.; Agerer, B.; et al. ACE2 Is the Critical in Vivo Receptor for SARS-CoV-2 in a Novel COVID-19 Mouse Model with TNF- and IFNγ-Driven Immunopathology. eLife 2022, 11, e74623. [Google Scholar] [CrossRef]
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Kaniewska, M.; Rosołowski, M.; Tworek, A.; Rydzewska, G. Gastrointestinal Symptoms in Patients with Coronavirus Disease 2019 (COVID-19)—Friend or Foe? Gastroenterol. Rev. 2021, 17, 219–226. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Peng, Z. Consequences of COVID-19 on the Cardiovascular and Renal Systems. Sleep Med. 2022, 100, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, C.; Tang, X.; Yang, M.; Duan, Z.; Liu, L.; Lu, S.; Ma, L.; Cheng, R.; Wang, G.; et al. Human Transferrin Receptor Can Mediate SARS-CoV-2 Infection. Proc. Natl. Acad. Sci. USA 2024, 121, e2317026121. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Scisciola, L.; Sardu, C.; Trotta, M.C.; De Feo, M.; Maiello, C.; Mascolo, P.; De Micco, F.; Turriziani, F.; Municinò, E.; et al. Glycated ACE2 Receptor in Diabetes: Open Door for SARS-CoV-2 Entry in Cardiomyocyte. Cardiovasc. Diabetol. 2021, 20, 99. [Google Scholar] [CrossRef]
- El-Sayed Moustafa, J.S.; Jackson, A.U.; Brotman, S.M.; Guan, L.; Villicaña, S.; Roberts, A.L.; Zito, A.; Bonnycastle, L.; Erdos, M.R.; Narisu, N.; et al. ACE2 Expression in Adipose Tissue Is Associated with Cardio-Metabolic Risk Factors and Cell Type Composition—Implications for COVID-19. Int. J. Obes. 2022, 46, 1478–1486. [Google Scholar] [CrossRef]
- Bestle, D.; Heindl, M.R.; Limburg, H.; Van Lam van, T.; Pilgram, O.; Moulton, H.; Stein, D.A.; Hardes, K.; Eickmann, M.; Dolnik, O.; et al. TMPRSS2 and Furin Are Both Essential for Proteolytic Activation of SARS-CoV-2 in Human Airway Cells. Life Sci. Alliance 2020, 3, e202000786. [Google Scholar] [CrossRef]
- He, Y.; Zhu, H.; Zhang, M.; Li, J.; Ma, S.; Lu, Y.; Chen, L.; Zhang, M.; Peng, H. Association Between Serum Furin and Fasting Glucose: A Cross-Sectional Study in Chinese Adults. Front. Endocrinol. 2022, 12, 781890. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M.; Ruskoaho, H.; Melander, O. Plasma Levels of the Proprotein Convertase Furin and Incidence of Diabetes and Mortality. J. Intern. Med. 2018, 284, 377–387. [Google Scholar] [CrossRef]
- Fathy, S.A.; Abdel Hamid, F.F.; Zabut, B.M.; Jamee, A.F.; Ali, M.A.M.; Abu Mustafa, A.M. BNP, Corin and Furin as Potential Biomarkers for Cardiovascular Complications in Type 2 Diabetes Mellitus Patients. Egypt. J. Pure Appl. Sci. 2015, 53, 53–64. [Google Scholar] [CrossRef]
- Swärd, P.; Rosengren, B.E.; Jehpsson, L.; Karlsson, M.K. Association between Circulating Furin Levels, Obesity and pro-Inflammatory Markers in Children. Acta Paediatr. 2021, 110, 1863–1868. [Google Scholar] [CrossRef]
- Zhao, M.-M.; Zhu, Y.; Zhang, L.; Zhong, G.; Tai, L.; Liu, S.; Yin, G.; Lu, J.; He, Q.; Li, M.-J.; et al. Novel Cleavage Sites Identified in SARS-CoV-2 Spike Protein Reveal Mechanism for Cathepsin L-Facilitated Viral Infection and Treatment Strategies. Cell Discov. 2022, 8, 53. [Google Scholar] [CrossRef]
- Urbich, C.; Dernbach, E.; Rössig, L.; Zeiher, A.M.; Dimmeler, S. High Glucose Reduces Cathepsin L Activity and Impairs Invasion of Circulating Progenitor Cells. J. Mol. Cell. Cardiol. 2008, 45, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiao, Y.; He, Y.; Ding, X.; Su, Q.; Zhao, Y.; Jiang, J. Expression Levels of Cathepsin L and Cystatin C in a Hyperglycemic Environment Were Associated with Aortic Aneurysm Development in a Mouse Model. J. Int. Med. Res. 2019, 47, 2499–2506. [Google Scholar] [CrossRef]
- Xu, C.; Wang, A.; Geng, K.; Honnen, W.; Wang, X.; Bruiners, N.; Singh, S.; Ferrara, F.; D’Angelo, S.; Bradbury, A.R.M.; et al. Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses 2021, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.-Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.-X.; Gong, L.; et al. CD147-Spike Protein Is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar] [CrossRef]
- Fenizia, C.; Galbiati, S.; Vanetti, C.; Vago, R.; Clerici, M.; Tacchetti, C.; Daniele, T. SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2. Cells 2021, 10, 1434. [Google Scholar] [CrossRef]
- Yang, F.; Liu, C.; Li, P.; Wu, A.; Ma-Lauer, Y.; Zhang, H.; Su, Z.; Lu, W.; von Brunn, A.; Zhu, D. Targeting Cyclophilin A and CD147 to Inhibit Replication of SARS-CoV-2 and SARS-CoV-2-Induced Inflammation. Mol. Pharmacol. 2023, 104, 239–254. [Google Scholar] [CrossRef]
- Ali, M.M.; Mirza, I.; Naquiallah, D.; Hassan, C.; Masrur, M.; Bianco, F.M.; Mahmoud, A.M. CD147 Levels in Blood and Adipose Tissues Correlate with Vascular Dysfunction in Obese Diabetic Adults. J. Cardiovasc. Dev. Dis. 2021, 9, 7. [Google Scholar] [CrossRef]
- Han, B.; Lv, Y.; Moser, D.; Zhou, X.; Woehrle, T.; Han, L.; Osterman, A.; Rudelius, M.; Choukér, A.; Lei, P. ACE2-Independent SARS-CoV-2 Virus Entry through Cell Surface GRP78 on Monocytes—Evidence from a Translational Clinical and Experimental Approach. eBioMedicine 2023, 98, 104869. [Google Scholar] [CrossRef]
- Krieken, R.V.; Mehta, N.; Wang, T.; Zheng, M.; Li, R.; Gao, B.; Ayaub, E.; Ask, K.; Paton, J.C.; Paton, A.W.; et al. Cell Surface Expression of 78-kDa Glucose-Regulated Protein (GRP78) Mediates Diabetic Nephropathy. J. Biol. Chem. 2019, 294, 7755–7768. [Google Scholar] [CrossRef]
- Wang, B.; He, X.; Zhang, J.; Zhang, Y. Cell Surface GRP78: A Potential Therapeutic Target for High Glucose-Induced Endothelial Injury. Biochem. Biophys. Res. Commun. 2024, 692, 149347. [Google Scholar] [CrossRef]
- Roy, A.N.; Gupta, A.M.; Banerjee, D.; Chakrabarti, J.; Raghavendra, P.B. Unraveling DPP4 Receptor Interactions with SARS-CoV-2 Variants and MERS-CoV: Insights into Pulmonary Disorders via Immunoinformatics and Molecular Dynamics. Viruses 2023, 15, 2056. [Google Scholar] [CrossRef]
- Sell, H.; Blüher, M.; Klöting, N.; Schlich, R.; Willems, M.; Ruppe, F.; Knoefel, W.T.; Dietrich, A.; Fielding, B.A.; Arner, P.; et al. Adipose Dipeptidyl Peptidase-4 and Obesity: Correlation with Insulin Resistance and Depot-Specific Release from Adipose Tissue in Vivo and in Vitro. Diabetes Care 2013, 36, 4083–4090. [Google Scholar] [CrossRef]
- Belo, L.; Rocha, S.; Valente, M.J.; Coimbra, S.; Catarino, C.; Bronze-da-Rocha, E.; Rocha-Pereira, P.; do Sameiro-Faria, M.; Oliveira, J.G.; Madureira, J.; et al. Hepcidin and Diabetes Are Independently Related with Soluble Transferrin Receptor Levels in Chronic Dialysis Patients. Ren. Fail. 2019, 41, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.J.; Corvera, S.; Czech, M.P. Insulin Stimulates Cellular Iron Uptake and Causes the Redistribution of Intracellular Transferrin Receptors to the Plasma Membrane. J. Biol. Chem. 1986, 261, 8708–8711. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.T.; Hamilton, K.; Burnand, R.; Smith, C.P.; Tomlinson, D.R.; Riccardi, D. Altered Expression of Iron Transport Proteins in Streptozotocin-Induced Diabetic Rat Kidney. Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1740, 79–84. [Google Scholar] [CrossRef]
- Robles, J.P.; Zamora, M.; Adan-Castro, E.; Siqueiros-Marquez, L.; de la Escalera, G.M.; Clapp, C. The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through Integrin A5β1 and NF-κB Signaling. J. Biol. Chem. 2022, 298, 101695. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Myint, P.K.; Appiah, M.G.; Darkwah, S.; Caidengbate, S.; Ito, A.; Matsuo, E.; Kawamoto, E.; Gaowa, A.; Shimaoka, M. The Spike Glycoprotein of SARS-CoV-2 Binds to Β1 Integrins Expressed on the Surface of Lung Epithelial Cells. Viruses 2021, 13, 645. [Google Scholar] [CrossRef]
- Roth, T.; Podestá, F.; Stepp, M.A.; Boeri, D.; Lorenzi, M. Integrin Overexpression Induced by High Glucose and by Human Diabetes: Potential Pathway to Cell Dysfunction in Diabetic Microangiopathy. Proc. Natl. Acad. Sci. USA 1993, 90, 9640–9644. [Google Scholar] [CrossRef]
- Miller, C.G.; Pozzi, A.; Zent, R.; Schwarzbauer, J.E. Effects of High Glucose on Integrin Activity and Fibronectin Matrix Assembly by Mesangial Cells. Mol. Biol. Cell 2014, 25, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Nader, D.; Fletcher, N.; Curley, G.F.; Kerrigan, S.W. SARS-CoV-2 Uses Major Endothelial Integrin Avβ3 to Cause Vascular Dysregulation in-Vitro during COVID-19. PLoS ONE 2021, 16, e0253347. [Google Scholar] [CrossRef] [PubMed]
- Bugatti, A.; Filippini, F.; Bardelli, M.; Zani, A.; Chiodelli, P.; Messali, S.; Caruso, A.; Caccuri, F. SARS-CoV-2 Infects Human ACE2-Negative Endothelial Cells through an Avβ3 Integrin-Mediated Endocytosis Even in the Presence of Vaccine-Elicited Neutralizing Antibodies. Viruses 2022, 14, 705. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.K.; Fish, A.J.; Wayner, E.A.; Mauer, M.; Setty, S.; Tsilibary, E.; Kim, Y. Distribution of Integrin Subunits in Human Diabetic Kidneys. J. Am. Soc. Nephrol. 1996, 7, 2636–2645. [Google Scholar] [CrossRef]
- Bakhteyari, A.; Zarrin, Y.; Nikpour, P.; Sadat Hosseiny, Z.; Sadat Mostafavi, F.; Eskandari, N.; Matinfar, M.; Aboutorabi, R. Diabetes Mellitus Increased Integrins Gene Expression in Rat Endometrium at the Time of Embryo Implantation. Int. J. Reprod. Biomed. 2019, 17, 395–404. [Google Scholar] [CrossRef]
- Brunetti, N.S.; Davanzo, G.G.; de Moraes, D.; Ferrari, A.J.; Souza, G.F.; Muraro, S.P.; Knittel, T.L.; Boldrini, V.O.; Monteiro, L.B.; Virgílio-da-Silva, J.V.; et al. SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes. eLife 2023, 12, e84790. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, X.; Chen, X.; Lu, J.; Zhang, Y.; Huang, Q. Dysregulation of Circulating CD4+CXCR5+ T Cells in Type 2 Diabetes Mellitus. APMIS 2015, 123, 146–151. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Wang, X.; Wen, Z.; Shuai, L.; Luo, J.; Wang, C.; Sun, Z.; Liu, R.; Ge, J.; et al. SARS-CoV-2 Uses Metabotropic Glutamate Receptor Subtype 2 as an Internalization Factor to Infect Cells. Cell Discov. 2021, 7, 119. [Google Scholar] [CrossRef]
- Liu, Z.; Han, Y.; Zhao, H.; Luo, W.; Jia, L.; Wang, Y. Glu-mGluR2/3-ERK Signaling Regulates Apoptosis of Hippocampal Neurons in Diabetic-Depression Model Rats. Evid. Based Complement. Altern. Med. 2019, 2019, 3710363. [Google Scholar] [CrossRef]
- Alipour, N.; Fallahnezhad, S.; Bagheri, J.; Babaloo, H.; Tahmasebi, F.; Sazegar, G.; Haghir, H. Expression of GABAAα1, GABAB1, and mGluR2 Receptors in the Lateral Geniculate Body of Male Neonates Born to Diabetic Rats. Iran. J. Basic Med. Sci. 2023, 26, 805–811. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.; Zhu, Y.; Zhao, X.; Liu, J.; Xun, J.; Yuan, S.; Chen, J.; Pan, H.; Yang, J.; et al. Asialoglycoprotein Receptor 1 Promotes SARS-CoV-2 Infection of Human Normal Hepatocytes. Signal Transduct. Target. Ther. 2024, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Cao, J.; Zhang, X.; Gao, H.; Wang, Y.; Wang, J.; He, J.; Jiang, X.; Zhang, J.; Shen, G.; et al. Receptome Profiling Identifies KREMEN1 and ASGR1 as Alternative Functional Receptors of SARS-CoV-2. Cell Res. 2022, 32, 24–37. [Google Scholar] [CrossRef]
- Hamledari, H.; Sajjadi, S.F.; Alikhah, A.; Boroumand, M.A.; Behmanesh, M. ASGR1 but Not FOXM1 Expression Decreases in the Peripheral Blood Mononuclear Cells of Diabetic Atherosclerotic Patients. J. Diabetes Complicat. 2019, 33, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qiu, Z.; Hou, Y.; Deng, X.; Xu, W.; Zheng, T.; Wu, P.; Xie, S.; Bian, W.; Zhang, C.; et al. AXL Is a Candidate Receptor for SARS-CoV-2 That Promotes Infection of Pulmonary and Bronchial Epithelial Cells. Cell Res. 2021, 31, 126–140. [Google Scholar] [CrossRef]
- Bohan, D.; Ert, H.V.; Ruggio, N.; Rogers, K.J.; Badreddine, M.; Briseño, J.A.A.; Elliff, J.M.; Chavez, R.A.R.; Gao, B.; Stokowy, T.; et al. Phosphatidylserine Receptors Enhance SARS-CoV-2 Infection. PLoS Pathog. 2021, 17, e1009743. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Shieh, Y.-S.; Hsiao, F.-C.; Kuo, F.-C.; Lin, C.-Y.; Hsieh, C.-H.; Hung, Y.-J. High Glucose Induces Human Endothelial Dysfunction through an Axl-Dependent Mechanism. Cardiovasc. Diabetol. 2014, 13, 53. [Google Scholar] [CrossRef]
- Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Chandler, K.B.; Xia, C.; Feldman, J.; et al. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1156–1165. [Google Scholar] [CrossRef]
- Junqueira, C.; Crespo, Â.; Ranjbar, S.; de Lacerda, L.B.; Lewandrowski, M.; Ingber, J.; Parry, B.; Ravid, S.; Clark, S.; Schrimpf, M.R.; et al. FcγR-Mediated SARS-CoV-2 Infection of Monocytes Activates Inflammation. Nature 2022, 606, 576–584. [Google Scholar] [CrossRef]
- Min, D.; Brooks, B.; Wong, J.; Salomon, R.; Bao, W.; Harrisberg, B.; Twigg, S.M.; Yue, D.K.; McLennan, S.V. Alterations in Monocyte CD16 in Association with Diabetes Complications. Mediat. Inflamm. 2012, 2012, e649083. [Google Scholar] [CrossRef]
- Arce-Mendoza, A.; Ita, J.R.; Salinas-Carmona, M.C.; Rosas-Taraco, A.G. Expression of CD64, CD206, and RAGE in Adherent Cells of Diabetic Patients Infected with Mycobacterium Tuberculosis. Arch. Med. Res. 2008, 39, 306–311. [Google Scholar] [CrossRef]
- Baggen, J.; Jacquemyn, M.; Persoons, L.; Vanstreels, E.; Pye, V.E.; Wrobel, A.G.; Calvaresi, V.; Martin, S.R.; Roustan, C.; Cronin, N.B.; et al. TMEM106B Is a Receptor Mediating ACE2-Independent SARS-CoV-2 Cell Entry. Cell 2023, 186, 3427–3442.e22. [Google Scholar] [CrossRef] [PubMed]
- García-Dorival, I.; Cuesta-Geijo, M.Á.; Barrado-Gil, L.; Galindo, I.; Garaigorta, U.; Urquiza, J.; del Puerto, A.; Campillo, N.E.; Martínez, A.; Gastaminza, P.; et al. Identification of Niemann-Pick C1 Protein as a Potential Novel SARS-CoV-2 Intracellular Target. Antivir. Res. 2021, 194, 105167. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.; Gribben, C.; Ma, X.; Burchfield, J.G.; Thomas, K.C.; Krycer, J.R.; James, D.E.; Fazakerley, D.J. The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE 2014, 9, e95598. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Al-Qaissi, A.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Soluble Neuropilin-1 Response to Hypoglycemia in Type 2 Diabetes: Increased Risk or Protection in SARS-CoV-2 Infection? Front. Endocrinol. 2021, 12, 665134. [Google Scholar] [CrossRef]
- Bondeva, T.; Rüster, C.; Franke, S.; Hammerschmid, E.; Klagsbrun, M.; Cohen, C.D.; Wolf, G. Advanced Glycation End-Products Suppress Neuropilin-1 Expression in Podocytes. Kidney Int. 2009, 75, 605–616. [Google Scholar] [CrossRef]
- Ishitoku, M.; Mokuda, S.; Araki, K.; Watanabe, H.; Kohno, H.; Sugimoto, T.; Yoshida, Y.; Sakaguchi, T.; Masumoto, J.; Hirata, S.; et al. Tumor Necrosis Factor and Interleukin-1β Upregulate NRP2 Expression and Promote SARS-CoV-2 Proliferation. Viruses 2023, 15, 1498. [Google Scholar] [CrossRef]
- Amraei, R.; Xia, C.; Olejnik, J.; White, M.R.; Napoleon, M.A.; Lotfollahzadeh, S.; Hauser, B.M.; Schmidt, A.G.; Chitalia, V.; Mühlberger, E.; et al. Extracellular Vimentin Is an Attachment Factor That Facilitates SARS-CoV-2 Entry into Human Endothelial Cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2113874119. [Google Scholar] [CrossRef]
- Park, J.-H.; Kwon, S.; Park, Y.M. Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy. Diabetes Metab. J. 2023, 48, 215–230. [Google Scholar] [CrossRef]
- Mandal, A.K.; Puchalski, J.T.; Lemley-Gillespie, S.; Taylor, C.A.; Kohno, M. Effect of Insulin and Heparin on Glucose-Induced Vascular Damage in Cell Culture. Kidney Int. 2000, 57, 2492–2501. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; McCord, K.A.; Bui, D.T.; Bouwman, K.M.; Kitova, E.N.; Elaish, M.; Kumawat, D.; Daskhan, G.C.; Tomris, I.; Han, L.; et al. Sialic Acid-Containing Glycolipids Mediate Binding and Viral Entry of SARS-CoV-2. Nat. Chem. Biol. 2022, 18, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Prajna, K.; Kumar, A.; Rai, S.; Shetty, S.K.; Rai, T.; Begum, M.; Shashikala, M.D. Predictive Value of Serum Sialic Acid in Type-2 Diabetes Mellitus and Its Complication (Nephropathy). J. Clin. Diagn. Res. 2013, 7, 2435–2437. [Google Scholar] [CrossRef]
- Sasaki, N.; Itakura, Y.; Toyoda, M. Ganglioside GM1 Contributes to the State of Insulin Resistance in Senescent Human Arterial Endothelial Cells. J. Biol. Chem. 2015, 290, 25475–25486. [Google Scholar] [CrossRef]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef]
- van Det, N.F.; van den Born, J.; Tamsma, J.T.; Verhagen, N.A.; Berden, J.H.; Bruijn, J.A.; Daha, M.R.; van der Woude, F.J. Effects of High Glucose on the Production of Heparan Sulfate Proteoglycan by Mesangial and Epithelial Cells. Kidney Int. 1996, 49, 1079–1089. [Google Scholar] [CrossRef]
- Dhounchak, S.; Popp, S.K.; Brown, D.J.; Laybutt, D.R.; Biden, T.J.; Bornstein, S.R.; Parish, C.R.; Simeonovic, C.J. Heparan Sulfate Proteoglycans in Beta Cells Provide a Critical Link between Endoplasmic Reticulum Stress, Oxidative Stress and Type 2 Diabetes. PLoS ONE 2021, 16, e0252607. [Google Scholar] [CrossRef]
- Chen, J.; Fan, J.; Chen, Z.; Zhang, M.; Peng, H.; Liu, J.; Ding, L.; Liu, M.; Zhao, C.; Zhao, P.; et al. Nonmuscle Myosin Heavy Chain IIA Facilitates SARS-CoV-2 Infection in Human Pulmonary Cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2111011118. [Google Scholar] [CrossRef]
- Wasik, A.A.; Dumont, V.; Tienari, J.; Nyman, T.A.; Fogarty, C.L.; Forsblom, C.; Lehto, M.; Lehtonen, E.; Groop, P.-H.; Lehtonen, S. Septin 7 Reduces Nonmuscle Myosin IIA Activity in the SNAP23 Complex and Hinders GLUT4 Storage Vesicle Docking and Fusion. Exp. Cell Res. 2017, 350, 336–348. [Google Scholar] [CrossRef]
- Wei, C.; Wan, L.; Yan, Q.; Wang, X.; Zhang, J.; Yang, X.; Zhang, Y.; Fan, C.; Li, D.; Deng, Y.; et al. HDL-Scavenger Receptor B Type 1 Facilitates SARS-CoV-2 Entry. Nat. Metab. 2020, 2, 1391–1400. [Google Scholar] [CrossRef]
- Murao, K.; Yu, X.; Imachi, H.; Cao, W.M.; Chen, K.; Matsumoto, K.; Nishiuchi, T.; Wong, N.C.W.; Ishida, T. Hyperglycemia Suppresses Hepatic Scavenger Receptor Class B Type I Expression. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E78–E87. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Tremblay, B.J.-M.; Mansfield, M.J.; Woody, O.; Lobb, B.; Banerjee, A.; Chandiramohan, A.; Tiessen, N.; Cao, Q.; Dvorkin-Gheva, A.; et al. Gene Expression and in Situ Protein Profiling of Candidate SARS-CoV-2 Receptors in Human Airway Epithelial Cells and Lung Tissue. Eur. Respir. J. 2020, 56, 2001123. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Yang, D.; Chen, X.; Chen, Q. CD147 Increases Mucus Secretion Induced by Cigarette Smoke in COPD. BMC Pulm. Med. 2019, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cheng, T.; Guo, Y.; Gao, R.; Ma, X.; Mao, X.; Han, X. CD147 Induces Asthmatic Airway Remodeling and Activation of Circulating Fibrocytes in a Mouse Model of Asthma. Respir. Res. 2024, 25, 6. [Google Scholar] [CrossRef]
- Wu, J.; Chen, L.; Qin, C.; Huo, F.; Liang, X.; Yang, X.; Zhang, K.; Lin, P.; Liu, J.; Feng, Z.; et al. CD147 Contributes to SARS-CoV-2-Induced Pulmonary Fibrosis. Signal Transduct. Target. Ther. 2022, 7, 382. [Google Scholar] [CrossRef]
- Baindara, P.; Roy, D.; Mandal, S.M.; Schrum, A.G. Conservation and Enhanced Binding of SARS-CoV-2 Omicron Spike Protein to Coreceptor Neuropilin-1 Predicted by Docking Analysis. Infect. Dis. Rep. 2022, 14, 243–249. [Google Scholar] [CrossRef]
- Moutal, A.; Martin, L.F.; Boinon, L.; Gomez, K.; Ran, D.; Zhou, Y.; Stratton, H.J.; Cai, S.; Luo, S.; Gonzalez, K.B.; et al. SARS-CoV-2 Spike Protein Co-Opts VEGF-A/Neuropilin-1 Receptor Signaling to Induce Analgesia. Pain 2021, 162, 243. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Kadamkode, V.; Mahammed, R.; Doraiswami, C.; Banerjee, G. Adiponectin and IL-6: Mediators of Inflammation in Progression of Healthy to Type 2 Diabetes in Indian Population. Adipocyte 2014, 3, 39–45. [Google Scholar] [CrossRef]
- Stephens, J.M.; Lee, J.; Pilch, P.F. Tumor Necrosis Factor-α-Induced Insulin Resistance in 3T3-L1 Adipocytes Is Accompanied by a Loss of Insulin Receptor Substrate-1 and GLUT4 Expression without a Loss of Insulin Receptor-Mediated Signal Transduction. J. Biol. Chem. 1997, 272, 971–976. [Google Scholar] [CrossRef]
- Thomas, D.D.; Corkey, B.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J. Endocr. Soc. 2019, 3, 1727–1747. [Google Scholar] [CrossRef]
- Griffin, M.J. On the Immunometabolic Role of NF-κB in Adipocytes. Immunometabolism 2022, 4, e220003. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, A.S.; Kelly, M.; Berg, R.M.G.; Møller, K.; Pedersen, B.K. Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS. PLoS ONE 2011, 6, e23999. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.A.; Favelyukis, S.; Nguyen, A.-K.; Reichart, D.; Scott, P.A.; Jenn, A.; Liu-Bryan, R.; Glass, C.K.; Neels, J.G.; Olefsky, J.M. A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-Dependent Pathways. J. Biol. Chem. 2007, 282, 35279–35292. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and Insulin Resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Dludla, P.V.; Mabhida, S.E.; Ziqubu, K.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hanser, S.; Basson, A.K.; Pheiffer, C.; Kengne, A.P. Pancreatic β-Cell Dysfunction in Type 2 Diabetes: Implications of Inflammation and Oxidative Stress. World J. Diabetes 2023, 14, 130–146. [Google Scholar] [CrossRef]
- Triana, S.; Metz-Zumaran, C.; Ramirez, C.; Kee, C.; Doldan, P.; Shahraz, M.; Schraivogel, D.; Gschwind, A.R.; Sharma, A.K.; Steinmetz, L.M.; et al. Single-cell Analyses Reveal SARS-CoV-2 Interference with Intrinsic Immune Response in the Human Gut. Mol. Syst. Biol. 2021, 17, e10232. [Google Scholar] [CrossRef]
- Yang, C.-F.; Liao, C.-C.; Hsu, H.-W.; Liang, J.-J.; Chang, C.-S.; Ko, H.-Y.; Chang, R.-H.; Tang, W.-C.; Chang, M.-H.; Wang, I.-H.; et al. Human ACE2 Protein Is a Molecular Switch Controlling the Mode of SARS-CoV-2 Transmission. J. Biomed. Sci. 2023, 30, 87. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Pietropaoli, S.; Vos, M.; Barba-Spaeth, G.; Zurzolo, C. Tunneling Nanotubes Provide a Route for SARS-CoV-2 Spreading. Sci. Adv. 2022, 8, eabo0171. [Google Scholar] [CrossRef]
- Garreta, E.; Prado, P.; Stanifer, M.L.; Monteil, V.; Marco, A.; Ullate-Agote, A.; Moya-Rull, D.; Vilas-Zornoza, A.; Tarantino, C.; Romero, J.P.; et al. A Diabetic Milieu Increases ACE2 Expression and Cellular Susceptibility to SARS-CoV-2 Infections in Human Kidney Organoids and Patient Cells. Cell Metab. 2022, 34, 857–873.e9. [Google Scholar] [CrossRef]
- Wijnant, S.R.A.; Jacobs, M.; Van Eeckhoutte, H.P.; Lapauw, B.; Joos, G.F.; Bracke, K.R.; Brusselle, G.G. Expression of ACE2, the SARS-CoV-2 Receptor, in Lung Tissue of Patients With Type 2 Diabetes. Diabetes 2020, 69, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Zankharia, U.; Yadav, A.; Yi, Y.; Hahn, B.H.; Collman, R.G. Highly Restricted SARS-CoV-2 Receptor Expression and Resistance to Infection by Primary Human Monocytes and Monocyte-Derived Macrophages. J. Leukoc. Biol. 2022, 112, 569–576. [Google Scholar] [CrossRef]
- Grant, R.A.; Morales-Nebreda, L.; Markov, N.S.; Swaminathan, S.; Querrey, M.; Guzman, E.R.; Abbott, D.A.; Donnelly, H.K.; Donayre, A.; Goldberg, I.A.; et al. Circuits between Infected Macrophages and T Cells in SARS-CoV-2 Pneumonia. Nature 2021, 590, 635–641. [Google Scholar] [CrossRef]
- Yao, Y.; Subedi, K.; Liu, T.; Khalasawi, N.; Pretto-Kernahan, C.D.; Wotring, J.W.; Wang, J.; Yin, C.; Jiang, A.; Fu, C.; et al. Surface Translocation of ACE2 and TMPRSS2 upon TLR4/7/8 Activation Is Required for SARS-CoV-2 Infection in Circulating Monocytes. Cell Discov. 2022, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Taha, I.M.; Abdu Allah, A.M.; Abd El Gayed, E.M. Expression of Toll-like Receptor 4 and Its Connection with Type 2 Diabetes Mellitus. Cell. Mol. Biol. 2018, 64, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Fang, J.; Zhou, H.; Liu, X.; Su, S.B. High Glucose Induces and Activates Toll-like Receptor 4 in Endothelial Cells of Diabetic Retinopathy. Diabetol. Metab. Syndr. 2015, 7, 89. [Google Scholar] [CrossRef]
- Liao, Y.-R.; Li, Z.-J.; Zeng, P.; Lan, Y.-Q. TLR7 Deficiency Contributes to Attenuated Diabetic Retinopathy via Inhibition of Inflammatory Response. Biochem. Biophys. Res. Commun. 2017, 493, 1136–1142. [Google Scholar] [CrossRef]
- Ahmad, R.; Kochumon, S.; Thomas, R.; Atizado, V.; Sindhu, S. Increased Adipose Tissue Expression of TLR8 in Obese Individuals with or without Type-2 Diabetes: Significance in Metabolic Inflammation. J. Inflamm. 2016, 13, 38. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, G.; Wang, R.; Ren, L.; Yuan, Z.; Liu, Y.; Wu, Y.; Chen, R.; Chen, Y.; Diao, B. Serum Levels of Type I Interferon (IFN-I) Is Associated with the Severity of COVID-19. J. Med. Microbiol. 2023, 72, 001694. [Google Scholar] [CrossRef]
- Palacios, Y.; Ramón-Luing, L.A.; Ruiz, A.; García-Martínez, A.; Sánchez-Monciváis, A.; Barreto-Rodríguez, O.; Falfán-Valencia, R.; Pérez-Rubio, G.; Medina-Quero, K.; Buendia-Roldan, I.; et al. COVID-19 Patients with High TNF/IFN-γ Levels Show Hallmarks of PANoptosis, an Inflammatory Cell Death. Microbes Infect. 2023, 25, 105179. [Google Scholar] [CrossRef]
- van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 2020, 324, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn Errors of Type I IFN Immunity in Patients with Life-Threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef]
- Bahgat, M.M.; Ibrahim, D.R. Proinflammatory Cytokine Polarization in Type 2 Diabetes. Cent. Eur. J. Immunol. 2020, 45, 170–175. [Google Scholar] [CrossRef]
- Sposito, B.; Broggi, A.; Pandolfi, L.; Crotta, S.; Clementi, N.; Ferrarese, R.; Sisti, S.; Criscuolo, E.; Spreafico, R.; Long, J.M.; et al. The Interferon Landscape along the Respiratory Tract Impacts the Severity of COVID-19. Cell 2021, 184, 4953–4968.e16. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, J.; Li, Y.; Zhang, Y.; Tian, R.; Yan, R. Structures of ACE2–SIT1 Recognized by Omicron Variants of SARS-CoV-2. Cell Discov. 2022, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.D.; Bonzo, J.A.; Li, F.; Krausz, K.W.; Eichler, G.S.; Aslam, S.; Tigno, X.; Weinstein, J.N.; Hansen, B.C.; Idle, J.R.; et al. Metabolomics Reveals Attenuation of the SLC6A20 Kidney Transporter in Nonhuman Primate and Mouse Models of Type 2 Diabetes Mellitus. J. Biol. Chem. 2011, 286, 19511–19522. [Google Scholar] [CrossRef]
- Wang, A.; Chiou, J.; Poirion, O.B.; Buchanan, J.; Valdez, M.J.; Verheyden, J.M.; Hou, X.; Kudtarkar, P.; Narendra, S.; Newsome, J.M.; et al. Single-Cell Multiomic Profiling of Human Lungs Reveals Cell-Type-Specific and Age-Dynamic Control of SARS-CoV2 Host Genes. eLife 2020, 9, e62522. [Google Scholar] [CrossRef] [PubMed]
- Severe COVID-19 GWAS Group; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe COVID-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, F.; Li, K.; Xu, P.; Tan, W.; Feng, Q.; Rao, S. Genome and Epigenome Editing Identify CCR9 and SLC6A20 as Target Genes at the 3p21.31 Locus Associated with Severe COVID-19. Signal Transduct. Target. Ther. 2021, 6, 85. [Google Scholar] [CrossRef]
- Loktionov, A.; Kobzeva, K.; Dorofeeva, A.; Sergeeva, V.; Bushueva, O. GWAS-Identified Loci Are Associated with Obesity and Type 2 Diabetes Mellitus in Patients with Severe COVID-19. Front. Biosci. 2024, 16, 14. [Google Scholar] [CrossRef]
- Ling, Y.; van Herpt, T.T.W.; van Hoek, M.; Dehghan, A.; Hofman, A.; Uitterlinden, A.G.; Jiang, S.; Lieverse, A.G.; Bravenboer, B.; Lu, D.; et al. A Genetic Variant in SLC6A20 Is Associated with Type 2 Diabetes in White-European and Chinese Populations. Diabet. Med. 2014, 31, 1350–1356. [Google Scholar] [CrossRef]
- Nagafuchi, S.; Kamada-Hibio, Y.; Hirakawa, K.; Tsutsu, N.; Minami, M.; Okada, A.; Kai, K.; Teshima, M.; Moroishi, A.; Murakami, Y.; et al. TYK2 Promoter Variant and Diabetes Mellitus in the Japanese. eBioMedicine 2015, 2, 744–749. [Google Scholar] [CrossRef]
- Akbari, M.; Akhavan-Bahabadi, M.; Shafigh, N.; Taheriazam, A.; Hussen, B.M.; Sayad, A.; Fathi, M.; Taheri, M.; Ghafouri-Fard, S.; Fathi, M. Expression Analysis of IFNAR1 and TYK2 Transcripts in COVID-19 Patients. Cytokine 2022, 153, 155849. [Google Scholar] [CrossRef] [PubMed]
- Sienko, J.; Marczak, I.; Kotowski, M.; Bogacz, A.; Tejchman, K.; Sienko, M.; Kotfis, K. Association of ACE2 Gene Variants with the Severity of COVID-19 Disease-A Prospective Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 12622. [Google Scholar] [CrossRef]
- de Sousa, R.B.N.; do Nascimento, L.R.S.; Costa, L.H.A.; Leite, V.R.M.C.; Borges, C.L.; de Deus, J.M.; Rebelo, A.C.S.; Pinheiro, D.d.S.; Pedrino, G.R. Combinatorial Analysis of ACE and ACE2 Polymorphisms Reveals Protection against COVID-19 Worsening: A Genetic Association Study in Brazilian Patients. PLoS ONE 2023, 18, e0288178. [Google Scholar] [CrossRef]
- Möhlendick, B.; Schönfelder, K.; Breuckmann, K.; Elsner, C.; Babel, N.; Balfanz, P.; Dahl, E.; Dreher, M.; Fistera, D.; Herbstreit, F.; et al. ACE2 Polymorphism and Susceptibility for SARS-CoV-2 Infection and Severity of COVID-19. Pharmacogenet. Genom. 2021, 31, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Nițulescu, I.M.; Ciulei, G.; Cozma, A.; Procopciuc, L.M.; Orășan, O.H. From Innate Immunity to Metabolic Disorder: A Review of the NLRP3 Inflammasome in Diabetes Mellitus. J. Clin. Med. 2023, 12, 6022. [Google Scholar] [CrossRef]
- Al-Benna, S. Association of High Level Gene Expression of ACE2 in Adipose Tissue with Mortality of COVID-19 Infection in Obese Patients. Obes. Med. 2020, 19, 100283. [Google Scholar] [CrossRef]
- Couselo-Seijas, M.; Almengló, C.; M Agra-Bermejo, R.; Luis Fernandez, Á.; Alvarez, E.; R González-Juanatey, J.; Eiras, S. Higher ACE2 Expression Levels in Epicardial Cells than Subcutaneous Stromal Cells from Patients with Cardiovascular Disease: Diabetes and Obesity as Possible Enhancer. Eur. J. Clin. Investig. 2021, 51, e13463. [Google Scholar] [CrossRef]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [Google Scholar] [CrossRef] [PubMed]
- Lelis, D.d.F.; de Freitas, D.F.; Machado, A.S.; Crespo, T.S.; Santos, S.H.S. Angiotensin-(1-7), Adipokines and Inflammation. Metab. Clin. Exp. 2019, 95, 36–45. [Google Scholar] [CrossRef]
- Ma, C.; Shi, T.; Song, L.; Liu, J.; Yuan, M. Angiotensin(1–7) Attenuates Visceral Adipose Tissue Expansion and Lipogenesis by Suppression of Endoplasmic Reticulum Stress via Mas Receptor. Nutr. Metab. 2022, 19, 82. [Google Scholar] [CrossRef]
- Rui, L.; Aguirre, V.; Kim, J.K.; Shulman, G.I.; Lee, A.; Corbould, A.; Dunaif, A.; White, M.F. Insulin/IGF-1 and TNF-α Stimulate Phosphorylation of IRS-1 at Inhibitory Ser307 via Distinct Pathways. J. Clin. Investig. 2001, 107, 181–189. [Google Scholar] [CrossRef]
- Liu, M.; Peng, T.; Hu, L.; Wang, M.; Guo, D.; Qi, B.; Ren, G.; Wang, D.; Li, Y.; Song, L.; et al. N-Glycosylation-Mediated CD147 Accumulation Induces Cardiac Fibrosis in the Diabetic Heart through ALK5 Activation. Int. J. Biol. Sci. 2023, 19, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Min, D.; Twigg, S.M.; Shackel, N.A.; Warner, F.J.; Yue, D.K.; McLennan, S.V. Monocyte CD147 Is Induced by Advanced Glycation End Products and High Glucose Concentration: Possible Role in Diabetic Complications. Am. J. Physiol. Cell Physiol. 2010, 299, C1212–C1219. [Google Scholar] [CrossRef]
- Qu, X.; Wang, C.; Zhang, J.; Qie, G.; Zhou, J. The Roles of CD147 and/or Cyclophilin A in Kidney Diseases. Mediat. Inflamm. 2014, 2014, e728673. [Google Scholar] [CrossRef]
- Zhai, Y.; Wu, B.; Li, J.; Yao, X.; Zhu, P.; Chen, Z. CD147 Promotes IKK/IκB/NF-κB Pathway to Resist TNF-Induced Apoptosis in Rheumatoid Arthritis Synovial Fibroblasts. J. Mol. Med. 2016, 94, 71–82. [Google Scholar] [CrossRef]
- Maugeri, N.; De Lorenzo, R.; Clementi, N.; Antonia Diotti, R.; Criscuolo, E.; Godino, C.; Tresoldi, C.; Angels for COVID-BioB Study Group, B.; Bonini, C.; Clementi, M.; et al. Unconventional CD147-dependent Platelet Activation Elicited by SARS-CoV-2 in COVID-19. J. Thromb. Haemost. 2022, 20, 434–448. [Google Scholar] [CrossRef]
- Shilts, J.; Crozier, T.W.M.; Greenwood, E.J.D.; Lehner, P.J.; Wright, G.J. No Evidence for Basigin/CD147 as a Direct SARS-CoV-2 Spike Binding Receptor. Sci. Rep. 2021, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Ragotte, R.J.; Pulido, D.; Donnellan, F.R.; Hill, M.L.; Gorini, G.; Davies, H.; Brun, J.; McHugh, K.; King, L.D.W.; Skinner, K.; et al. Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. mSphere 2021, 6, e0064721. [Google Scholar] [CrossRef] [PubMed]
- Girona, J.; Rodríguez-Borjabad, C.; Ibarretxe, D.; Vallvé, J.-C.; Ferré, R.; Heras, M.; Rodríguez-Calvo, R.; Guaita-Esteruelas, S.; Martínez-Micaelo, N.; Plana, N.; et al. The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. J. Clin. Med. 2019, 8, 1793. [Google Scholar] [CrossRef]
- Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the Unfolded Protein Response Regulator GRP78/BiP in Development, Cancer, and Neurological Disorders. Antioxid. Redox Signal 2009, 11, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, G.; Ha, D.P.; Wang, J.; Xiong, M.; Lee, A.S. ER Chaperone GRP78/BiP Translocates to the Nucleus under Stress and Acts as a Transcriptional Regulator. Proc. Natl. Acad. Sci. USA 2023, 120, e2303448120. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-A.; You, S.; Yoon, H.-J.; Kim, D.-H.; Kim, H.-S.; Lee, K.; Ahn, J.H.; Hwang, D.; Lee, A.S.; Kim, K.-J.; et al. A Novel Pathogenic Role of the ER Chaperone GRP78/BiP in Rheumatoid Arthritis. J. Exp. Med. 2012, 209, 871–886. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Ding, G.; La, X.; Yang, P.; Li, Z. GRP78 Plays an Integral Role in Tumor Cell Inflammation-Related Migration Induced by M2 Macrophages. Cell. Signal. 2017, 37, 136–148. [Google Scholar] [CrossRef]
- Vig, S.; Buitinga, M.; Rondas, D.; Crèvecoeur, I.; van Zandvoort, M.; Waelkens, E.; Eizirik, D.L.; Gysemans, C.; Baatsen, P.; Mathieu, C.; et al. Cytokine-Induced Translocation of GRP78 to the Plasma Membrane Triggers a pro-Apoptotic Feedback Loop in Pancreatic Beta Cells. Cell Death Dis. 2019, 10, 309. [Google Scholar] [CrossRef]
- Lenin, R.; Nagy, P.G.; Jha, K.A.; Gangaraju, R. GRP78 Translocation to the Cell Surface and O-GlcNAcylation of VE-Cadherin Contribute to ER Stress-Mediated Endothelial Permeability. Sci. Rep. 2019, 9, 10783. [Google Scholar] [CrossRef]
- Shin, W.-J.; Ha, D.P.; Machida, K.; Lee, A.S. The Stress-Inducible ER Chaperone GRP78/BiP Is Upregulated during SARS-CoV-2 Infection and Acts as a Pro-viral Protein. Nat. Commun. 2022, 13, 6551. [Google Scholar] [CrossRef]
- Ha, D.P.; Shin, W.-J.; Hernandez, J.C.; Neamati, N.; Dubeau, L.; Machida, K.; Lee, A.S. GRP78 Inhibitor YUM70 Suppresses SARS-CoV-2 Viral Entry, Spike Protein Production and Ameliorates Lung Damage. Viruses 2023, 15, 1118. [Google Scholar] [CrossRef] [PubMed]
- Carlos, A.J.; Ha, D.P.; Yeh, D.-W.; Krieken, R.V.; Tseng, C.-C.; Zhang, P.; Gill, P.; Machida, K.; Lee, A.S. The Chaperone GRP78 Is a Host Auxiliary Factor for SARS-CoV-2 and GRP78 Depleting Antibody Blocks Viral Entry and Infection. J. Biol. Chem. 2021, 296, 100759. [Google Scholar] [CrossRef]
- Han, C.; Xie, Z.; Lv, Y.; Liu, D.; Chen, R. Direct Interaction of the Molecular Chaperone GRP78/BiP with the Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein Plays a Vital Role in Viral Attachment to and Infection of Culture Cells. Front. Immunol. 2023, 14, 1259237. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; et al. Dipeptidyl Peptidase 4 Is a Functional Receptor for the Emerging Human Coronavirus-EMC. Nature 2013, 495, 251–254. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. iScience 2020, 23, 101160. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD Protein as a Viral Attachment Inhibitor and Vaccine. Cell. Mol. Immunol. 2020, 17, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, L.R.; Bilandzic, M.; Wilson, A.L.; Chen, Y.; Gorrell, M.D.; Oehler, M.K.; Plebanski, M.; Stephens, A.N. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int. J. Mol. Sci. 2020, 21, 8110. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, H.H.; Velebit, J.; Radić, N.; Frančič, V.; Kreft, M.; Zorec, R. Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes. J. Diabetes Res. 2016, 2016, e7481470. [Google Scholar] [CrossRef]
- Lin, Q.; Lee, Y.-J.; Yun, Z. Differentiation Arrest by Hypoxia. J. Biol. Chem. 2006, 281, 30678–30683. [Google Scholar] [CrossRef]
- Makrilakis, K. The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect. Int. J. Environ. Res. Public Health 2019, 16, 2720. [Google Scholar] [CrossRef]
- Soare, A.; Györfi, H.A.; Matei, A.E.; Dees, C.; Rauber, S.; Wohlfahrt, T.; Chen, C.-W.; Ludolph, I.; Horch, R.E.; Bäuerle, T.; et al. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol. 2020, 72, 137–149. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Xue, X. Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases. Molecules 2022, 27, 4498. [Google Scholar] [CrossRef]
- Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; et al. Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome. Diabetes 2011, 60, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Vukelic, I.; Buljevic, S.; Baticic, L.; Barisic, K.; Franovic, B.; Detel, D. CD26 Deficiency Controls Macrophage Polarization Markers and Signal Transducers during Colitis Development and Resolution. Int. J. Mol. Sci. 2022, 23, 5506. [Google Scholar] [CrossRef]
- Morimoto, C.; Schlossman, S.F. The Structure and Function of CD26 in the T-Cell Immune Response. Immunol. Rev. 1998, 161, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Wronkowitz, N.; Görgens, S.W.; Romacho, T.; Villalobos, L.A.; Sánchez-Ferrer, C.F.; Peiró, C.; Sell, H.; Eckel, J. Soluble DPP4 Induces Inflammation and Proliferation of Human Smooth Muscle Cells via Protease-Activated Receptor 2. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 1613–1621. [Google Scholar] [CrossRef]
- Mortier, A.; Gouwy, M.; Van Damme, J.; Proost, P.; Struyf, S. CD26/Dipeptidylpeptidase IV—Chemokine Interactions: Double-Edged Regulation of Inflammation and Tumor Biology. J. Leukoc. Biol. 2016, 99, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Schön, E.; Demuth, H.-U.; Eichmann, E.; Horst, H.-J.; Körner, H.-J.; Kopp, J.; Mattern, T.; Neubert, K.; Noll, F.; Ulmer, A.J.; et al. Dipeptidyl Peptidase IV in Human T Lymphocytes. Scand. J. Immunol. 1989, 29, 127–132. [Google Scholar] [CrossRef]
- Seong, J.-M.; Yee, J.; Gwak, H.S. Dipeptidyl Peptidase-4 Inhibitors Lower the Risk of Autoimmune Disease in Patients with Type 2 Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Br. J. Clin. Pharmacol. 2019, 85, 1719–1727. [Google Scholar] [CrossRef]
- Toudeshki, N.E.; Ahmad, Z.A.; Dastan, F.; Oveili, E.; Kiani, A.; Abedini, A.; Zare, A. The Efficacy and Safety of Sitagliptin Administration in Patients with COVID-19: A Randomized Clinical Trial. Biomed. Biotechnol. Res. J. 2023, 7, 260. [Google Scholar] [CrossRef]
- Meijer, R.I.; Hoekstra, T.; van den Oever, N.C.G.; Simsek, S.; van den Bergh, J.P.; Douma, R.A.; Reidinga, A.C.; Moeniralam, H.S.; Dormans, T.; Amsterdam UMC COVID-19 Biobank Study Group; et al. Treatment with a DPP-4 Inhibitor at Time of Hospital Admission for COVID-19 Is Not Associated with Improved Clinical Outcomes: Data from the COVID-PREDICT Cohort Study in The Netherlands. J. Diabetes Metab. Disord. 2021, 20, 1155–1160. [Google Scholar] [CrossRef]
- Zein, A.F.M.Z.; Raffaello, W.M. Dipeptidyl Peptidase-4 (DPP-IV) Inhibitor Was Associated with Mortality Reduction in COVID-19—A Systematic Review and Meta-Analysis. Prim. Care Diabetes 2022, 16, 162–167. [Google Scholar] [CrossRef]
- Ponka, P.; Lok, C.N. The Transferrin Receptor: Role in Health and Disease. Int. J. Biochem. Cell Biol. 1999, 31, 1111–1137. [Google Scholar] [CrossRef]
- Callens, C.; Moura, I.C.; Lepelletier, Y.; Coulon, S.; Renand, A.; Dussiot, M.; Ghez, D.; Benhamou, M.; Monteiro, R.C.; Bazarbachi, A.; et al. Recent Advances in Adult T-Cell Leukemia Therapy: Focus on a New Anti-Transferrin Receptor Monoclonal Antibody. Leukemia 2008, 22, 42–48. [Google Scholar] [CrossRef]
- Sokolov, A.; Isakova-Sivak, I.; Grudinina, N.; Mezhenskaya, D.; Litasova, E.; Kostevich, V.; Stepanova, E.; Rak, A.; Sychev, I.; Kirik, O.; et al. Ferristatin II Efficiently Inhibits SARS-CoV-2 Replication in Vero Cells. Viruses 2022, 14, 317. [Google Scholar] [CrossRef] [PubMed]
- Stancic, A.; Saksida, T.; Markelic, M.; Vucetic, M.; Grigorov, I.; Martinovic, V.; Gajic, D.; Ivanovic, A.; Velickovic, K.; Savic, N.; et al. Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. Oxid. Med. Cell. Longev. 2022, 2022, 3873420. [Google Scholar] [CrossRef]
- Gabrielsen, J.S.; Gao, Y.; Simcox, J.A.; Huang, J.; Thorup, D.; Jones, D.; Cooksey, R.C.; Gabrielsen, D.; Adams, T.D.; Hunt, S.C.; et al. Adipocyte Iron Regulates Adiponectin and Insulin Sensitivity. J. Clin. Investig. 2012, 122, 3529–3540. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Ruscica, M.; Rametta, R.; Recalcati, S.; Steffani, L.; Gatti, S.; Girelli, D.; Cairo, G.; Magni, P.; Fargion, S.; et al. Dietary Iron Overload Induces Visceral Adipose Tissue Insulin Resistance. Am. J. Pathol. 2013, 182, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Habtemichael, E.N.; Brewer, P.D.; Romenskaia, I.; Mastick, C.C. Kinetic Evidence That Glut4 Follows Different Endocytic Pathways than the Receptors for Transferrin and Alpha2-Macroglobulin. J. Biol. Chem. 2011, 286, 10115–10125. [Google Scholar] [CrossRef]
- Diaz-Vegas, A.; Norris, D.M.; Jall-Rogg, S.; Cooke, K.C.; Conway, O.J.; Shun-Shion, A.S.; Duan, X.; Potter, M.; van Gerwen, J.; Baird, H.J.; et al. A High-Content Endogenous GLUT4 Trafficking Assay Reveals New Aspects of Adipocyte Biology. Life Sci. Alliance 2023, 6, e202201585. [Google Scholar] [CrossRef]
- Nanami, M.; Ookawara, T.; Otaki, Y.; Ito, K.; Moriguchi, R.; Miyagawa, K.; Hasuike, Y.; Izumi, M.; Eguchi, H.; Suzuki, K.; et al. Tumor Necrosis Factor-α–Induced Iron Sequestration and Oxidative Stress in Human Endothelial Cells. Arter. Thromb. Vasc. Biol. 2005, 25, 2495–2501. [Google Scholar] [CrossRef]
- Wang, J.; Song, N.; Jiang, H.; Wang, J.; Xie, J. Pro-Inflammatory Cytokines Modulate Iron Regulatory Protein 1 Expression and Iron Transportation through Reactive Oxygen/Nitrogen Species Production in Ventral Mesencephalic Neurons. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 618–625. [Google Scholar] [CrossRef]
- Tsuji, Y.; Miller, L.L.; Miller, S.C.; Torti, S.V.; Torti, F.M. Tumor Necrosis Factor-Alpha and Interleukin 1-Alpha Regulate Transferrin Receptor in Human Diploid Fibroblasts. Relationship to the Induction of Ferritin Heavy Chain. J. Biol. Chem. 1991, 266, 7257–7261. [Google Scholar] [CrossRef]
- Smirnov, I.M.; Bailey, K.; Flowers, C.H.; Garrigues, N.W.; Wesselius, L.J. Effects of TNF-Alpha and IL-1beta on Iron Metabolism by A549 Cells and Influence on Cytotoxicity. Am. J. Physiol. 1999, 277, L257–L263. [Google Scholar] [CrossRef]
- Ishizaka, N.; Saito, K.; Furuta, K.; Matsuzaki, G.; Koike, K.; Noiri, E.; Nagai, R. Angiotensin II–Induced Regulation of the Expression and Localization of Iron Metabolism–Related Genes in the Rat Kidney. Hypertens. Res. 2007, 30, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, M.; Young, S.P. Modulation of Iron Metabolism in Monocyte Cell Line U937 by Inflammatory Cytokines: Changes in Transferrin Uptake, Iron Handling and Ferritin mRNA. Biochem. J. 1993, 296, 175–181. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Yang, Y.; Ma, L. Iron Metabolism and Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review. J. Diabetes Investig. 2020, 11, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A Potential Role for Integrins in Host Cell Entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.R.; Owens, T.W.; Naylor, M.J. Structural and Mechanical Functions of Integrins. Biophys. Rev. 2013, 6, 203–213. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Wang, J.; Bäcker, T.; Krueger, M.; Zamani, S.; Rosowski, S.; Gruber, T.; Onogi, Y.; Feuchtinger, A.; Schulz, T.J.; et al. Active Integrins Regulate White Adipose Tissue Insulin Sensitivity and Brown Fat Thermogenesis. Mol. Metab. 2021, 45, 101147. [Google Scholar] [CrossRef]
- Che, P.; Yu, L.; Friedman, G.K.; Wang, M.; Ke, X.; Wang, H.; Zhang, W.; Nabors, B.; Ding, Q.; Han, X. Integrin Avβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers 2021, 13, 1111. [Google Scholar] [CrossRef]
- Maile, L.A.; Busby, W.H.; Gollahon, K.A.; Flowers, W.; Garbacik, N.; Garbacik, S.; Stewart, K.; Nichols, T.; Bellinger, D.; Patel, A.; et al. Blocking Ligand Occupancy of the αVβ3 Integrin Inhibits the Development of Nephropathy in Diabetic Pigs. Endocrinology 2014, 155, 4665–4675. [Google Scholar] [CrossRef]
- Filippi, A.; Constantin, A.; Alexandru, N.; Voicu, G.; Constantinescu, C.A.; Rebleanu, D.; Fenyo, M.; Simionescu, D.; Simionescu, A.; Manduteanu, I.; et al. Integrins A4β1 and αVβ3 Are Reduced in Endothelial Progenitor Cells from Diabetic Dyslipidemic Mice and May Represent New Targets for Therapy in Aortic Valve Disease. Cell Transplant. 2020, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Hu, L.; Li, C.; Zhang, R.; Zheng, M.; Wu, X.; Wu, C. Expression of Osteopontin and Integrin Avβ3 Receptor in Retina of Diabetic Guinea Pigs with High Myopia. Ophthalmic Res. 2022, 66, 144–150. [Google Scholar] [CrossRef]
- Hou, C.-H.; Yang, R.-S.; Hou, S.-M.; Tang, C.-H. TNF-α Increases Avβ3 Integrin Expression and Migration in Human Chondrosarcoma Cells. J. Cell. Physiol. 2011, 226, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.-A.; Won, M.; Im, J.-Y.; Kang, M.-J.; Kweon, D.-H.; Kim, B.-K. TNF−α Secreted from Macrophages Increases the Expression of Prometastatic Integrin αV in Gastric Cancer. Int. J. Mol. Sci. 2022, 24, 376. [Google Scholar] [CrossRef]
- Gao, B.; Saba, T.M.; Tsan, M.-F. Role of Avβ3-Integrin in TNF-α-Induced Endothelial Cell Migration. Am. J. Physiol. Cell Physiol. 2002, 283, C1196–C1205. [Google Scholar] [CrossRef] [PubMed]
- Pontelli, M.C.; Castro, Í.A.; Martins, R.B.; La Serra, L.; Veras, F.P.; Nascimento, D.C.; Silva, C.M.; Cardoso, R.S.; Rosales, R.; Gomes, R.; et al. SARS-CoV-2 Productively Infects Primary Human Immune System Cells in Vitro and in COVID-19 Patients. J. Mol. Cell Biol. 2022, 14, mjac021. [Google Scholar] [CrossRef]
- Shaik, M.M.; Peng, H.; Lu, J.; Rits-Volloch, S.; Xu, C.; Liao, M.; Chen, B. Structural Basis of Coreceptor Recognition by HIV-1 Envelope Spike. Nature 2019, 565, 318–323. [Google Scholar] [CrossRef]
- Shen, X.-R.; Geng, R.; Li, Q.; Chen, Y.; Li, S.-F.; Wang, Q.; Min, J.; Yang, Y.; Li, B.; Jiang, R.-D.; et al. ACE2-Independent Infection of T Lymphocytes by SARS-CoV-2. Signal Transduct. Target. Ther. 2022, 7, 83. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal COVID-19 Profiling Associates IL-1RA and IL-10 with Disease Severity and RANTES with Mild Disease. JCI Insight 2020, 5, e139834. [Google Scholar] [CrossRef]
- Corradi, A.; Bajetto, A.; Cozzolino, F.; Rubartelli, A. Production and Secretion of Interleukin 1 Receptor Antagonist in Monocytes and Keratinocytes. Cytotechnology 1993, 11, S50–S52. [Google Scholar] [CrossRef]
- Miya, A.; Nakamura, A.; Miyoshi, H.; Takano, Y.; Sunagoya, K.; Hayasaka, K.; Shimizu, C.; Terauchi, Y.; Atsumi, T. Impact of Glucose Loading on Variations in CD4+ and CD8+ T Cells in Japanese Participants with or without Type 2 Diabetes. Front. Endocrinol. 2018, 9, 81. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.-S.; Liu, L.; Tang, L.; Yang, H.; Meng, P.; Zhao, H.-Q.; Wang, Y.-H. Abnormal Glu/mGluR2/3/PI3K Pathway in the Hippocampal Neurovascular Unit Leads to Diabetes-Related Depression. Neural Regen. Res. 2021, 16, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Ghenaatgar-Kasbi, M.; Rezaei, M.; Moharreri, P.; Miri, H.H.; Sazegar, G.; Haghir, H. The Effect of Maternal Diabetes on the Expression of Gamma-Aminobutyric Acid and Metabotropic Glutamate Receptors in Male Newborn Rats’ Inferior Colliculi. J. Perinat. Med. 2023, 51, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.L.; Jones, F.; Kubota, E.S.F.C.S.; Pocock, J.M. Stimulation of Microglial Metabotropic Glutamate Receptor mGlu2 Triggers Tumor Necrosis Factor α-Induced Neurotoxicity in Concert with Microglial-Derived Fas Ligand. J. Neurosci. 2005, 25, 2952–2964. [Google Scholar] [CrossRef]
- Gill, S.S.; Pulido, O.M.; Mueller, R.W.; McGuire, P.F. Immunochemical Localization of the Metabotropic Glutamate Receptors in the Rat Heart. Brain Res. Bull. 1999, 48, 143–146. [Google Scholar] [CrossRef]
- Gaddis, D.E.; Padgett, L.E.; Wu, R.; Hedrick, C.C. Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. J. Immunol. 2019, 203, 3237–3246. [Google Scholar] [CrossRef] [PubMed]
- Arrindell, J.; Desnues, B. Vimentin: From a Cytoskeletal Protein to a Critical Modulator of Immune Response and a Target for Infection. Front. Immunol. 2023, 14, 1224352. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.-Y.; Liu, Y.-W.; Zha, X.-N.; Tong, S.; Zhang, R.; He, X.-X.; Shan, S.-S.; Wang, K.; Liu, C.-Y. Overexpression of Axl Reverses Endothelial Cells Dysfunction in High Glucose and Hypoxia. J. Cell. Biochem. 2019, 120, 11831–11841. [Google Scholar] [CrossRef]
- Efthymiou, V.; Ding, L.; Balaz, M.; Sun, W.; Balazova, L.; Straub, L.G.; Dong, H.; Simon, E.; Ghosh, A.; Perdikari, A.; et al. Inhibition of AXL Receptor Tyrosine Kinase Enhances Brown Adipose Tissue Functionality in Mice. Nat. Commun. 2023, 14, 4162. [Google Scholar] [CrossRef]
- Su, S.-C.; Chiang, C.-F.; Hsieh, C.-H.; Lu, G.-H.; Liu, J.-S.; Shieh, Y.-S.; Hung, Y.-J.; Lee, C.-H. Growth Arrest-Specific 6 Modulates Adiponectin Expression and Insulin Resistance in Adipose Tissue. J. Diabetes Investig. 2021, 12, 485–492. [Google Scholar] [CrossRef]
- Cavet, M.E.; Smolock, E.M.; Ozturk, O.H.; World, C.; Pang, J.; Konishi, A.; Berk, B.C. Gas6–Axl Receptor Signaling Is Regulated by Glucose in Vascular Smooth Muscle Cells. Arter. Thromb. Vasc. Biol. 2008, 28, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, D.; Millward, V.; Birdi, A.; Trouard, T.P.; Heidenreich, R.A.; Garver, W.S. Npc1 Haploinsufficiency Promotes Weight Gain and Metabolic Features Associated with Insulin Resistance. Hum. Mol. Genet. 2011, 20, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Baristaite, G.; Gurwitz, D. D-Galactose Treatment Increases ACE2, TMPRSS2, and FURIN and Reduces SERPINA1 mRNA Expression in A549 Human Lung Epithelial Cells. Drug Dev. Res. 2022, 83, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Ercan, N.; Nuttall, F.Q.; Gannon, M.C.; Redmon, J.B.; Sheridan, K.J. Effects of Glucose, Galactose, and Lactose Ingestion on the Plasma Glucose and Insulin Response in Persons with Non-Insulin-Dependent Diabetes Mellitus. Metabolism 1993, 42, 1560–1567. [Google Scholar] [CrossRef]
- Darand, M.; Hassanizadeh, S.; Marzban, A.; Mirzaei, M.; Hosseinzadeh, M. The Association between Dairy Products and the Risk of COVID-19. Eur. J. Clin. Nutr. 2022, 76, 1583–1589. [Google Scholar] [CrossRef]
- Jocher, G.; Grass, V.; Tschirner, S.K.; Riepler, L.; Breimann, S.; Kaya, T.; Oelsner, M.; Hamad, M.S.; Hofmann, L.I.; Blobel, C.P.; et al. ADAM10 and ADAM17 Promote SARS-CoV-2 Cell Entry and Spike Protein-mediated Lung Cell Fusion. EMBO Rep. 2022, 23, e54305. [Google Scholar] [CrossRef]
- Buchrieser, J.; Dufloo, J.; Hubert, M.; Monel, B.; Planas, D.; Rajah, M.M.; Planchais, C.; Porrot, F.; Guivel-Benhassine, F.; Van der Werf, S.; et al. Syncytia Formation by SARS-CoV-2-infected Cells. EMBO J. 2020, 39, e106267. [Google Scholar] [CrossRef]
- Kaneko, H.; Anzai, T.; Horiuchi, K.; Morimoto, K.; Anzai, A.; Nagai, T.; Sugano, Y.; Maekawa, Y.; Itoh, H.; Yoshikawa, T.; et al. Tumor Necrosis Factor-α Converting Enzyme Inactivation Ameliorates High-Fat Diet-Induced Insulin Resistance and Altered Energy Homeostasis. Circ. J. 2011, 75, 2482–2490. [Google Scholar] [CrossRef]
- Menghini, R.; Fiorentino, L.; Casagrande, V.; Lauro, R.; Federici, M. The Role of ADAM17 in Metabolic Inflammation. Atherosclerosis 2013, 228, 12–17. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Cheng, W.-H.; Lee, K.-Y.; Kuo, H.-P.; Chung, K.F.; Chen, C.-L.; Chen, B.-C.; Lin, C.-H. Abnormal ADAM17 Expression Causes Airway Fibrosis in Chronic Obstructive Asthma. Biomed. Pharmacother. 2021, 140, 111701. [Google Scholar] [CrossRef] [PubMed]
- Glowacka, I.; Bertram, S.; Herzog, P.; Pfefferle, S.; Steffen, I.; Muench, M.O.; Simmons, G.; Hofmann, H.; Kuri, T.; Weber, F.; et al. Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. J. Virol. 2010, 84, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-Converting Enzyme-2 (ACE2). J. Biol. Chem. 2005, 280, 30113–30119. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, V.; Gudmundsson, E.F.; Aspelund, T.; Jonsson, B.G.; Gudjonsson, A.; Launer, L.J.; Lamb, J.R.; Gudmundsdottir, V.; Jennings, L.L.; Gudnason, V. Serum Levels of ACE2 Are Higher in Patients with Obesity and Diabetes. Obes. Sci. Pract. 2021, 7, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xing, C.; Lv, X.; Zhang, C.; Liu, G.; Chen, F.; Hou, Z.; Zhang, D. Changes of ACE2 in Different Glucose Metabolites and Its Relationship with COVID-19. Medicine 2022, 101, e31102. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Hasswan, H.; Aljaibeji, H.; Sulaiman, N. Circulating Soluble ACE2 and Upstream microRNA Expressions in Serum of Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2021, 22, 5263. [Google Scholar] [CrossRef]
- Bani Hani, A.; Abu Tarboush, N.; Bani Ali, M.; Alabhoul, F.; Alansari, F.; Abuhani, A.; Al-Kawak, M.; Shamoun, B.; Albdour, S.; Abu Abeeleh, M.; et al. Serum ACE2 Level Is Associated With Severe SARS-CoV-2 Infection: A Cross-Sectional Observational Study. Biomark. Insights 2022, 17, 11772719221125123. [Google Scholar] [CrossRef] [PubMed]
- Fagyas, M.; Fejes, Z.; Sütő, R.; Nagy, Z.; Székely, B.; Pócsi, M.; Ivády, G.; Bíró, E.; Bekő, G.; Nagy, A.; et al. Circulating ACE2 Activity Predicts Mortality and Disease Severity in Hospitalized COVID-19 Patients. Int. J. Infect. Dis. 2022, 115, 8–16. [Google Scholar] [CrossRef]
- Shevchuk, O.; Pak, A.; Palii, S.; Ivankiv, Y.; Kozak, K.; Korda, M.; Vari, S.G. Blood ACE2 Protein Level Correlates with COVID-19 Severity. Int. J. Mol. Sci. 2023, 24, 13957. [Google Scholar] [CrossRef]
- Maza, M.d.C.; Úbeda, M.; Delgado, P.; Horndler, L.; Llamas, M.A.; van Santen, H.M.; Alarcón, B.; Abia, D.; García-Bermejo, L.; Serrano-Villar, S.; et al. ACE2 Serum Levels as Predictor of Infectability and Outcome in COVID-19. Front. Immunol. 2022, 13, 836516. [Google Scholar] [CrossRef]
- Raha, A.A.; Chakraborty, S.; Henderson, J.; Mukaetova-Ladinska, E.; Zaman, S.; Trowsdale, J.; Raha-Chowdhury, R. Investigation of CD26, a Potential SARS-CoV-2 Receptor, as a Biomarker of Age and Pathology. Biosci. Rep. 2020, 40, BSR20203092. [Google Scholar] [CrossRef]
- Yeung, M.L.; Teng, J.L.L.; Jia, L.; Zhang, C.; Huang, C.; Cai, J.-P.; Zhou, R.; Chan, K.-H.; Zhao, H.; Zhu, L.; et al. Soluble ACE2-Mediated Cell Entry of SARS-CoV-2 via Interaction with Proteins Related to the Renin-Angiotensin System. Cell 2021, 184, 2212–2228.e12. [Google Scholar] [CrossRef]
- Kreutzberger, A.J.B.; Sanyal, A.; Saminathan, A.; Bloyet, L.-M.; Stumpf, S.; Liu, Z.; Ojha, R.; Patjas, M.T.; Geneid, A.; Scanavachi, G.; et al. SARS-CoV-2 Requires Acidic pH to Infect Cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2209514119. [Google Scholar] [CrossRef]
- Jimenez, L.; Campos Codo, A.; Sampaio, V.d.S.; Oliveira, A.E.R.; Ferreira, L.K.K.; Davanzo, G.G.; de Brito Monteiro, L.; Victor Virgilio-da-Silva, J.; Borba, M.G.S.; Fabiano de Souza, G.; et al. Acid pH Increases SARS-CoV-2 Infection and the Risk of Death by COVID-19. Front. Med. 2021, 8, 637885. [Google Scholar] [CrossRef]
- Simmen, H.-P.; Battaglia, H.; Giovanoli, P.; Blaser, J. Analysis of pH, pO2 and pCO2 in Drainage Fluid Allows for Rapid Detection of Infectious Complications during the Follow-up Period after Abdominal Surgery. Infection 1994, 22, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.T.; Steigbigel, R.T. Acidosis of Synovial Fluid Correlates with Synovial Fluid Leukocytosis. Am. J. Med. 1978, 64, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Norouzirad, R.; González-Muniesa, P.; Ghasemi, A. Hypoxia in Obesity and Diabetes: Potential Therapeutic Effects of Hyperoxia and Nitrate. Oxid. Med. Cell. Longev. 2017, 2017, e5350267. [Google Scholar] [CrossRef]
- Minchenko, A.; Leshchinsky, I.; Opentanova, I.; Sang, N.; Srinivas, V.; Armstead, V.; Caro, J. Hypoxia-Inducible Factor-1-Mediated Expression of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase-3 (PFKFB3) Gene: ITS POSSIBLE ROLE IN THE WARBURG EFFECT. J. Biol. Chem. 2002, 277, 6183–6187. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.-G.; Han, Z.-T.; He, S.-H.; Wu, X.; Chen, T.-R.; Shao, C.-H.; Chen, D.-L.; Su, N.; Chen, Y.-M.; Wang, T.; et al. HIF1/2α Mediates Hypoxia-Induced LDHA Expression in Human Pancreatic Cancer Cells. Oncotarget 2017, 8, 24840–24852. [Google Scholar] [CrossRef]
- Codo, A.C.; Davanzo, G.G.; de Brito Monteiro, L.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, 32, 437–446.e5. [Google Scholar] [CrossRef]
- Haka, A.S.; Grosheva, I.; Chiang, E.; Buxbaum, A.R.; Baird, B.A.; Pierini, L.M.; Maxfield, F.R. Macrophages Create an Acidic Extracellular Hydrolytic Compartment to Digest Aggregated Lipoproteins. Mol. Biol. Cell 2009, 20, 4932–4940. [Google Scholar] [CrossRef]
- Strissel, K.J.; Stancheva, Z.; Miyoshi, H.; Perfield, J.W., II; DeFuria, J.; Jick, Z.; Greenberg, A.S.; Obin, M.S. Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications. Diabetes 2007, 56, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Hristova, S.H.; Zhivkov, A.M. Omicron Coronavirus: pH-Dependent Electrostatic Potential and Energy of Association of Spike Protein to ACE2 Receptor. Viruses 2023, 15, 1752. [Google Scholar] [CrossRef] [PubMed]
- England, R.J.A.; Homer, J.J.; Knight, L.C.; Ell, S.R. Nasal pH Measurement: A Reliable and Repeatable Parameter. Clin. Otolaryngol. Allied Sci. 1999, 24, 67–68. [Google Scholar] [CrossRef]
- Effros, R.M.; Chinard, F.P. The in Vivo pH of the Extravascular Space of the Lung. J. Clin. Investig. 1969, 48, 1983–1996. [Google Scholar] [CrossRef]
- Sachdeva, A.; Sachdeva, O.P.; Gulati, S.P.; Kakkar, V. Nasal Mucociliary Clearance & Mucus pH in Patients with Diabetes Mellitus. Indian. J. Med. Res. 1993, 98, 265–268. [Google Scholar] [PubMed]
- Liljestrand, G. Chemical Control of the Distribution of the Pulmonary Blood Flow. Acta Physiol. Scand. 1958, 44, 216–240. [Google Scholar] [CrossRef]
- Fernández-de-Las-Peñas, C.; Guijarro, C.; Torres-Macho, J.; Velasco-Arribas, M.; Plaza-Canteli, S.; Hernández-Barrera, V.; Arias-Navalón, J.A. Diabetes and the Risk of Long-Term Post-COVID Symptoms. Diabetes 2021, 70, 2917–2921. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated With Post−COVID-19 Condition: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef]
- Wong, R.; Lam, E.; Bramante, C.T.; Johnson, S.G.; Reusch, J.; Wilkins, K.J.; Yeh, H.-C. Does COVID-19 Infection Increase the Risk of Diabetes? Current Evidence. Curr. Diabetes Rep. 2023, 23, 207–216. [Google Scholar] [CrossRef]
Factor | Proposed Mechanism | Expression In Diabetes | Cell Type/Tissue * |
---|---|---|---|
ACE2 | via RBD binding [5,15,24] | increased in diabetes mellitus [25] | cardiomyocytes |
decreased in diabetes and obesity [26] | adipose tissue | ||
TMPRSS2 ** | via cleavage of S protein at S2’ site [15,27] | increased in diabetes mellitus [25] | cardiomyocytes |
Furin ** | via cleavage of S proprotein at S1/S2 site [27] | negatively associated with fasting glucose [28] | serum |
positively associated with fasting glucose, insulin, and BMI [29,30,31] | plasma/serum | ||
cathepsin L ** | via cleavage S protein at CS-1 and CS-2 sites [32] | decreased in diabetes mellitus [33] | endothelial progenitor cells |
decreased in diabetes mellitus [34] | mouse models | ||
CD147 | not specified [35], via RBD binding [36], via regulation of abundance of ACE2 native protein [37], via CyPA mediated S binding [38] | increased due to high glucose [39] | adipose tissue |
increased in obesity and diabetes mellitus [39] | blood plasma | ||
GRP78 | via S binding [40] | increased at the cell surface due to high glucose [41] | rat glomerular mesangial cells |
increased at the cell surface due to high glucose [42] | HUVECs | ||
DPP4/CD26 | via S binding in silico [43] | marker of visceral obesity and insulin resistance [44] | human blood plasma |
TfR | via intact S binding [23] | increased in diabetes [45] | blood plasma |
insulin inducible membrane association [46] | rat adipocytes | ||
streptozotocin-induced diabetes [47] | rat kidney | ||
integrin α5β1 | via RGD motif of spike protein [48,49] | increased due to high glucose [50,51] | HUVECs; |
mouse mesangial and glomerular endothelial cells | |||
integrin αvβ3 | via RGD motif of spike protein [52,53] | increased in diabetic nephropathy [54] | epithelial cells |
increased in diabetes [55] | rat’s endometrium | ||
CD4 | via S/RBD binding [56] | increased number of CD4+ T cells in T2D-related visceral obesity [57] | lymphocytes |
mGluR2 | via virion internalisation, S binding ability [58] | increased in streptozotocin-induced diabetes [59] | rat hippocampal neurons |
increased in neonates of rats with streptozotocin-induced diabetes [60] | rat lateral geniculate body | ||
ASGR1 | via RBD and NTD binding [61,62] | decreased in diabetes [63] | peripheral blood |
mononuclear cells | |||
KREMEN1 | via RBD and NTD binding [62] | NA | |
AXL | via NTD binding [64], via apoptotic mimicry [65] | decreased due to high glucose [66] | microvascular endothelial cells |
CD209L/L-SIGN, | via S binding, ACE2 co-receptor [67] | NA | |
CD209/DC-SIGN | |||
FcγRIII (CD16) | via antibody binding [68] | monocyte number decreased in diabetes; CD16+ monocytes decreased in diabetes with complications [69] | monocytes |
FcγRI (CD64) | CD64 expression was not altered by diabetes [70] | macrophages | |
TMEM106B | via RBD binding, syncythium formation [71] | NA | |
NPC1 | via nucleoprotein interaction [72] | chemical and genetic inhibitors impair insulin signalling [73] | adipocytes |
NRP1 | via S binding in co-expression with ACE2 and TMPRSS2 [74,75] | increased in hypoglycaemia [76] | blood plasma |
decreased due to glycated BSA [77] | mouse podocytes | ||
NRP2 | unspecified, probable ACE2 co-receptor [78] | highly inducible in proinflammatory state [78] | fibroblasts |
vimentin | via RBD binding, ACE2 co-receptor [79] | secreted in response to oxLDL [80] | subcutaneous adipocytes |
increased due to high glucose [81] | vascular endothelial cells | ||
sialic acid (monosialylated gangliosides) | via RBD binding/ACE2 co-receptor [82] | increased in diabetes and diabetic nephropathy [83] | human serum |
increased in senescence [84] | endothelial cells | ||
heparan sulphate | via S binding, ACE2 co-receptor [85] | decreased in diabetes mellitus [86] | mesangial and glomerular visceral epithelial cells |
reduction promotes mice β-cell failure [87] | mice β-cells | ||
NTG-IIA | via S binding to C-terminal domain, ACE2 co-receptor [88] | increased activity due to exposure to macroalbuminuric sera of T1D patients [89] | podocytes, |
rat glomeruli | |||
SR-B1 | via HDL-mediated S binding, in co-expression with ACE2 [90] | decreased in hyperglycaemia [91] | HepG2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzymała, A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int. J. Mol. Sci. 2024, 25, 9635. https://doi.org/10.3390/ijms25179635
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. International Journal of Molecular Sciences. 2024; 25(17):9635. https://doi.org/10.3390/ijms25179635
Chicago/Turabian StyleDrzymała, Adam. 2024. "The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19" International Journal of Molecular Sciences 25, no. 17: 9635. https://doi.org/10.3390/ijms25179635
APA StyleDrzymała, A. (2024). The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. International Journal of Molecular Sciences, 25(17), 9635. https://doi.org/10.3390/ijms25179635