High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruggiero, S.M.; Xian, J.; Helbig, I. The current landscape of epilepsy genetics: Where are we, and where are we going? Curr. Opin. Neurol. 2023, 36, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.A.; Johnstone, D.L.; Dyment, D.A. Epilepsy genetics: Current knowledge, applications, and future directions. Clin. Genet. 2019, 95, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Assi, L.; Saklawi, Y.; Karam, P.E.; Obeid, M. Treatable Genetic Metabolic Epilepsies. Curr. Treat. Options Neurol. 2017, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Wadi, L.; Medlej, Y.; Obeid, M. A child with hyperekplexia and epileptic myoclonus. Epileptic Disord. 2018, 20, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Sheidley, B.R.; Malinowski, J.; Bergner, A.L.; Bier, L.; Gloss, D.S.; Mu, W.; Mulhern, M.M.; Partack, E.J.; Poduri, A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2022, 63, 375–387. [Google Scholar] [CrossRef]
- Gardella, E.; Møller, R.S. Phenotypic and genetic spectrum of SCN 8A-related disorders, treatment options, and outcomes. Epilepsia 2019, 60, S77–S85. [Google Scholar] [CrossRef]
- Dhamija, R.; Gavrilova, R.H.; Wirrell, E.C. Valproate-induced worsening of seizures: Clue to underlying diagnosis. J. Child Neurol. 2011, 26, 1319–1321. [Google Scholar] [CrossRef]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar] [CrossRef]
- Brunklaus, A.; Lal, D. Sodium channel epilepsies and neurodevelopmental disorders: From disease mechanisms to clinical application. Dev. Med. Child. Neurol. 2020, 62, 784–792. [Google Scholar] [CrossRef]
- Jaafar, F.; Obeid, M. Successful Treatment of Cerebral Folate Transporter Deficiency With Intravenous Folinic Acid. Pediatr. Neurol. 2022, 135, 22–24. [Google Scholar] [CrossRef]
- Appavu, B.; Mangum, T.; Obeid, M. Glucose Transporter 1 Deficiency: A Treatable Cause of Opsoclonus and Epileptic Myoclonus. Pediatr. Neurol. 2015, 53, 364–366. [Google Scholar] [CrossRef]
- Appenzeller, S.; Balling, R.; Barisic, N.; Baulac, S.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Depienne, C.; Dimova, P.; Djémié, T. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 2014, 95, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Tumienė, B.; Maver, A.; Writzl, K.; Hodžić, A.; Čuturilo, G.; Kuzmanić-Šamija, R.; Čulić, V.; Peterlin, B. Diagnostic exome sequencing of syndromic epilepsy patients in clinical practice. Clin. Genet. 2018, 93, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.F.; Chi, C.S.; Tsai, C.R. Diagnostic yield and treatment impact of whole-genome sequencing in paediatric neurological disorders. Dev. Med. Child Neurol. 2021, 63, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, F.F.; Myers, C.T.; Cossette, P.; Lemay, P.; Spiegelman, D.; Laporte, A.D.; Nassif, C.; Diallo, O.; Monlong, J.; Cadieux-Dion, M. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 2017, 101, 664–685. [Google Scholar] [CrossRef]
- Olson, H.E.; Kelly, M.; LaCoursiere, C.M.; Pinsky, R.; Tambunan, D.; Shain, C.; Ramgopal, S.; Takeoka, M.; Libenson, M.H.; Julich, K. Genetics and genotype–phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann. Neurol. 2017, 81, 419–429. [Google Scholar] [CrossRef]
- Costain, G.; Cordeiro, D.; Matviychuk, D.; Mercimek-Andrews, S. Clinical application of targeted next-generation sequencing panels and whole exome sequencing in childhood epilepsy. Neuroscience 2019, 418, 291–310. [Google Scholar] [CrossRef]
- Tsang, M.H.Y.; Leung, G.K.C.; Ho, A.C.C.; Yeung, K.S.; Mak, C.C.Y.; Pei, S.L.C.; Yu, M.H.C.; Kan, A.S.Y.; Chan, K.Y.K.; Kwong, K.L. Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open 2019, 4, 63–72. [Google Scholar] [CrossRef]
- Alsubaie, L.; Aloraini, T.; Amoudi, M.; Swaid, A.; Eyiad, W.; Al Mutairi, F.; Ababneh, F.; Alrifai, M.T.; Baarmah, D.; Altwaijri, W. Genomic testing and counseling: The contribution of next-generation sequencing to epilepsy genetics. Ann. Hum. Genet. 2020, 84, 431–436. [Google Scholar] [CrossRef]
- Yang, X.-A. Editorial: Next generation sequencing (NGS) for rare diseases diagnosis. Front. Genet. 2021, 12, 808042. [Google Scholar] [CrossRef]
- Platzer, K.; Yuan, H.; Schutz, H.; Winschel, A.; Chen, W.; Hu, C.; Kusumoto, H.; Heyne, H.O.; Helbig, K.L.; Tang, S.; et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017, 54, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, S.; Manokaran, R.K. Favorable response to “Memantine” in a child with GRIN2B epileptic encephalopathy. Neuropediatrics 2022, 53, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Fine, A.; Wirrell, E.C. Seizures in children. Pediatr. Rev. 2020, 41, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Aaberg, K.M.; Surén, P.; Søraas, C.L.; Bakken, I.J.; Lossius, M.I.; Stoltenberg, C.; Chin, R. Seizures, syndromes, and etiologies in childhood epilepsy: The International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia 2017, 58, 1880–1891. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Sanchez Fernandez, I.; Loddenkemper, T.; Gaínza-Lein, M.; Sheidley, B.R.; Poduri, A. Diagnostic yield of genetic tests in epilepsy: A meta-analysis and cost-effectiveness study. Neurology 2019, 92, e418–e428. [Google Scholar] [CrossRef]
- Stefanski, A.; Calle-López, Y.; Leu, C.; Pérez-Palma, E.; Pestana-Knight, E.; Lal, D. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: A systematic review and meta-analysis. Epilepsia 2021, 62, 143–151. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.; Kim, Y.-G.; Ha, C.; Park, J.-H.; Kim, J.-W.; Lee, J.; Jang, J.-H. Genetic Diagnosis of Children With Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr. Neurol. 2023, 149, 44–52. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Wusthoff, C.J.; Tsuchida, T.N.; Glass, H.C.; Chu, C.J.; Massey, S.L.; Soul, J.S.; Wiwattanadittakun, N.; Abend, N.S.; Cilio, M.R. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017, 89, 893–899. [Google Scholar] [CrossRef]
- Jalkh, N.; Sahbatou, M.; Chouery, E.; Megarbane, A.; Leutenegger, A.-L.; Serre, J.-L. Genome-wide inbreeding estimation within Lebanese communities using SNP arrays. Eur. J. Hum. Genet. 2015, 23, 1364–1369. [Google Scholar] [CrossRef]
Development and Epileptic Encephalopathy (DEE) | Primarily Neurodegenerative | Metabolic & Neurodegenerative | Others |
---|---|---|---|
CYFIP2, DEE 65 | TPP1, neuronal ceroid lipofuscinosis type 2 (n = 2) | NARS2, combined oxidative phosphorylation deficiency 24 | IFIH1, Aicardi–Goutieres disease syndrome 7 |
PCDH19, DEE 9 (n = 2) | CLN6, neuronal ceroid lipofuscinosis type 6 | SERAC1, MEGDEL syndrome | CHRNE, slow-channel congenital myasthenic syndrome type 4A |
CACNA1A, DEE 42 (n = 2) | AP4M1, spastic paraplegia 50 | HIBCH, 3-hydroxyisobutryl-CoA hydrolase deficiency | TUBA1A, lissencephaly 3 |
GRIN2B, DEE 27 * | TSEN54, pontocerebellar hypoplasia | QDPR, BH4-deficient hyperphenylalaninemia type C * | GLRA1, hyperkeplexia type 1 |
ARV1, DEE 38 | EIF2B1, leukoencephalopathy with vanishing white matter | FOLR1, neurodegeneration due to cerebral folate transport deficiency * | SCN1A, generalized epilepsy with febrile seizure plus * |
SCN8A, DEE 13 * (n = 2) | Late-infantile neuronal ceroid-lipofuscinoses (CLN 2) | ||
PACS2, DEE 66 | SPAST, spastic paraplegia 4 | ||
ATP1A2, DEE 98 | HEXB, Sandhoff disease | ||
KCTD7, progressive myoclonic epilepsy type 3 |
Gene | Codon>DNA Base, Protein (Amino Acid Change) |
---|---|
AP4M1 | c.1321C>T, p.(Arg441 *) |
ARV1 | c.294+1G>A |
ATP1A2 | c.160C>T p.(Gln54 *) |
CACNA1A | c.4526T>C, p.(Phe1509Ser) |
CACNA1A | c.5018T>C, p.(Leu1673Pro) |
CHRNE | c.1052C>G, p.(Pro351Arg) |
CLN6 | c.662A>C, p.(Tyr221Ser) |
CLN6 | c.794_796del, p.(Ser265del) |
CYFIP2 | c.3282+858A>G |
EIF2B1 | c.878C>T, (p.Pro293Leu) |
FOLR1 | c.148G>A, p.(Glu50Lys) |
GLRA1 | c.994G>A, p.(Val332Ile) |
GRIN2B | c.2453T>C, p.(Met818Thr) |
HEXB | c.1082+5G>A |
HIBCH | c.452C>T, p.(Ser151Leu) |
IFIH1 | c.500T>G, p.(Leu167Arg) |
KCTD7 | c.509T>C, p.(Ile170Thr) |
NARS2 | c.500A>G, p.(His167Arg) |
PACS2 | c.2588T>C p.(Met863Thr) |
PCDH19 | c.2159C>T, p.(Thr720Ile) |
PCDH19 | c.2656C>T, p.(Arg886 *) |
QDPR | c.197A>G, p.(Gln66Arg) |
SCN1A | c.995A>T, p.(Asp332Val) |
SCN8A | c.2985C>A, p.(Asn995Lys) |
SCN8A | c.3502C>T, p.(Arg1168Trp) |
SERAC1 | c.1609T>C, p.(Ser537Pro) |
SPAST | c.1253_1255delAAG, p.(Glu418del) |
TPP1 | c.225A>G, p.(Gln75Gln) |
TPP1 | c.225A>G, p.(Gln75Gln) |
TSEN54 | c.919G>T p.(Ala307Ser) |
TUBA1A | c.652G>A, p.(Asp218Asn) |
Affected Genes | Resulting Condition | Change in Treatment Plan |
---|---|---|
FOLR1 | Neurodegeneration due to cerebral folate transport deficiency | Folinic acid added to regimen |
QDPR | BH4-deficient hyperphenylalaninemia type C | Tetrahydrobiopterin, folinic acid, and L-dopa added to regimen |
GRIN2B | Developmental and epileptic encephalopathy type 27 | Memantine added to regimen |
SCN1A | Infantile epileptic encephalopathy type 6 (Dravet syndrome) | LMT switched to another ASM |
SCN8A (two patients) | Developmental and epileptic encephalopathy type 13 | ASM switched to CBZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charouf, D.; Miller, D.; Haddad, L.; White, F.A.; Boustany, R.-M.; Obeid, M. High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. Int. J. Mol. Sci. 2024, 25, 9645. https://doi.org/10.3390/ijms25179645
Charouf D, Miller D, Haddad L, White FA, Boustany R-M, Obeid M. High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. International Journal of Molecular Sciences. 2024; 25(17):9645. https://doi.org/10.3390/ijms25179645
Chicago/Turabian StyleCharouf, Daniel, Derryl Miller, Laith Haddad, Fletcher A. White, Rose-Mary Boustany, and Makram Obeid. 2024. "High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study" International Journal of Molecular Sciences 25, no. 17: 9645. https://doi.org/10.3390/ijms25179645
APA StyleCharouf, D., Miller, D., Haddad, L., White, F. A., Boustany, R. -M., & Obeid, M. (2024). High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. International Journal of Molecular Sciences, 25(17), 9645. https://doi.org/10.3390/ijms25179645