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Abstract: The rhizosphere is the hotspot for microbial enzyme activities and contributes to carbon
cycling. Precipitation is an important component of global climate change that can profoundly alter
belowground microbial communities. However, the impact of precipitation on conifer rhizospheric
microbial populations has not been investigated in detail. In the present study, using high-throughput
amplicon sequencing, we investigated the impact of precipitation on the rhizospheric soil microbial
communities in two Norway Spruce clonal seed orchards, Lipová Lhota (L-site) and Prenet (P-site).
P-site has received nearly double the precipitation than L-site for the last three decades. P-site
documented higher soil water content with a significantly higher abundance of Aluminium (Al), Iron
(Fe), Phosphorous (P), and Sulphur (S) than L-site. Rhizospheric soil metabolite profiling revealed
an increased abundance of acids, carbohydrates, fatty acids, and alcohols in P-site. There was
variance in the relative abundance of distinct microbiomes between the sites. A higher abundance of
Proteobacteria, Acidobacteriota, Ascomycota, and Mortiellomycota was observed in P-site receiving
high precipitation, while Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadota,
and Basidiomycota were prevalent in L-site. The higher clustering coefficient of the microbial
network in P-site suggested that the microbial community structure is highly interconnected and
tends to cluster closely. The current study unveils the impact of precipitation variations on the spruce
rhizospheric microbial association and opens new avenues for understanding the impact of global
change on conifer rizospheric microbial associations.

Keywords: precipitation; rhizosphere; microbial communities; amplicon sequencing; soil metabolites;
Norway spruce; seed orchards; network analysis; PICRUSt2; FUNGuild

1. Introduction

Forests cover the largest terrestrial surface on Earth, with an estimated area of
~40 million square kilometers comprising more than 3 trillion trees [1,2]. Forests are
an integral component that act as carbon sinks and nutrient cycling [3]. The transformation
of organic matter and other processes in soil depends mainly on the soil microbial commu-
nities that are pivotal in maintaining the proper functioning of the forest ecosystem [4–6].
The rhizosphere is the interface between the living roots and the bulk soil, considered a
microbial hotspot. The rhizospheric microenvironment encompasses diverse microbial
communities that play a pivotal role in plant growth and health by enhancing nutrient
acquisition in plants from the soil, producing growth-promoting plant hormones, protect-
ing against pathogen infection, and conferring tolerance to abiotic stress [7]. Nevertheless,
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the rhizospheric soil microbial communities contribute to several ecosystem processes,
including soil organic matter decomposition, biogeochemical cycling, and carbon seques-
tration [8]. Hence, any alterations to the rhizospheric microbial communities primarily
affect plant growth and ecosystem functioning [9].

Several biotic and abiotic factors, such as host plant species (genotypes and physio-
logical stage), soil physicochemical properties, and climate, shape the rhizosphere micro-
biome [10–12]. Over the years, extensive anthropogenic activities have led to an increase
in the temperature of the Earth’s surface to 1.1 ◦C [13], which has intensified the global
hydrological cycle and altered precipitation patterns [14]. Since temperature and water
availability are crucial for sustaining life, altering such drivers could significantly impact
biodiversity [15]. Global climate change is one of the critical drivers that profoundly im-
pacts soil microbial communities, influencing ecosystem functioning [16]. Alteration in
precipitation patterns is a major concern in the context of global climate change. Precipi-
tation change can affect the soil microbiota by altering the soil moisture content, nutrient
availability, and plant community [17,18]. Water availability is essential for soil microbial
growth and optimal activity [19,20]. Limitations to water availability decrease microbial
activity, biomass, and plant growth. Hence, precipitation patterns and global warming
changes can alter the microbial community structure and function [21].

Interestingly, rhizosphere microbiota show succession patterns and phylogenetic con-
servation of rhizospheric competence characteristics, suggesting evolutionary adaptation to
host plant species [22]. However, most of the studies are limited to agricultural ecosystems
where the in-depth understanding of the stable rhizosphere microbiota is restricted due
to the short growth period of the crops [23,24]. On the contrary, conifers establish their
rhizospheric microbial associations over prolonged interactions with the soil environment
in the forest ecosystems, providing resistance to biotic and abiotic stresses [25]. In addition,
root exudates ubiquitous in the rhizosphere enrich beneficial microbial taxa in the proximal
soil that promote resistance to pathogen invasion in plants and confer tolerance to biotic
and abiotic stresses [26]. Interestingly, such belowground associations are also fine-tuned
based on the tree species [27]. Few studies have explored rhizosphere soil microbial commu-
nities within forest ecosystems and their responses to climate change [5,28–31]. Moreover,
information on the ecological functions of rhizosphere microorganisms in forest soils under
long-term differing precipitation regimes is scarce. Gaining a deeper understanding of
the dynamics and mechanisms governing these communities, particularly in response to
changes in precipitation regime, is crucial for improving predictions of how climate change
will impact the ecological functions of soil microbes.

The present study aims to explore the long-term precipitation change for over three
decades on the rhizospheric soil microbial communities from two Norway spruce seed
orchards. The two seed orchards are fascinating as they constitute grafted clonal Nor-
way spruce varieties and are not random forest sites. The two forest sites were located
at a distance of 25 km (air distance) with an altitude difference of 400 m. The annual
precipitation and the temperature monitored over three decades documented different
precipitation levels (nearly double) between the two sites with a temperature difference of
~1.6 ◦C. We hypothesize that variation in the precipitation regime will impact the microbial
diversity as well as the soil metabolite profile between the two forest sites. The forest
site receiving higher precipitation has high soil moisture content and microbial activity,
leading to a higher abundance of soil metabolites. The high soil moisture content will also
impact the microbial community structure. In this light, we investigated rhizospheric soil
physiology (soil texture, moisture content, selected elements), metabolites, and microbial
diversity to apprehend the response to long-term precipitation variation. Our results re-
vealed the impact of precipitation on rhizospheric soil properties, metabolites, and soil
microbiota, providing insights into the functioning of the forest soil ecosystem under varied
precipitation regimes.
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2. Results
2.1. Soil Texture and Physicochemical Properties

The determination of soil texture based on the distribution of soil particle size revealed
that the rhizospheric soil from Lipová (L) site (0.03% clay, 23.4% silt, 76.5% sand) and the
Prenet (P) site (0.05% clay, 29.4% silt, 70.4% sand) had loamy sand texture. The moisture
content in the rhizospheric soil from the P-site (38%) was higher than the L-site (13%),
which might be due to the increased precipitation at the P-site. Estimating the amounts
(ppm) of different elements (Al, Ca, Fe, K, Mg, Mn, Na, S, P, Si, Zn) present in the soil
showed that Aluminium (Al), Iron (Fe), Phosphorous (P) and Sulphur (S) were significantly
abundant (t-test, p < 0.05) in the P-site compared with the L-site. However, there was no
significant difference in the amounts of the other elements under study between the sites
(Figure 1A, Excel S1).
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Figure 1. (A) Amount of selected elements (in percentage) present in rhizospheric soil samples
from Lipová (L-site) and Prenet (P-site) (B) Relative abundance of different classes of metabolites (in
percentage) present in the soil samples from the two sites. (C) Sparse partial least square discriminant
analysis (sPLS-DA) plot representing the differences in the metabolite profiles in rhizospheric soil
samples from two different sites, Lipová site (L) and Prenet site (P), with fifteen replicates (3 replicates
from each clonal tree variety).

2.2. Metabolite Profiling

The rhizospheric soil metabolite profiling from the two seed orchards was clustered
separately into distinct groups, as represented by the component analysis in the Sparse
PLS discriminant plot (Figure 1B). The presence of 204 metabolites primarily comprising
fatty acids, alcohols, carbohydrates, and acids was documented in this study, of which the
heatmap illustrated the top 50 significantly abundant metabolites (t-test, p < 0.05) (Figure S1,
Excel S1). The chordial plot illustrates the relative amount of major metabolite classes in
the rhizospheric soil samples from two sites (Figure 1C). The rhizospheric soil documented
a high abundance of carbohydrates (L-site 62.7%; P-site 55%), alcohols (L-site 17%; P-site
22%), fatty acids (L-site 2.5%; P-site 4.5%), acids (L-site 0.85%; P-site 1.7%), and terpenes
(L-site 2.7%; P-site 4.3%). The metabolite classes acids, fatty acids, and terpenes were
significantly abundant in the P-site (t-test, p < 0.05). It is worth noting that the presence
of soil metabolites is attributed to the soil organic matter, plant exudates, and microbial
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metabolites; however, it is difficult to differentiate the contribution of individual driving
factors to the soil metabolite profiles [32].

2.3. Rhizospheric Soil Microbial Community Structure
2.3.1. Sequencing Results

The Illumina paired-end amplicon sequencing targeting the bacterial 16S rRNA gene
and the fungal ITS2 region yielded 12,945,042 and 8,730,722 reads representing the bacterial
and the fungal diversity in the soil samples from the two seed orchards, respectively. The
clean reads (9,630,977 clean bacterial reads; 8,253,265 clean fungal reads) were further
processed using bioinformatic data analysis pipelines in QIIME2 (Excel S2).

2.3.2. Microbial Communities in Soil

The rhizospheric soil samples detected 29,770 bacterial amplicon sequence variants
(ASVs) with 99% homology (Excel S3). Among them, 15,835 unique bacterial ASVs were
present in the L-site, while the P-site documented 9576 unique ASVs (Figure 2A, Excel S4).
The detected ASVs were assigned to 46 bacterial phyla and 2 archaeal phyla. The abundant
bacterial phyla include Proteobacteria (L-site 39%; P-site 43%), Acidobacteriota (L-site 25%;
P-site 30%), Actinobacteria (L-site 18%; P-site 16%), Verrucomicrobia (L-site 5%; P-site 4%),
and Bacteroidota (L-site 3%; P-site 2%) (Figure 2B). The evolutionary tree representing
the top 100 abundant bacterial genera includes Granulicella, Bradyrhizobium, Acidothermus,
Rhodonobacter, Roseiarus, Burkholderia-Caballeronia-Paraburkholderia, Occallatibacter, and Can-
didatus Solibacter (Figure 2B). Similarly, the fungal ITS2 sequencing generated 7570 ASVs,
including 3778 ASVs unique to L-site soil, whereas 2537 ASVs were exclusive to P-site
(Figure 2C, Excel S5). These ASVs were assigned to 18 fungal phyla, of which Basidiomy-
cota (L-site 53%; P-site 44%), Ascomycota (L-site 35%; P-site 44%), and Mortierellomycota
(L-site 4%; P-site 5%) were dominant in the rhizospheric soil from the two sites. The
highly abundant fungal species detected in the rhizospheric soil belonged to the fungal
genera Tylospora, Macrolepiota, Hygrophorus, Piloderma, Exophiala, and Cenococcum, which
were dominant in the L-site. Meanwhile, Hyaoscypha, Archaeorhizomyces, Amphinema, and
Amanita were prevalent in the P-site (Figure 2D).

2.3.3. Alpha Diversity (α)

The completeness of the amplicon sequencing approach determined by Good’s cov-
erage index (>99%) indicated that the sequencing depth covered the majority of the taxa
present in the samples, and only <1% of the microbial diversity could not be recovered.
Similarly, the rarefaction curves tend to reach a plateau, indicating the coverage of the
whole microbial diversity in the soil samples by the Illumina sequencing (Figure S2). The
bacterial diversity (Shannon index, L-site 11.0; P-site 9.66), community richness (Chao1,
L-site 20,460; P-site 14,308), and community evenness (Pielou index, L-site 0.77; P-site 0.70)
were significantly higher in the L-site (Wilcox test, p < 0.001) (Figure 3A–C). Similarly,
the fungal community richness (Chao1, L-site 5184, P-site 3949, Wilcox test, p < 0.05) was
substantially higher in L-site, while the fungal diversity (Shannon Index, L-site 7.08; P-site
6.994) and community evenness (Pielou-L-site 0.576; P-site 0.589) did not differ significantly
(Figure 3D–F).

2.3.4. Beta Diversity (β)

The total microbial diversity among the soil samples estimated based on unweighted
UniFrac distances distinctly clustered the bacterial communities in the rhizospheric soil
samples from the two Norway spruce seed orchards, suggesting the influence of the en-
vironment on the soil bacterial population (Figure 4A). Similarly, the fungal population
between the two soil samples was clustered in two groups. However, the clusters were
close, indicating a lesser impact of site-specific environmental factors on the fungal com-
munity structure than the bacterial population (Figure 4B). Consequently, the ADONIS and
ANOSIM analyses depicted substantial differences in the microbial diversity between the
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soil samples from the two sites (Tables 1 and S2). Hence, such a remark on the influence of
the environment on soil microbiome needs further validation.
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index estimating the bacterial diversity. (C) Pielou index representing bacterial evenness. (D) Fungal
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(L-site) and Prenet (P-site). The level of significance was determined using the Wilcox test (“*” denotes
p < 0.05 and “***” indicates p < 0.001).

Table 1. ADONIS Analysis. Bray–Curtis method indicates the significant difference between the
soil bacterial and fungal communities between the two Norway spruce seed orchards. (Df—degree
of freedom, MeanSqs—SS/Df, F. Model—F-test value, R2—the ratio of grouping variance and total
variance). Values in parentheses denote Residual Error. The p-value represents the significant
variation in the microbial community structure.

Diversity Group Df SumsOfSqs MeanSqs F.Model R2 Pr (>F)

Bacteria L-site vs. P-site 1 (48) 3.74684
(8.50962)

3.74684
(0.17728) 21.13473 0.3057

(0.6943) 0.001

Fungi L-site vs. P-site 1 (48) 1.45718
(16.17559)

1.45718
(0.33699) 4.32409 0.08264

(0.91736) 0.001

t-test and MetaStat analysis determined the differentially abundant bacteria belonging
to genera Granulicella, Bradyrhizobium, Acidothermus, Roseiarcus, Acidipila, Occallatibacter,
Conexibacter, Candidatus Koribacter, Candidatus Xiphinematobacter, and Acidisoma, Agathobacter,
etc. were prevalent in P-site (Figures S3 and 5A). While Candidatus Udaeobacter, Pseudolabrys,
Gaiella, Bacillus, Haliangium, Rhodoplanes, Pedomicrobium, Sphingomonas, and Reyranella
were dominant in L-site (Figure 5A). Similarly, the significantly abundant fungal genera,
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including Russula, Thelephora, Keithomyces, Trichocladium, Ilyonectria, Fusarium, Achroistachys,
Xanthothecium, and Gamsia, were significantly abundant in L-site (Figures 5B and S4).
While Hyaloscypha, Oidiodendron, Cortinarius, Podila, Meliniomyces, and Filobasidiella were
predominant in the P-site (Figures 5B and S4).
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Furthermore, the bacterial biomarkers determined by the Linear discriminant analysis ef-
fect size (LEfSe) with LDA score [log10] > 4 showed the presence of significantly abundant and
consistent bacterial population belonging to members from class Alphaproteobacteria (order—
Rhizobiales, family—Beijerinckiaceae and order—Acetobacterales, family—Acetobacteraceae),
Acidobacteriae (order—Acidobacteriales, family—Acidobacteriaceae_Subgroup_1), and Acti-
nobacteria (order—Frankiales, family—Acidothermaceae) in P-site, while class Gammapro-
teobacteria (order—Burkholderiales), Vicinamibacteria (order—Vicinamibacterales), and Ther-
moleophilia (order—Gaiellales) were the biomarkers from L-site soil (Figures S5A and 6A).
Alternatively, the members belonging to the fungal class Leotiomycetes (order—Helotiales,
family—Hyaloscyphaceae); family—Myxotrichaceae, Amanitaceae, Cortinariaceae were the fun-
gal biomarkers in the soil samples collected from P-site (Figures S5B and 6B). While the
fungal species from class—Eurotiomycetes; order—Thelephorales (family—Thelephoraceae),
Russulales (family—Russulaceae), family—Agaricaceae, Hygrophoraceae, Pilodermataceae were
the biomarkers in L-site (Figures S5B and 6B).
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Figure 5. t-test analysis to determine the significant variation of (A) bacterial and (B) fungal com-
munities at the genus level in Lipová and Prenet soils. The last panel denotes the abundance of the
genera that significantly differs between the two rhizosphere soils. Each bar represents the mean
value of the abundance at the genus level in soil that is significantly different. The right panel denotes
the confidential interval between the rhizospheres of the two sites. The left-most part of each circle
stands for the lower 95% confidential interval limit, while the right-most part is the upper limit. The
center of the circle stands for the difference in the mean value. The color of the circle resembles the
soil sample, whose mean value is higher. The right-most value is the p-value of the significance test.
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Figure 6. LEfSe [linear discriminant analysis (LDA) Effect Size] analysis indicating the differentially
represented microbial biomarkers in the two Norway spruce seed orchards (L, P). (A) The cladogram
illustrates the presence of bacterial communities that are significantly different between the two soil
samples. (B) The cladogram represents the fungal biomarkers in the rhizosphere of two sites. The
circles radiating from inside to outside denote the taxonomic level from phylum to genus. Each circle
represents a distinct taxon at the corresponding taxonomic level. The size of each circle is proportional
to the relative abundance of each taxon. Bacterial and fungal biomarkers with significant differences
are colored according to the color of the corresponding soil samples, whereas yellowish-green circles
resemble non-significant species. Red and green nodes indicate that these species contribute highly
to the group. The letters above the circles describe the different biomarkers.
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2.3.5. Functional Composition

The putative metabolic function of the bacterial communities in the rhizospheric
soil was predicted based on the relative abundance of the bacterial 16S ribosomal gene
sequences where the ASVs are mapped to the KEGG database (Excel S6). The bar plot repre-
sents the top 10 predicted functions assigned to the bacterial communities in soil, including
carbohydrate metabolism, amino acid metabolism, membrane transport, lipid metabolism,
metabolism of cofactors and vitamins, degradation, and metabolism of xenobiotics that
did not differ significantly between the soil samples from two seed orchards, suggesting
these functions are consistent in the soil bacterial communities (Figure 7A). Moreover, the
PICRUSt2 (v2.3.0) data represented by the PCA plot revealed that the predicted bacterial
functional gene composition between the rhizospheric soil from the two sites was similar,
and there was no distinct clustering based on the functions (Figure 7B). The t-test analysis
documented the significantly abundant functions based on the KEGG database in the
rhizospheric soil samples (Figure S6).
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Figure 7. (A) Barplot representing the relative ASV abundance contributing to the top 10 gene
functions in the rhizospheric soil. “Others” represents the relative ASV abundance for the rest of the
gene functions. (B) PCA plot shows overlap in the predicted functional contribution of soil bacterial
communities in two sites (Lipová and Prenet) based on PICRUSt2 analysis. (C) Barplot representing
the relative ASV abundance contributing to the top 10 fungal guilds in the rhizospheric soil. “Others”
represents the relative ASV abundance for the rest of the ecological guilds. (D) PCA plot shows an
overlap in the predicted ecological guilds of the fungal population in two sites (Lipová and Prenet)
based on FUNGuild analysis.

Similarly, the ecological guild of the fungal population having similar functions was
predicted by FUNGuild software v1.0, which is used to taxonomically analyze the ASVs



Int. J. Mol. Sci. 2024, 25, 9658 11 of 24

based on their functions (Excel S7). The rhizospheric soil samples from both sites were
dominated by ectomycorrhizal fungal population (Figure 7C). The PCA plot representing
the overall fungal population based on their functions demonstrated an overlap between
them, suggesting similar functional potential of the fungal populations in the two sites
(Figure 7D). Interestingly, the t-test analysis revealed a significantly high abundance of
Ericoid mycorrhiza in the P-site, while wood saprotrophs were highly prevalent in the
L-site (Figure S7). However, it is worth mentioning here that FUNGuild and PICRUSt 2
are prediction software and might not imply the actual functional role of the microbial
population. Hence, further experiments are needed to validate the functional role of these
microbial communities.

2.3.6. Microbial Co-Occurrence Network

The co-occurrence network analysis assists in understanding the complex microbial in-
teractions and their responses to climate change. Bacterial network analysis represented the
co-occurrence of dominant bacterial species in two sites with different precipitation regimes
(Figure 8). The rhizosphere soil bacterial network comprises 227 nodes and 3744 edges with
significant correlation in the L-site (Figure 8A). Among them, 2896 edges showed a posi-
tive correlation coefficient, while 848 edges represented a negative correlation coefficient
(Excel S8). The major bacterial nodes in L-site belonged to Proteobacteria (37.4%), Acti-
nobacteriota (21.14%), Bacteroidota (10.13%), and Acidobacteriota (7.92%). On the contrary,
the bacterial co-occurrence network was simple in the P-site, representing 192 nodes and
1658 edges with 1402 positive interactions, while 256 edges constituted negative interactions
(Figure 8B, Excel S8). P-site documented the highest positive bacterial interactions (~84%),
with the major nodes belonging to Proteobacteria (35.93%), Actinobacteriota (18.75%), Fir-
micutes (12.5%), and Bacteroidota (6.77%). The network diameter was 10 for both sites. The
average network distance (L-site 2.77; P-site 3.52), clustering coefficient (L-site 0.48; P-site
0.51), network density (L-site 0.07; P-site 0.04), average degree (L-site 33.13; P-site 17.27),
and the modularity index (MD) (L-site 0.27; P-site 0.46) were estimated, representing the
complexity of the bacterial population in the rhizospheric soil between the two sites. The
higher modularity value documented in the P-site bacterial network indicates a modular
community structure where the nodes are densely connected within the communities to
form modules with similar ecological niches, suggesting a less complex network. Similarly,
the fungal network analysis revealed 227 nodes and 708 edges (692 positive and 16 negative
interactions) with significant correlation in L-sites (Figure 9A, Excel S9). In contrast, the
P-site rhizospheric fungal co-occurrence network documented 185 nodes and 1280 edges
(Figure 9B, Excel S9). Among the fungal interactions, 874 were positive, while 406 were
negative. The major fungal nodes include Ascomycota (L-site 66.07%; P-site 60%) and Ba-
sidiomycota (L-site 22.46%; P-site 29.18%) in both sites. Although most fungal interactions
were positive, L-site documented the highest positive interactions (>97%). The network
diameter (L-site 14; P-site 9), average network distance (L-site 4.62; P-site 3.21), clustering
coefficient (L-site 0.33; P-site 0.62), network density (L-site 0.01; P-site 0.04), and average
degree (L-site 6.23; P-site 13.83) represented the co-occurrence of fungal communities and
their interactions in the rhizospheric space between the sites. In contrast to the bacterial
community structure, the fungal community in the L-site documented a higher modularity
index (L-site 0.48; P-site 0.34), representing a less complex fungal community structure.
The higher average degree of fungal co-occurrence network in the P-site indicates higher
interaction with the neighboring fungal nodes. On the other hand, the L-site documented
increased interactions with the neighboring bacterial nodes. Such observation suggests that
variation in the precipitation regime influences fungal and bacterial populations differently.
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3. Discussion

The “root-soil-microbe” triangle is regarded as the most dynamic underground in-
teraction in nature and is crucial in maintaining biodiversity in many ecosystems. Such
dynamic interactions and feedback between plants and microbes are intensified in the
root region (i.e., rhizosphere) [33]. Anthropogenic activities significantly influence global
change and disrupt ecosystem functioning. One of the primary consequences of climate
change is the alteration of the precipitation regime [34] that profoundly impacts the soil
microbial community structure [35]. The present study explores the rhizosphere micro-
biota (microbial interaction “hot spot”) of two clonal Norway spruce seed orchards under
different precipitation regimes. The two Norway spruce stands constituted of genetically
identical grafted Norway spruce clones. The precipitation difference between the study
sites resulted in intriguing differences in soil metabolite content, selected elements, and
overall microbial composition, aiding a greater understanding of climatic influence on
forest tree rhizosphere microbiota.

Soil water content is essential to soil processes and belowground microbial activity.
Water availability enhances microbial activity, promotes organic matter decomposition, and
decreases carbon sequestration in soil [36,37]. Precipitation events are closely associated
with the soil water content and regulating the organic matter turnover in soil [19,38]. Our
previous study on the bulk soil from these two sites suggested that the high soil moisture
content due to increased precipitation resulted in higher organic matter content and total
nitrogen in the P-site [39]. Although precipitation changes can influence global variations
in soil pH [40], our earlier findings revealed no significant difference in soil pH and conduc-
tivity between these two Norway spruce seed orchards [39]. Variation in the precipitation
pattern influences the soil microbiota [35,41], impacting nutrient cycling and metabolite con-
tent [42]. Metabolites play a crucial role in stabilizing carbon in soil. Soil metabolites, such
as fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds,
are closely connected to soil biogeochemical cycles driven by soil microorganisms [43].
Microbial carbon use efficiency is regulated by substrate diffusional limitations associated
with soil water content [44]. Hence, the soil moisture content is pivotal in regulating soil
microbial activity and, in turn, impacts the soil metabolite content [44].

The present study documented an increased abundance of rhizosphere soil metabolites
belonging to fatty acids, alcohols, acids, and terpenes in the P-site, while carbohydrates were
abundant in the L-site. Such abundance in the metabolite profile could be correlated with
the higher abundance of Proteobacteria, Acidobacteriota, Actinobacteriota, Bacteroidata,
and Firmicutes, as these bacterial phyla exhibit a crucial eco-physiological role in the
cycling of essential elements such as nitrogen, carbon, and sulfur [45]. Interestingly, the
high abundance of fatty acids and terpenes could be co-related with the lower abundance
of Actinobacteriota and Chloroflexi in the P-site [46]. Similarly, Shi et al., 2011 reported
that adding carbohydrate metabolites to forest soil significantly increased the relative
abundance of some dominant bacterial taxa, such as Actinobacteriota, Proteobacteria, and
Firmicutes [47]. This corroborates our findings, suggesting the importance of carbohydrates
in modulating the soil bacterial community structure by boosting the abundance of selective
microbial communities. One logical explanation can be that these bacterial communities
better utilize carbohydrates as a carbon source than others, which gives them a selective
advantage. However, such a correlation needs further experimental validation. It is worth
mentioning here that the rhizosphere chemistry is complex and undergoes continuous
alterations with the constant flux of metabolites from the root exudates and the microbial
secretions [48]. The soil metabolites are attributed to the soil organic matter, plant exudates,
and microbial metabolites [32]. In the current study, it was impossible to independently
differentiate the contribution of these driving factors to the soil metabolite profiles. The
mechanism behind how the complex metabolite pools are related to the microbial diversity
in the rhizospheric space is still unclear and needs further investigation. Understanding
the metabolite profiling in the rhizospheric soil will provide insights into how the plants
and the belowground microbes interact in response to environmental changes [49].
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The microbial diversity and functioning are often influenced by moisture content in
the soil. In the current study, comparatively higher soil moisture content in the P-site
resulted in lower bacterial diversity. However, the fungal diversity did not alter with
differences in the soil water content. A similar observation was reported by Yang et al.
2021, which showed that variation in precipitation strongly affected the soil bacterial
communities but not fungi in a meadow grassland in northeastern China [50]. The response
of soil bacteria and fungi differs with the variation in soil water availability. Bacterial
response to soil moisture content is faster due to different physiological characteristics and
survival strategies than fungi [51]. Moreover, increased soil water content due to higher
precipitation might result in osmotic stress, causing a decrease in bacterial diversity in
P-site [52]. The rhizospheric fungal diversity did not differ between the two sites with
different precipitation regimes, suggesting stable and resistant fungal populations where
the fungal hyphae are better adapted to the low moisture content in the soil while reaching
out for nutrient resources [53].

The present study documented a high abundance of Proteobacteria, Acidobacteri-
ota, including Granulicella, Roseiarcus, Acidobacteria, and Acidipila in the P-site rhizosphere.
These bacterial members play an important role in the decomposition of organic matter
and increase the availability of nitrogen, calcium, and phosphorus in acidic soil [54,55]. The
high abundance of acidophilic bacteria might be correlated with the high abundance of fatty
acids and organic acid metabolites in the P-site soil [56]. Bi et al., 2022 reported that a high
abundance of fatty acids contributes to soil acidity and significantly alters the conifer root
microbial community structure [56]. Consequently, our previous study on bulk soil from
the two sites already documented low pH in the P-site compared with L-site [39]. However,
the bulk soil pH between the two sites was not significantly different. The high abundance
of Bradyrhizobium in the P-site is reported to play an important role in nitrogen fixation
and nutrient acquisition (N and P) and interacts with mycorrhizal fungi [57]. This can be
correlated with the high abundance of total nitrogen present in the soil samples from the
two sites [39]. Soil moisture and temperature drastically affect fungal growth and symbiotic
functioning [58,59]. High soil moisture and low temperature in the P-site may provide a
favorable environment for mycorrhizal development. Studies reported that precipitation
can significantly alter arbuscular mycorrhizal fungi (AMF) communities by modifying their
interactions among different AMF groups [60]. Furthermore, the dominance of the mycor-
rhizal community in the P-site might be due to their association with different “Mycorrhizae
Helper Bacteria” (MHB) that promote and stimulate the establishment of mycorrhizal sym-
biosis with the host plant [61]. Such bacterial genera, including Azospirillum, Burkholderia,
Bradyrhizobium, Pseudomonas, Rhizobium, Bacillus, Brevibacillus, etc., were observed in the
rhizosphere microbiota. Additionally, a high abundance of Acrodontium, Oidiodendron, and
Cortinarius was documented in the P-site rhizosphere. Acrodontium is reported to have
inhibitory action against powdery mildew pathogens [62], while Oidiodendron sp. is an
essential contributor to the forest ecosystem that exhibits many plant cell wall degrading
enzymes [63] and also participates in mycorrhizal association [64]. Cortinarius sp. is one of
the most important symbiont mycorrhizal fungi around tree roots of forest ecosystems [65].

Interestingly, the L-site rhizosphere receiving less precipitation compared with the
P-site exhibits a higher bacterial diversity. The bacterial genera, including Candidatus,
Pseudolabrys, Bacillus, Gaiella, and Sphingomonas, were the major constituents of the L-site
rhizosphere. These bacterial species utilize plant-derived hydrocarbons and polysaccha-
rides and play an essential role in nutrient cycling in the soil [66–69]. The rhizosphere of the
L-site promotes the assemblage of ectomycorrhizal fungi Russulla and Thelephora. The ecto-
mycorrhizal fungi have been reported to select several helper bacteria in the mycosphere
to grow and maintain mycelium in the soil [70–72]. Moreover, a significant abundance of
pathogenic fungi, including Ilynocteria, Fusarium, Trichocladium, and Metarhizium, were doc-
umented at the L-site. Metarhizium, an entomopathogenic fungi, protects plants from insect
attacks [73], while Ilynocteria, Fusarium, and Trichocladium are plant pathogenic fungi [74–76].
Interestingly, the low abundance of pathogenic fungal communities in P-site compared
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with L-site might be due to the presence of Occallatibacter, which is reported to hydrolyze
chitin, protecting plants from pathogenic fungal attacks [67]. However, such interpretations
require further experimental validation. Among other significantly abundant fungi in the
L-site, Humicola is reported to possess β-glucosidase gene (bgl4) and β-xylosidase gene
(hxylA) coding for β-glucosidase and β-Xylosidases and might be responsible for cellu-
lose degradation [77,78]. The rhizosphere soil biomass mainly consists of plant materials
constituting hemicellulose, cellulose, lignin, pectin, and proteins. Cellulose-degrading
microbial communities in soil play an important role in nutrient cycling and organic matter
decomposition [79].

The putative functional prediction documented by PICRUSt2 showed no distinct
clusters in the overall putative functions of the bacterial communities between the two
sites, suggesting similar functional potential of the rhizospheric soil bacterial communities
from the two seed orchards. Similarly, the ecological guild in the two sites overlapped,
indicating a lesser impact of precipitation change on the fungal population. However,
such predictions are based on the predicting software and might not depict the actual
scenario. Hence, further functional validations are needed to confirm such observations.
Furthermore, microorganisms flourish through complex association networks rather than
in isolation. The highly connected species potentially play a vital role within the microbial
community [80]. In the bacterial network, the species belonging to the bacterial phyla
Proteobacteria, Actinobacteriota, Acidobacteriota, Bacteroidota, and Firmicutes showed
significantly more connections than other phyla. These bacterial genera might be neces-
sary for biogeochemical cycling and carbon mineralization in forest ecosystems [81–83].
Interestingly, these major bacterial nodes have different growth rates; for instance, some of
the taxa belonging to Proteobacteria are fast growers, while bacterial genera belonging to
Acidobacteria are slow growers [84,85]. Interactions between these nodes suggest that the
diverse microbial pool maximizes the resources through their interactions and maintains
forest ecosystem functioning [80]. In the fungal co-occurrence network, Ascomycota and
Basidiomycota formed a significant share of the connections. The fungal genera belonging
to these phyla are primarily responsible for the decomposition of lignin and cellulose,
facilitating the decomposition of organic matter and promoting soil nutrient cycling within
forest ecosystems [86]. The overall microbial interactions were higher in the L-site com-
pared with the P-site. In particular, the bacterial interactions were more than twice in
the L-site than in the P-site. Although the number of microbial interactions was lower in
the P-site, the higher clustering coefficient of the microbial network suggested that the
microbial community structure in the P-site is highly interconnected and tends to close
clusters. However, the functional relevance underlying such interpretations needs further
experimental endorsements.

4. Materials and Methods
4.1. Site and Sampling

The soil samples were collected from the rhizosphere of Norway spruce clonal trees
from two spruce seed orchards in the Czech Republic. The two sites, namely Prenet
(P) (49.2354172 N, 13.2112808 E, 970 m a.s.l., average temp. 7.044 ◦C, avg precipitation
1306.48 mm) and Lipová Lhota (L) (49.2816108 N, 13.5515606 E, 560 m a.s.l., average temp.
8.644 ◦C, avg precipitation 633 mm), consisted of five Norway spruce clonal tree varieties
(1901, 1902, 1908, 1941, and 1950). Each of these grafted clonal tree varieties had five tree
replicates (Table S1). The rhizospheric soil samples were collected at a depth of 15 cm
for each clonal tree replicated from the two sites. However, as these are grafted trees
with different roots, we did not consider the differences in the rhizosphere microbiome
between the clonal tree varieties. Five replicates of rhizosphere soil samples for each
clonal tree variety were randomly collected at a distance of 20–30 cm from the tree trunk
and ~10 mm from the roots. A total of 50 soil samples (25 samples from each site) were
collected in sterile plastic ziplock bags, brought to the laboratory, and sieved through a
2.0 mm screen sieve. One part was stored at 4 ◦C for the determination of soil properties,
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and the remaining soil samples were stored at −80 ◦C for soil metabolite profiling and
DNA extraction to determine microbial community structure using amplicon sequencing
targeting the bacterial 16S rRNA gene and fungal ITS2 region.

4.2. Soil Texture, Moisture Content, and Trace Elements

The soil texture was determined by laser granulometry (CILAS 1190 LD) in wet mode
to measure the size of the soil particles ranging from 0.04 to 2500 µm. The soil texture
analysis was done as described by [87]. The soil texture determination was based on
three soil fractions: clay (>2 µm), silt (2–63 µm), and sand (63–2000 µm) [88]. The water
content of the rhizospheric soil was estimated by drying 10g of soil at 105 ◦C in an oven
for 24 h. Furthermore, the elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Zn) present in the
rhizospheric soil were determined following the Mehlich 3 extraction procedure [89]. The
Mehlich 3 extraction solution consisted of 0.2M acetic acid, 0.015M ammonium fluoride,
0.013M nitric acid, 0.001M EDTA, and 0.25M ammonium nitrate at pH 2.5. The air-dried
soil was extracted with 1:10 (m/v) soil: Mehlich 3 solution for 10 min, and the extract was
measured by ICP-OES and measured using ICP EOS Agilent 5100 [90]. Rhizospheric soil
samples from three clonal varieties for each site were tested for the soil moisture content,
soil texture, and the amount of selected elements present. All the results were expressed
based on the dry weight of the soil. The student’s test is performed to determine the level
of significance (p < 0.05).

4.3. Metabolomic Profile

The rhizospheric soil metabolite profiling was performed as described in our previous
study [39]. A total of 500mg of freeze-dried homogenized rhizospheric soil samples was
added to 600 µL of methanol:H2O, 3:1 (v/v) mixture. An equal volume of ethyl acetate
(600 µL) and 10 µL of internal standard adonitol (0.5 mg/mL, Internal standard A, IS_A)
was added to the soil mixture, sonicated for 30 s, and incubated at 10 ◦C for 15 min at
2000 rpm, followed by centrifugation at 4 ◦C for 15 min at 16,000× g. The supernatant was
collected and vacuum-dried using a vacuum concentrator (Module 4080C, Hanil Science
Industrial, Gimpo, Republic of Korea) and resuspended in anhydrous pyridine (50 µL) and
methoxyamine hydrochloride in pyridine (25 mg/mL, 50 µL), followed by an incubation for
90 min at 40 ◦C at 1700 rpm. After incubation, N, O-Bis(trimethylsilyl)trifluoroacetamide
with trimethylchlorosilane (BSTFA + TMSC, 100 µL) was added and incubated at 40 ◦C
for 30 min. To this, 10 µL of internal standard B (1-bromoeicosane, 0.52 mg/mL in hex-
ane) was added and centrifuged for 5 min at 3000 rpm. The supernatant was carefully
transferred and analyzed on two-dimensional comprehensive gas chromatography with
mass detection (GCxGC-MS; Pegasus 4D, Leco Corporation, St. Joseph, MI, USA) con-
trolled by ChromaTOF v4.5. GCxGC analyses were carried out using a combination of
polar and non-polar separation columns with the standardized parameters as described in
our earlier study [39]. The trimethylsilyl derivatives of the metabolites were normalized
according to the amount of the sample during extraction and the internal standards. After
normalization, the metabolites were identified based on the NIST Library, Fiehn Library,
and in-house-built mass library. The data were represented by Sparse PLS discriminant
plot based on sPLS-DA algorithm [91]. The statistical evaluation of the normalized data
was carried out by MetaboAnalyst 5.0 (www.metaboanalyst.ca (accessed on 16 September
2020)) [92]. Analysis of variance (ANOVA) and t-tests were used to evaluate the statistical
significance of the metabolites present in the sample.

4.4. DNA Extraction, Amplification, and Sequencing

The rhizospheric soil DNA (250 mg) was extracted using the Nucleospin soil DNA
purification kit (Macherey Nagel, Dueren, Germany) following the manufacturer’s protocol.
The isolated soil DNA was quantified on a Qubit 2.0 Fluorometer using a Qubit 2.0 high-
sensitivity dsDNA assay kit, electrophoresed on 1% agarose gel to check the DNA integrity,
and sent for high-throughput amplicon sequencing (Novogene, Beijing, China). The
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purified DNA was diluted to 1 ng/µL and used as a template for amplification with
universal primers tagged with specific barcodes targeting the bacterial 16S rRNA gene
(341F/806R, V3-V4 region) [93] and the fungal ITS2 region (ITS3, ITS4) [94]. Phusion
High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA) was used
for PCR amplification. A no-template control was added to the PCR reaction to check
for contamination. PCR amplicons were then pooled at equi-density and gel purified
(Qiagen Gel Extraction Kit, Qiagen, Hilden, Germany) before library preparation. The
sequencing library was constructed using NEBNext Ultra II DNA Library Prep-Kit (New
England Biolabs, Ipswich, MA, USA). The constructed library was quantified on Qubit 2.0
Fluorometer (Thermo Scientific, Waltham, MA, USA), and a quality check was performed
using Agilent Bioanalyser 2100 system and finally sequenced using Illumina Novaseq 6000
platform to generate 250bp paired-end reads.

4.5. Sequencing Data Analysis
4.5.1. Data Filtering

Microbiome analysis was performed in QIIME2 software (version 2022.2) [95]. The
Illumina paired-end reads assigned to samples were assembled based on their unique
barcodes after the removal of the barcode and primer sequence and merged to get raw reads
using FLASH (V1.2.11, http://ccb.jhu.edu/software/FLASH/, (accessed on 16 September
2020)) [96]. The raw tags were then quality-checked using fastp software (version 0.23.0) [97]
to obtain high-quality clean tags after the removal of reads with Phred Quality score <30.
Finally, chimera detection and removal were performed using VSEARCH software (version
2.7.1) [98] to obtain effective tags for further downstream bioinformatic analysis. DADA2
module [99] in QIIME2 software (version 2022.2) was used to denoise the effective tags,
and the sequence abundance of less than 5 reads was discarded to obtain the final ASVs
(amplicon sequence variables) [100] and the feature table. Further, the species annotation
of each ASV was obtained by comparing the ASVs with the SILVA (Release 138.1, for
bacterial sequences) (http://www.arb-silva.de/) [101] or UNITE (version 9.0) (for fungal
sequences) (https://unite.ut.ee) [102] databases using the Classify-sklearn module (version
2020.6) [103] in QIIME2 (ver 2022.2) [95].

4.5.2. Alpha Diversity

The microbial diversity and community richness within the samples were estimated by
the alpha diversity indices such as Shannon index and Chao1 index [104] in QIIME 2. The
Pielou index, representing the evenness of the microbial population, was also determined.
The rarefaction curves and the Good’s coverage [105] indicated the completeness of the
sequencing of the rhizosphere soil samples from two different sites and were represented
using R software (Version 2.15.3; R Core Team, 2013, Vienna, Austria) [106]. The statistical
significance of the alpha diversity indices was determined using the Wilcox test to compare
the two sites.

4.5.3. Beta Diversity

The difference in microbial diversity [107] between the rhizospheric soil samples collected
from two different sites was estimated using the unweighted UniFrac distance [108] calculated
by QIIME2 software version 2022.2 [95]. Principal coordinates analysis (PCoA) [109] based
on the UniFrac distances was represented in R software, where the samples with similar
species composition structures tend to cluster together and vice versa. The significant
differences in the overall microbial community structure among the rhizospheric soils
between the two soil sites were determined using ADONIS and ANOSIM functions [110]
in QIIME2 software. The ADONIS function is a nonparametric multivariate variance test
based on the distance matrix to determine the differences between sample groups and
estimate the significance of the groups by performing permutation tests [111]. ANOSIM
analysis, based on the UniFrac distance matrix, evaluates whether the variation among
groups is significantly higher than within groups [112]. The significant differences in
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the microbial species abundance were determined by the t-test [113]. Similary, MetaStat
analysis [114] was performed to determine the significant differences in observed species
abundance among groups via multiple hypothesis-tests for sparsely-sampled features and
false discovery rate (FDR). Furthermore, linear discriminant analysis Effect Size (LEfSe)
analysis [115] was performed where the linear discriminant analysis scores (LDA score
[log10]) > 4 was set as a threshold to determine the high-dimensional biomarkers and to
reveal metagenomic characteristics including genes, metabolites, or taxa to distinguish
between two samples. It emphasizes the statistical significance and biological consistency
of detecting significant biomarkers and identifying characteristics of abundance.

4.5.4. Functional Prediction

The metabolic function of microbes in the rhizospheric soil samples was predicted
by mapping the microbial composition obtained from amplicon sequencing to different
databases. The prediction of the bacterial communities present in the soil was determined
using PICRUSt2 software (version 2.3.0) (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved Stats 2) [116], where the bacterial 16S ASVs abundance
was mapped against Kyoto Encyclopedia of Genes and Genomes (KEGG) database [117]
to predict different putative functions assigned to the bacterial communities in the soil
samples. The abundance of functional annotation for the KEGG database was represented
by principal component analysis (PCA). The significant KO (KEGG orthologs) were de-
termined using t-test. Similarly, the putative functions of the fungal communities in soil
were determined by the FUNGuild annotation tool (version 1.0) (http://funguild.org) that
taxonomically parses fungal ASVs by their ecological guild [118] and the differentially
abundant fungal guilds were determined by t-test.

4.5.5. Network Analysis

The microbial abundance data (ASV table data) were converted to a co-occurrence
network and visualized by Graphviz-2.38.0 software to understand the complex inter-
actions among the microbial communities. The network analysis provides information
on the impact of environmental factors on microbial communities and the interaction
between the dominant species in a specific environment [119]. These dominant species
often play an essential role in maintaining the structure and functional stability of the
microbial community in the environment. The average relative abundance of microbial
species less than 0.005% was filtered out. The correlation coefficient of all the samples was
calculated using the Spearman Correlation Coefficient (SCC). The effective connections
with correlation coefficient cutoff = ±0.6, p < 0.05 were selected to construct the network
diagram. Different parameters such as nodes, total links, positive links, negative links, net-
work density, network diameter, average degree, modularity degree, clustering coefficients,
and average path length were estimated using the igraph package (version 2.0.2) [120].
The nodes represent the microbial genus, and the links or edges denote the interactions
(positive or negative) between the microbial taxa. The network density is calculated to
assess the closeness of the overall microbial community. It is the ratio of links of each node
to the total number of links. The higher the density, the denser or closer the network. The
modularity (MD) determines the structure of the network. It is the measure of the strength
of the division of the communities into clusters or modules. The MD value ranges from 1 to
−1, and values close to 1 signify a strong community structure [121]. The average degree is
the average number of links per node, which signifies the average number of neighbors in
the network. The network diameter is the shortest distance between the two distant nodes.
Meanwhile, the average path length determines the shortest path between the nodes. The
clustering coefficients denote the number of links present as a proportion of the number of
links that could exist. Higher clustering coefficients determine tightly connected microbial
communities within the network and are associated with network robustness [122,123].
The short average path length and the high clustering coefficients signify high network
efficiency and are often known as “small-world” networks [124].
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5. Conclusions

The current study unveiled the influence of precipitation on microbial assemblage and
metabolites in Norway spruce rhizospheric soil (Figure 10). Higher long-term precipitation
over three decades impacted the spruce rhizosphere microbiota. The variance in the relative
abundance of a distinct microbiome class among the sites indicates climatic interference.
The higher moisture content in the P-site receiving higher precipitation resulted in an
increase in the amounts of metabolites along with a high relative abundance of acidophilic
bacteria, nitrogen-fixing bacteria, and mycorrhizal association. The higher modularity
value documented in the bacterial co-occurrence network at P-site indicates a modular
bacterial community structure in the rhizosphere, where the nodes are densely connected
within the communities to form modules with similar ecological niches, suggesting a
less complex network. Nevertheless, the diversity of the fungal community did not vary
between the sites, which depicted the lesser impact of precipitation on the rhizosphere
mycobiome. Nevertheless, the present study provides an excellent model for studying
the effect of climate change on the spruce rhizosphere microbiome and their effect on
sustainable forest growth. It will facilitate understanding rhizosphere microbial community
dynamics towards future global climate change scenarios and help preserve pristine forests
using probiotic formulations.
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96. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef] [PubMed]

97. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

98. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4,
e2584. [CrossRef] [PubMed]

99. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

100. Li, M.; Shao, D.; Zhou, J.; Gu, J.; Qin, J.; Chen, W.; Wei, W. Signatures within esophageal microbiota with progression of esophageal
squamous cell carcinoma. Chin. J. Cancer Res. 2020, 32, 755. [CrossRef]

101. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [CrossRef]

102. Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.;
Tedersoo, L. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications.
Nucleic Acids Res. 2019, 47, D259–D264. [CrossRef]

https://doi.org/10.3390/jof8111160
https://doi.org/10.1007/s12010-009-8732-7
https://doi.org/10.1016/j.ijbiomac.2017.07.039
https://doi.org/10.1016/j.heliyon.2024.e24022
https://www.ncbi.nlm.nih.gov/pubmed/38234915
https://doi.org/10.1007/s00284-023-03608-2
https://doi.org/10.1186/s40793-023-00533-6
https://doi.org/10.3389/fmicb.2019.02209
https://doi.org/10.3389/fmicb.2022.950005
https://doi.org/10.1038/nrmicro2439
https://doi.org/10.1111/geb.12663
https://doi.org/10.1016/j.fbr.2018.09.001
https://doi.org/10.1016/j.catena.2016.09.023
https://doi.org/10.1086/622910
https://doi.org/10.1080/00103628409367568
https://doi.org/10.17221/564/2016-PSE
https://doi.org/10.1186/1471-2105-12-253
https://doi.org/10.1002/cpbi.86
https://doi.org/10.1093/nar/gks808
https://www.ncbi.nlm.nih.gov/pubmed/22933715
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1093/bioinformatics/btr507
https://www.ncbi.nlm.nih.gov/pubmed/21903629
https://doi.org/10.1093/bioinformatics/bty560
https://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.7717/peerj.2584
https://www.ncbi.nlm.nih.gov/pubmed/27781170
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.21147/j.issn.1000-9604.2020.06.09
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gky1022


Int. J. Mol. Sci. 2024, 25, 9658 24 of 24

103. Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing
taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90.
[CrossRef] [PubMed]

104. Magurran, A.E. Ecological Diversity and Its Measurement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
105. Chao, A.; Lee, S.-M.; Chen, T.-C. A generalized Good’s nonparametric coverage estimator. Chin. J. Math. 1988, 16, 189–199.
106. Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
107. Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative β diversity measures lead to different insights

into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [CrossRef] [PubMed]
108. Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community

comparison. ISME J. 2011, 5, 169–172. [CrossRef]
109. Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. In Theory and Models in Vegetation

Science, Proceedings of the Symposium, Uppsala, Sweden, 8–13 July 1985; Springer: Dordrecht, The Netherlands, 1987; pp. 89–107.
110. Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [CrossRef]
111. Stat, M.; Pochon, X.; Franklin, E.C.; Bruno, J.F.; Casey, K.S.; Selig, E.R.; Gates, R.D. The distribution of the thermally tolerant

symbiont lineage (Symbiodinium clade D) in corals from Hawaii: Correlations with host and the history of ocean thermal stress.
Ecol. Evol. 2013, 3, 1317–1329. [CrossRef]

112. Chapman, M.; Underwood, A. Ecological patterns in multivariate assemblages: Information and interpretation of negative values
in ANOSIM tests. Mar. Ecol. Prog. Ser. 1999, 180, 257–265. [CrossRef]

113. D’Argenio, V.; Casaburi, G.; Precone, V.; Salvatore, F. Comparative metagenomic analysis of human gut microbiome composition
using two different bioinformatic pipelines. BioMed Res. Int. 2014, 2014, 325340. [CrossRef]

114. Paulson, J.N.; Pop, M.; Bravo, H.C. Metastats: An improved statistical method for analysis of metagenomic data. Genome Biol.
2011, 12, P17. [CrossRef]

115. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery
and explanation. Genome Biol. 2011, 12, R60. [CrossRef]

116. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for
prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef]

117. Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data
sets. Nucleic Acids Res. 2012, 40, D109–D114. [CrossRef] [PubMed]

118. Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open
annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [CrossRef]

119. Guseva, K.; Darcy, S.; Simon, E.; Alteio, L.V.; Montesinos-Navarro, A.; Kaiser, C. From diversity to complexity: Microbial networks
in soils. Soil Biol. Biochem. 2022, 169, 108604. [CrossRef] [PubMed]

120. Csardi, G.; Nepusz, T. The igraph software. Complex Syst. 2006, 1695, 862049.
121. Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E—Stat. Nonlinear Soft

Matter Phys. 2004, 70, 066111. [CrossRef]
122. Iyer, S.; Killingback, T.; Sundaram, B.; Wang, Z. Attack robustness and centrality of complex networks. PLoS ONE 2013, 8, e59613.

[CrossRef]
123. Shang, Y. Unveiling robustness and heterogeneity through percolation triggered by random-link breakdown. Phys. Rev. E 2014,

90, 032820. [CrossRef]
124. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40168-018-0470-z
https://www.ncbi.nlm.nih.gov/pubmed/29773078
https://doi.org/10.1128/AEM.01996-06
https://www.ncbi.nlm.nih.gov/pubmed/17220268
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
https://doi.org/10.1002/ece3.556
https://doi.org/10.3354/meps180257
https://doi.org/10.1155/2014/325340
https://doi.org/10.1186/1465-6906-12-S1-P17
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1093/nar/gkr988
https://www.ncbi.nlm.nih.gov/pubmed/22080510
https://doi.org/10.1016/j.funeco.2015.06.006
https://doi.org/10.1016/j.soilbio.2022.108604
https://www.ncbi.nlm.nih.gov/pubmed/35712047
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1371/journal.pone.0059613
https://doi.org/10.1103/PhysRevE.90.032820
https://doi.org/10.1038/30918

	Introduction 
	Results 
	Soil Texture and Physicochemical Properties 
	Metabolite Profiling 
	Rhizospheric Soil Microbial Community Structure 
	Sequencing Results 
	Microbial Communities in Soil 
	Alpha Diversity () 
	Beta Diversity () 
	Functional Composition 
	Microbial Co-Occurrence Network 


	Discussion 
	Materials and Methods 
	Site and Sampling 
	Soil Texture, Moisture Content, and Trace Elements 
	Metabolomic Profile 
	DNA Extraction, Amplification, and Sequencing 
	Sequencing Data Analysis 
	Data Filtering 
	Alpha Diversity 
	Beta Diversity 
	Functional Prediction 
	Network Analysis 


	Conclusions 
	References

