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Abstract: The placenta is crucial to fetal development and performs vital functions such as nutrient
exchange, waste removal and hormone regulation. Abnormal placental development can lead to
conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate
and long-term fetal health. Placental development is a highly complex process involving interactions
between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal
sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been
shown to make a significant contribution to prenatal health, placental health and fetal development,
with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in
maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational
diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of
dietary supplementation on placental development, with a focus on the role of probiotics in prenatal
health and fetal development.
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1. Introduction

The placenta is a vital organ for the development of the fetus, as it performs essential
functions such as nutrient exchange, waste elimination and hormone regulation [1–3]. Its
development begins at the time of blastocyst implantation and progresses through various
stages, which coincide with the chronological stages of embryo development [4–6]. It
plays a key role in regulating the development of fetal organs, including the heart, brain
and kidneys, underlining its importance in ensuring healthy intrauterine fetal growth [7].
Consequently, inadequacies in early development can cause disorders that may not present
clinically until the second half of gestation, highlighting the importance of understanding
and monitoring early placental development [8]. Defective development of the placenta
can lead to disorders such as fetal growth restriction, pre-eclampsia and stillbirth, affecting
both short- and long-term fetal health [7,9–11]. The mechanisms involved in placental
development are highly complex, involving an interaction of maternal and fetal compo-
nents [12], imprinted genes, signaling pathways, mitochondria and fetal sexomes [13], as
well as environmental factors, including nutrition [14], dietary supplementation [15,16]
and exercise [17].

In this review we have collected the most relevant studies dealing with the involve-
ment of dietary supplementation on placental development, focusing on the most widely
used supplements in recent years and probiotics, which seem to play an important role in
prenatal health, placenta development, and fetal development. Our research focused on
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publications from the last years, using PubMed, Google Scholar, Science Direct and Science
Daily as search engines.

2. Placental Development

Placental development begins at the time of blastocyst implantation into the uterus
and progresses through various chronological developmental stages of the embryo [5].
The placenta is composed of specialized trophoblast cells interacting with extra-embryonic
mesenchyme and uterine cells. The cellular processes involved during development are
complex and involve various molecular and cellular interactions between uterine and
embryonic tissues [10,18–20]. Key processes include trophoblast invasion and fusion with
endometrium cells, and the establishment of maternal–fetal exchanges [19,21–23]. Cell
cycle regulatory proteins play a crucial role in the regulation of proliferation, differentiation
and invasive capacity of trophoblast cells. The regulation of cell cycle proteins in normal
placental development is itself a highly coordinated process involving various mecha-
nisms controlling the timing, localization and activity of cyclins, cyclin-dependent kinases
(CDKs) and cyclin-dependent kinase inhibitors (CKIs). In the first phase of development
a sufficient number of cells is ensured, in the second phase there is differentiation into
cytotrophoblast and syncytiotrophoblast, and finally the invasion of the uterine partition,
with the establishment of the primordial maternal–fetal circulation [24]. Signals from the
maternal environment, such as oxygen levels and nutrient availability, can also influence
the activity of cyclins, CDKs and CKIs, regulating the cell cycle according to the needs
of the growing fetus [25]. The failure to develop a normal placenta could be the result of
abnormal cell cycle regulation [25]. Transcription factors, which are located in the nucleus
and regulate the expression of their target genes within the cell, also play an important
role in placental development. They are grouped into a few large families such as zinc
finger, leucine zipper, helix–loop–helix, helix–turn–helix and homeobox genes and also
include the ligand-activated nuclear receptor superfamily [26]. An increasing number of
putative developmental regulators have been identified in the human placenta, but there is
little evidence that specific developmental regulators play an essential role in trophoblast
differentiation processes such as anchoring villus formation, placental bed invasion or
syncytialization. Several homeobox genes with potential roles in controlling commitment
and differentiation have been identified in the human invasive trophoblast [26]. Distal-Less
Homeobox 3 (DLX3), distal-less homeobox 4 (DLX4), growth arrest-specific homeobox
(GAX), human orthologous Esx1 gene (ESX1L) and H.20-Like Homeobox (HLX) are key
homeobox genes. HLX is expressed in proliferating cytotrophoblastic cells during the
early stages of placental development, whereas DLX3 is expressed in the nuclei of villous
cytotrophoblastic cells, in the syncytiotrophoblastic layer and in extravillous trophoblastic
cells proliferating in the proximal regions of the cell columns both in the first trimester
and in the term placenta. DLX3 regulates expression of human chorionic gonadotropin
(hCG) alpha subunit and 3 beta-hydroxysteroid dehydrogenase (3-β-HSD), both of which
are important for placental trophoblast function, while several studies have shown that the
targets of HLX homeobox genes are cell cycle regulatory genes, particularly in trophoblas-
tic and hematopoietic cells. The placenta gradually acquires the ability to perform vital
functions such as vascular, respiratory, hepatic, renal, endocrine, gastrointestinal, immune
and physical barrier functions, which are critical for the development and safety of the
fetus within the maternal environment [5]. Abnormal, flat placentation leads to inadequate
utero-placental blood flow, resulting in placental ischemia [27]. This condition reduces the
supply of oxygen and nutrients to the fetus, impairing fetal growth and increasing cellular
and oxidative stress [28–30]. Excessive oxidative stress in the placenta has been linked
to the release of factors into the maternal bloodstream that cause widespread endothelial
dysfunction and many of the pathophysiological features of pre-eclampsia (PE). Recently,
it has been proposed that increased stress in syncytiotrophoblasts may also contribute to
PE [31–33]. Syncytiotrophoblasts, which form the surface layer of the fetal placental villi,
are responsible for transferring nutrients and oxygen to the fetus and for synthesizing and
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secreting hormones into the maternal bloodstream to support pregnancy adjustments. The
exact causes of syncytiotrophoblast stress and placental failure are not fully understood,
but are likely to be due to a mixture of genetic and environmental factors, as maternal
nutrition playing an important role [34].

Another mechanism that has been shown to be critical for proper placental devel-
opment is autophagy, an evolutionary response of eukaryotic cells; senescent cells and
organelles are targeted to lysosomes for degradation and recycling, maintaining home-
ostasis of the intracellular environment. The basal level of autophagy in the placental
trophoblast has been shown to play an important role during embryo implantation and
placental vascular remodeling [35–37]. When autophagy is excessive, it changes from a
protective to a detrimental mechanism, impairing the metabolic function of placental tro-
phoblasts and leading to certain diseases of placental origin, such as pre-eclampsia and fetal
growth retardation (FGR) [38–40]. Indicators of this process are microtubule-associated
protein l light chain 3 (LC3) and Beclin1, indicators of placental metabolic function [41–43].
While some studies have shown that the expression of the autophagy proteins LC3 and Be-
clin1 is higher in pregnant women with pre-eclampsia than in normal pregnant women [38],
others have found no significant differences between pre-eclamptic patients and normal
pregnant women by comparing the genes of the placental autophagy pathway [44]. Further-
more, the expression of the autophagic proteins LC3 and Beclin1 was found to be higher in
placental tissue from caesarean sections with intrauterine growth restriction than in normal
pregnant women [45]. As the pathological process of pre-eclampsia is associated with im-
paired placental trophoblast cell function and inadequate remodeling of the uterine spiral
arteries with oxidative damage, it is possible that placental autophagy activity is increased
to help trophoblast cells adapt to pathological changes, maintain bioenergetic homeostasis
and eliminate damaged organelles. Thus, women with pathological pregnancies will have
increased expression of autophagy-associated proteins in the placenta [46].

3. Nutraceuticals

Nutraceuticals are foods or parts of foods that contain bioactive elements with phys-
iological and medicinal effects that provide health benefits and prevent disease. These
include prebiotics, probiotics, fibers, fatty acids, antioxidants, spices, herbs, nutrients and
supplements. The term “nutraceutical” was coined by Dr Stephen De Felice in 1989, and
it is derived from the combination of the words “nutrition” and “pharmaceutical” [47].
Nutraceuticals differ from pharmaceuticals in that they are considered more of a food
and less of a drug [48–51]. The health benefits of nutraceuticals need to be supported by
clinical evidence from human studies, particularly the positive effects reported in meta-
analyses [15,49,51–54]. They contain bioactive elements such as polyphenolic compounds,
isoprenoids, minerals, amino acid derivatives and fatty acids that have numerous beneficial
and healing effects without side effects. They have been shown to have positive effects
on the health of the cardiovascular, immune and nervous systems, and play a role in
infections, cancer and obesity, making them useful in the prevention of acute and chronic
diseases [50,54–57]. At the moment, regulations on food supplements are not harmonized
and vary from country to country. Some countries have no strict regulations, while others
have well-structured and strict regulations. Consideration of a harmonized approach to
regulation in different countries, based on research, could help increase consumer confi-
dence in dietary supplements worldwide [58]. Currently, regulations in the United States
(US), United Kingdom (UK) and Europe are streamlined and conducive to the development
of nutraceuticals; India has a nascent regulatory landscape with great potential to compete
with other international agencies [59]. However, despite this problem and high product
prices, the nutraceuticals market has experienced tremendous growth in recent years, par-
ticularly in the US, India and European countries, offering significant opportunities for
growth and development [60–62]. The most popular nutraceuticals are preparations based
on fish oil, prebiotics, probiotics, cranberry, garcinia, ginkgo biloba, ginseng, green tea,
omega-3 fatty acids, red yeast rice and turmeric. These products contain key ingredients
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such as polyphenolic compounds, isoprenoids, minerals, amino acid derivatives and fatty
acids [54].

Global figures show that the global nutraceuticals market was worth United States
dollar (USD) 498.86 billion in 2021, and is expected to reach USD 1025 billion by 2030,
with an estimated annual growth rate of 8.33% [63]. In general, more women take dietary
supplements than men, but when looking at athletes, male athletes take significantly more
supplements than female ones [64]. Several epidemiological studies also suggest that
demographic factors may influence supplement use; older age, gender, education level,
affordability and employment status are some prominent demographic characteristics asso-
ciated with increased supplement use [65]. The Institute of Medicine (IOM) recommends
that pregnant women take a prenatal multivitamin/mineral supplement [66]. All women
are advised to take a daily supplement containing 30 mg of elemental iron [66] and 600 mg
of folic acid daily from a combination of dietary and supplemental sources [66]. However,
dietary supplements are not limited to vitamins and minerals. In Canada, for example,
vitamin and mineral supplements are classified and regulated as natural health products
(NHPs), a classification that also includes herbal remedies, homeopathic medicines, tra-
ditional medicines, probiotics, essential fatty acids and amino acids [67]. These products
can be purchased without a prescription and are therefore readily available to pregnant
women [68] (Table 1).

Table 1. General features of nutraceuticals.

Details

Definition Foods or parts of foods containing bioactive elements with physiological and
medicinal effects that provide health benefits and prevent disease.

Examples Prebiotics, probiotics, fiber, fatty acids, antioxidants, spices, herbs, nutrients,
and supplements.

Difference from Pharmaceuticals Considered more food-like and less drug-like.

Clinical Evidence Health benefits supported by clinical evidence from human studies,
particularly positive effects reported in meta-analyses.

Bioactive Elements Polyphenolic compounds, isoprenoids, minerals, amino acid derivatives and
fatty acids.

Health Benefits Positive effects on cardiovascular, immune and nervous systems; role in
infections, cancer, and obesity; useful in preventing acute and chronic diseases.

Current Regulations

US, UK, and Europe have streamlined regulations; India has a nascent but
promising regulatory landscape; Canada allows free marketing of herbal

remedies, homeopathic medicines, traditional medicines, probiotics, essential
fatty acids, and amino acids.

Popular Nutraceuticals Fish oil, prebiotics, probiotics, cranberry, garcinia, ginkgo biloba, ginseng,
green tea, omega-3 fatty acids, red yeast rice and turmeric.

Demographic Factors
More women take dietary supplements than men, but male athletes take more

supplements than female athletes. Older age, gender, education level,
affordability and employment status influence supplement use.

Probiotics, a term derived from Latin and Greek meaning “for life”, has had several
definitions. First defined 50 years ago, the most recent and widely accepted description
is “live microorganisms administered in sufficient quantities to exert a beneficial phys-
iological effect on the host”. According to a report by the Joint Food and Agriculture
Organization of the United Nations (FAO)/World Health Organization (WHO) Expert
Consultation, probiotics are defined as “live microorganisms that, when administered in
adequate quantities, have a health benefit to the host”. Many publications define probiotics
by referring to similar sources. The International Scientific Association for Probiotics and
Prebiotics (ISAPP) also defines probiotics as live microorganisms capable of inducing a
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health benefit for the host when administered in adequate quantities. The term “probiotics”
is often attributed to Lilly and Stillwell, who first coined it in 1965, defining probiotics as
a substance produced by one microorganism that stimulates the growth of another. They
saw probiotics as the opposite of antibiotics. Parker (1974) offered a different perspective,
describing probiotics as organisms and substances that contribute to the intestinal microbial
balance. However, the term “probiotics” is often attributed to Kollath, who coined the
term “probiotika” in 1953 to describe active substances that are essential for the healthy
development of life [69]. Metabolites, dead micro-organisms or other non-viable products
based on micro-organisms are not probiotics. There are several types of bacteria used as
probiotics, with Lactobacilli and Bifidobacteria being the most common [70] (Table 2).

Table 2. Some of the bacteria commonly present in probiotics.

Bacteria Description

Lactobacillus species

Lactobacillus acidophilus Supports intestinal health; may reduce diarrhea risk.

Lactobacillus rhamnosus Supports immune function; may reduce respiratory infections.

Lactobacillus casei Helps maintain gut microbial balance.

Lactobacillus plantarum Benefits digestive health and immune system.

Lactobacillus paracasei Supports gastrointestinal health.

Bifidobacterium species

Bifidobacterium bifidum Improves intestinal health; may aid in IBS management.

Bifidobacterium breve Supports gut health and immune function.

Bifidobacterium longum Helps maintain gut barrier integrity; supports digestion.

Saccharomyces species

Saccharomyces boulardii Proven efficacy in treating antibiotic-associated diarrhea;
supports immune function.

Others

Streptococcus thermophilus Used in yogurt fermentation; may aid lactose digestion.

Enterococcus faecium Contributes to gut health and microbiome balance.

Bacillus coagulans Produces lactic acid; supports digestive health.

These bacteria have a symbiotic relationship with humans and live in the mucus
membrane on the epithelial cells of the gut [71]. They inhibit the adhesion and proliferation
of harmful bacteria by producing bactericidal chemicals. As evidence of the benefits and
safety of probiotics grows, these bacteria are increasingly supplementing and replacing
traditional prophylactic and therapeutic regimes. Probiotics are available as supplements
containing freeze-dried bacteria in tablets, capsules and powders. Many people use them
routinely and the choice of probiotic product depends on the specific type of bacteria and
the desired beneficial effect. Thousands of probiotic strains are available, each offering
different health benefits.

It has been widely believed that probiotics are not subject to regulation [72]. However,
bacteria used as probiotics must undergo thorough safety assessments [73]. The Food
and Drug Administration (FDA) has established regulatory authority over the production,
manufacturing, labelling and safety of probiotic products. Specifically, on 24 August
2007, the FDA implemented regulations requiring current Good Manufacturing Practices
(GMPs) for dietary supplements. Although these regulations do not specifically address
the verification of claims of efficacy, they are expected to improve the quality (identity,
purity and strength) of probiotic supplements available on the market. In general, the
FDA does not review the labelling or safety of probiotic products unless the product is
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marketed as a drug (i.e., to treat, cure, prevent, mitigate, or diagnose disease) without
proper drug approval [72]. FDA regulations on probiotics depend significantly on the
intended use, which is indicated on the product label. According to Degnan (2008) [74] and
Hoffman et al. (2008) [75], there are four main regulatory categories for probiotics, each
with distinct requirements, described in Table 3.

Table 3. FDA regulations on probiotics.

Regulatory Category Description FDA Requirements

Drug or Biological Product Intended for use as drugs to treat, cure,
prevent, mitigate, or diagnose disease.

Must undergo FDA approval as biological
products, similar to other drugs.

Dietary Supplements

Marketed as dietary supplements, not
requiring pre-approval by the FDA.

Manufacturers must notify the FDA of
product claims and comply with “new

dietary ingredient” regulations.

Subject to regulations ensuring safety and
proper labeling post-market.

Food or Food Ingredient
Intended for use as a food or food ingredient.
FDA regulates through post-market controls

related to adulteration.

Focuses on ensuring products are safe and
properly labeled after market placement.

Medical Food
Marketed as medical foods, specifically

formulated for the dietary management of a
specific medical condition.

No pre-market approval required; must meet
FDA standards for medical foods.

If probiotics are intended to be used as drugs, they are treated as biological products
and must comply with FDA regulations applicable to such products. If they are marketed as
dietary supplements, they can be sold without FDA pre-approval, but manufacturers must
notify FDA of their product claims and comply with new dietary ingredient regulations. If
marketed as a food or food ingredient, FDA oversight focuses on post-market controls to
prevent adulteration. If marketed as a medical food, pre-market approval is not required
under FDA guidelines [74].

In Europe, there are no specific regulations for probiotics used in food, unlike microbial
feed additives, which are subject to safety assessments for both animals and humans. The
Scientific Committee on Animal Nutrition (SCAN) has introduced the concept of “Qualified
Presumption of Safety” (QPS), which allows species with established safety data to be
marketed without extensive testing [76].

Probiotics have several health benefits when taken in sufficient quantities: they prevent
digestive disorders such as infectious diarrhea, Helicobacter pylori infection and antibiotic-
associated diarrhea [77–79]; they act as an adjunct in the treatment of metabolic disorders
such as metabolic syndrome, type 2 diabetes and obesity [78]; they improve gut health,
boost the immune response and reduce serum cholesterol levels and blood pressure [80];
they have also been shown to prevent and treat allergies, skin disorders and urogenital
infections [81,82]. Probiotics play a key role in modulating the population of the intestinal
microbiota, strengthening the intestinal barrier and modulating the immune system [83];
they promote a condition of eubiosis by secreting antimicrobial substances and competing
with pathogens to prevent their adhesion to the cell surface [84]. Although probiotics
are generally recognized as safe, there are cases where they have been shown to be risky,
associated with gastrointestinal disorders, respiratory infections, allergic reactions and
serious medical conditions such as sepsis and endocarditis, situations that highlight the
importance of assessing the risk associated with taking these products unsupervised [85].

4. Nutraceuticals in Pregnancy

Nutrients and nutraceuticals have the ability to influence gene expression and are
crucial in preventing diseases by inhibiting detrimental genes [86]. Epigenetics refers
to heritable changes in gene expression that do not involve alterations to the DNA se-
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quence itself [87], often resulting from environmental and nutritional factors that modify
DNA/histone structures and affect phenotypic expression [86]. There is growing recog-
nition that a mother’s diet during pregnancy impacts the health of her offspring through
epigenetic changes [88]. What role might nutraceuticals play in influencing epigenetics
during pregnancy? Several studies have looked at supplementation with micronutrients
as omega-3 polyunsaturated fatty acids, minerals and vitamins, including folic acid and
vitamin D, during pregnancy to see if they might help reduce the risk of conditions such as
pre-eclampsia and prevent impaired fetal development, as intrauterine growth restriction
(IUGR) [89–92]. They are the leading cause of perinatal mortality and morbidity worldwide
and appear to result from a failure of trophoblast invasion, with critical consequences for
placental perfusion by maternal blood [93]. These complications affect both pregnancy
outcomes at delivery and the long-term cardiovascular health of affected women and
their offspring [94]. Table 4 presents the findings of epidemiological studies conducted
by various research groups on the utilization of nutraceutical supplementation during
pregnancy in recent years.

In addition to micronutrient supplementation, a large number of pregnant women use
many types of extracts for different purposes [95]. The situation varies between Europe
and the United States, ranging from 27% to 57% in Europe and 10% to 73% in the United
States [96] (in southern Italy, it has been estimated that 81% of pregnant women have used
at least one herbal product during pregnancy [97]), while in Australia the percentage is
around 14% [98]. The problem with the use of such products during pregnancy is that
there are not enough studies to rule out possible effects on the proper development of
the placenta and the fetus, so there is no regulation of their use. Many experimental
studies have been carried out to analyzing the effects of extracts of various herbs in animal
models of mice or rats, but the results have often been contradictory [99–101]. Many of
these products affect the cytochrome P450 superfamily (CYP), which is responsible for
65-80% of all CYP-mediated drug metabolism [102]; black elderberry, ginger and horsetail
show potent inhibition of CYP1A2, while fennel and raspberry leaves inhibit CYP2D6 and
CYP3A4 [103].

The use of probiotics by pregnant women is increasing and is generally safe and
well tolerated, although some rare side effects have been reported, systemic absorption
in healthy women is rare. The current literature does not indicate an increase in adverse
pregnancy outcomes [104].

Table 4. A review of the literature on the effects of nutraceuticals during pregnancy [105–108].

Nutraceutical Key Findings Reference

Folic Acid

The timely initiation of folic acid (FA)
supplementation during gestation was associated with
a decreased risk of congenital malformations, which
was mainly attributed to its protective effect against

heart defects. It is recommended that FA
supplementation should be initiated 1.5 months prior

to conception and continued for a period of four
months in order to optimize the prevention of

congenital malformations.

Dong, Jing et al., 2023 [105]

Omega-3 Fatty Acids

It is recommended that pregnant women consume an
additional intake of at least 100-200 mg/d of

docosahexaenoic acid (DHA), as advised by the
European Food Safety Authority (EFSA).

Observational studies have demonstrated that a
reduction in omega-3 DHA and eicosapentaenoic acid
(EPA) intake and a decline in blood levels of these fatty
acids are associated with a markedly elevated risk of

premature birth (PTB) and early PTB.

Cetin, Irene et al., 2024 [106]
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Table 4. Cont.

Nutraceutical Key Findings Reference

Vitamin D

Vitamin D supplementation alone has produced
uncertain evidence on PE, gestational diabetes,

preterm birth or nephritic syndrome. It may reduce
the risk of severe postpartum hemorrhage and the risk

of low birth weight.

Palacios, Cristina et al., 2024 [108]

Calcium

Calcium supplementation has been demonstrated to
lower blood pressure by reducing parathyroid

hormone release and intracellular calcium, which
results in reduced vascular smooth muscle

contractility. Consequently, it can reduce uterine
smooth muscle contractility and prevent preterm labor.

Prior to conception and in the early stages of
pregnancy, it may have more beneficial effects on PE.

Dwarkanath, Pratibha et al., 2024 [107]

5. Folic Acid (FA)

Folate plays a crucial role in placental development, influencing embryogenesis and
fetal growth [109–111], and maternal folate deficiency can adversely affect placental devel-
opment, potentially affecting the risk of congenital malformations. Folate requirements
during pregnancy are high due to its involvement in DNA synthesis, cell division and prolif-
eration, placental and fetal growth and development [112]. In pregnant women, low folate
levels are associated with an increased risk of neural tube defects, recurrent miscarriage,
PE and preterm birth [112–114]. The placenta facilitates the transfer of folate to the fetus
via specific transporters, including folate receptor-α (FR-α), reduced folate carrier (RFC)
and proton-coupled folate transporter (PCFT), and the expression and transport capacity
of these transporters can be altered by pregnancy complications and environmental fac-
tors [109,110]. The main known effect of folic acid in preventing pregnancy complications
is the reduction of homocysteine levels, which could reduce oxidative stress [115]. Folate is
essential for converting homocysteine to methionine and for supplying the methyl group
needed to transform methionine into S-adenosylmethionine (SAM), a key methyl donor in
numerous reactions such as the methylation of DNA, RNA, and proteins [112,116]. It is also
involved in recycling homocysteine into methionine and in the synthesis of nucleotides
like purines, pyrimidines, and thymidines, which are crucial for DNA synthesis [116,117].
When SAM levels decrease due to folate deficiency, cytotoxic homocysteine levels increase,
resulting in the expression of pro-inflammatory cytokines that induce oxidative stress by
promoting reactive oxygen species, leading to global DNA hypomethylation [88,112] and
alterations in DNA methyltransferases (DNMTs) [118]. High maternal homocysteine levels
are associated with preterm birth, low birth weight, PE, miscarriage and IUGR.

The culture of human placental trophoblast has demonstrated that FA is indispens-
able for several pivotal phases of placental development, including the invasion of the
trophoblast, the formation of placental blood vessels, and the secretion of matrix metallo-
proteinases. The available evidence on the relationship between FA supplementation and
placental growth across different pregnancies is limited. The primary metric utilized to
assess the growth and function of the placenta is placental weight. Other morphological
indicators include length, width, thickness, surface area, and so forth. An ex vivo study
demonstrated that placentas cultured under low-FA conditions exhibited increased apopto-
sis in full-term human placental primary trophoblasts [119]. The results of animal studies
have indicated that the administration of FA supplementation prior to and throughout
the gestational period has been associated with an increase in several key parameters, in-
cluding placental and fetal weight, maximum placental diameter, junctional and labyrinth
volume, and blood vessel density [120]. This may be attributed to the fact that FA has
been observed to elevate the expression levels of vascular endothelial growth factor A
(VEGF-A) and placental growth factor mRNA (PIGF mRNA), which in turn has been



Int. J. Mol. Sci. 2024, 25, 9688 9 of 31

shown to enhance blood vessel density and improve fetal placental growth restriction. Low
folate concentrations have been demonstrated to increase placental vascular resistance. The
placenta is susceptible to oxidative stress due to the elevated metabolic activity of placental
cells. As a methyl donor in the homocysteine cycle, a deficiency of folate can result in
elevated levels of homocysteine in the blood. Elevated homocysteine levels contribute to
the induction of oxidative stress by promoting the production of hydrogen peroxide and
superoxide free radicals. These deleterious factors impair the functionality of the placental
vascular endothelium, impede the angiogenesis process of the villi, and reduce the degree
of denudation of the villous capillary bed, resulting in a thinner placenta [121].

Folate supplementation during pregnancy is always recommended, often even before
fertilization when planning a pregnancy.

6. Omega-3 Polyunsaturated Fatty Acids (PUFAs)

Maternal supplementation with omega-3 PUFAs during pregnancy increases the dura-
tion of pregnancy, thereby reducing preterm birth, improves fetal growth and reduces the
risk of pregnancy complications [122,123]. Omega-3 PUFAs, which are preferentially trans-
ferred to the fetus through the placenta, play a key role in normal fetal development and
placental function. Omega-3 PUFAs promote remodeling of the utero-placental architecture
to facilitate increased blood flow and surface area for nutrient exchange [122] through
cellular, molecular, and epigenetic pathways. These fatty acids enhance trophoblast inva-
sion, vascular development, and nutrient transport, while also modulating gene expression
through DNA methylation, histone modification, and non-coding RNAs. They can affect
histone acetylation and methylation, affecting the transcriptional activity of essential genes,
and can alter the expression of specific miRNAs in the placenta, which can subsequently
affect placental and fetal physiology [124]. In particular, dietary docosahexaenoic acid
(DHA), a vital omega-3 fatty acid, is essential for optimal placental and fetal development,
especially of the brain, nervous and visual systems, and can influence global DNA methyla-
tion patterns through monocarboxylate metabolism [125,126]. DHA receives methyl groups
from SAM via the action of phosphatidylethanolamine N-transferase [125]. This process
is crucial for converting phosphatidylethanolamine to phosphatidylcholine, a phospho-
lipid essential for transporting polyunsaturated fatty acids from the liver to plasma for
distribution to peripheral tissues [125]. When maternal DHA levels are low, the demand
for methyl groups to convert phosphatidylethanolamine to phosphatidylcholine decreases,
resulting in an excess of methyl groups that enhances global methylation of placental
DNA, thereby altering placental gene expression [125]. Consequently, low dietary DHA
levels may increase global DNA methylation patterns. Another mechanism of omega-3
fatty acids activated during pregnancy is the reduction of inflammation and oxidative
stress; an increase in placental inflammation and oxidative stress has been associated with
placental disorders such as PE, IUGR and gestational diabetes mellitus [122]. Omega-3 fatty
acids reduce placental inflammation by promoting the production of anti-inflammatory
eicosanoids or reducing the production of pro-inflammatory eicosanoids [122,127,128] and
limit placental oxidative stress by reducing the production or increasing the scavenging of
reactive oxygen species (ROS) [122]. In addition, DHA has been shown to reduce oxida-
tive damage to placental DNA and stimulate the expression of key angiogenesis factors
such as VEGF [129]. Radicals, such as ROS, have the capacity to activate a methylene
bridge between two adjacent C=C double bonds, a defining feature of DHA and other
PUFAs. This process involves acylation of the Cδ1 site in the tryptophan of the target
protein with a methylene bridge, which in turn exerts signal-regulatory activity. It re-
mains unclear whether acylation of the methylene bridge occurs in the placenta of women
with PE. However, it is hypothesized that oxidative stress caused by placental hypoxia
in PE results in ROS overproduction, thereby allowing DHA and other PUFAs to alter
signaling pathways crucial for placental adaptation to the maternal–fetal environment via
acylation of methylene-bridged tryptophan [130]. The study conducted by Lidong Liu
et al. (2024) [131] revealed a reduction in overall DHA acylation in the placenta of patients
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with PE. Furthermore, DHA supplementation was observed to enhance DHA acylation
on protein kinase B (AKT) in HTR-8/SVneo cells. However, this effect was competitively
reversed by tryptophan supplementation. These findings indicate that sufficient levels
of DHA in the placenta may undergo acylation to AKT via a methylene bridge, thereby
activating AKT-VEGFA signaling and promoting placental angiogenesis. Conversely, a
deficiency of DHA in the placenta may impair placental angiogenesis, thereby contributing
to the pathogenesis of PE [131].

7. Vitamin D and Calcium

Vitamin D plays a crucial role in placental development and its deficiency can lead to
adverse pregnancy outcomes, including an increased risk of pre-eclampsia and gestational
diabetes mellitus [91,132]. Vitamin D supplementation during pregnancy has shown
potential benefits in reducing the risk of complications and improving maternal and fetal
outcomes [133]. Vitamin D affects cell proliferation, differentiation, angiogenesis, fetal
bone formation and immune modulation, which are critical for placental development.
The optimal structure of the chorionic villi ensures proper nutrient delivery to the fetus,
but in vitamin D deficiency, the chorionic villi show several structural changes, including
villous edema, villous stroma fibrosis and thickening of the basement membrane of the
fetal capillaries. This compromises vascular integrity and increases the distance between
the fetal capillaries and the intervillous space, reducing the transfer of O2 from maternal to
fetal blood.

These changes are associated with adverse pregnancy outcomes due to maternal
vascular malperfusion [133]. In addition, vitamin D protects endothelial cells from oxidative
stress and reduces the effects of exposure factors associated with pre-eclampsia. Vitamin D
supplementation improves vascular elasticity and the thickness of the media and intima
of blood vessels [133]. MicroRNA (miRNA) molecules are co-inducible in key placental
developmental processes [134], molecules that play a role in many diseases and are involved
in post-transcriptional gene expression and modulation of pathways that control organ
function and differentiation [135]. It is therefore reasonable to assume that abnormal
changes in the placenta of deficient women are due to a dysfunction in miRNA expression.
Functional roles of miRNAs include the control of trophoblast differentiation, proliferation,
invasion, migration, apoptosis, angiogenesis and cell metabolism, such as intrauterine
growth restriction and pre-eclampsia [136,137]. It has been shown that vitamin D regulates
cell cycle progression and has pro-differentiation and anti-proliferative effects in several
cell types, including mesenchymal cells, endothelial cells, immune cells, keratinocytes,
chondrocytes, osteoblasts and neural cells. Differentiation is mediated by changes in the
expression of growth factors and cytokines, while proliferation effects are mediated by the
induction of cell cycle inhibitors that prevent the transition from G1 to S phase of the cell
cycle [138]. This suggests that the effects of vitamin D deficiency on cell differentiation and
proliferation are complex. In addition, the presence of 1α-hydroxylase, an enzyme that
converts 25(OH)vitaminD3 to the biologically active form 1,25(OH)vitaminD3, on placental
cells indicates the importance of vitamin D in the development of a healthy pregnancy [139].

Vitamin D stimulates insulin production by preventing insulin deficiency, a central
factor in the pathogenesis of gestational diabetes mellitus, and reduces pro-inflammatory
cytokines present in the pre-eclamptic placenta [132]. Vitamin D exerts its biological effects
by binding to and activating the vitamin D receptor (VDR), which then forms a heterodimer
with retinoid X receptor (RXR) to regulate gene expression by attaching to target gene
promoters [140,141]. In placental tissue of pre-eclamptic pregnancies, VDR and RXR are
found to be downregulated due to DNA hypermethylation [142]. DNA methylation also
influences the expression of two crucial genes for regulating vitamin D levels during
pregnancy: 25(OH)-1α-hydroxylase (CYP27B1), necessary for vitamin D activation and
upregulated during pregnancy, and 24-hydroxylase (CYP24A1), which inactivates vitamin
D and must be downregulated during pregnancy [141,143]. The CYP24A1 promoter is
hypomethylated, while CYP27B1 is unmethylated in normotensive human placenta [143],
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but hypermethylated in pre-eclamptic human placenta [142]. Thus, vitamin D metabolism
may be influenced by epigenetic mechanisms in women with pregnancy complications,
although further research is needed to explore the role of dietary vitamin D in these
epigenetic modifications.

Combined with vitamin D, calcium deficiency often occurs during pregnancy. It
has been shown that women with PE have impaired calcium metabolism and that sup-
plementation can reduce the risk of developing the condition [132,143], although it may
often increase the risk of preterm birth <37 weeks compared to women who have not
supplemented [144]. Extensive research has explored the mechanisms of ion transfer across
trophoblast cells, identifying key components such as Ca2+-ATPase [145], the Na+/Ca2+

exchanger (NCX) [146,147], calbindin D9K and D28K [146,148,149], L- and T-type calcium
channels [150,151], and transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6)
channels [152,153]. In particular, mice deficient in NCX due to a smaller and avascular
placental labyrinth layer. These specialized calcium transporters, particularly in the basal
plasma membrane of syncytiotrophoblasts, ensure that the fetus remains hypercalcemic
relative to the mother [154]. Detailed reviews have covered many aspects of calcium
transport in the placenta. As well as being essential for fetal development, intracellular
calcium in syncytiotrophoblasts regulates several functions, including hormone secre-
tion [155,156], nitric oxide production [157] and the activity of transport proteins [158].
Studies of the role of calcium in the human placenta are carried out in vitro using placental
explants, reconstituted membranes, primary trophoblast cultures from villous tissue or
placenta-derived cell lines such as BeWo and JEG-3. The decidua, the maternal part of the
placenta, produces prolactin and human chorionic gonadotropin in a calcium-dependent
manner [155,159]. Some research suggests that calcium influx through voltage-gated cal-
cium channels (VGCCs) is essential for hormone secretion [156,160,161], although this
is controversial due to inconsistent results from patch clamp experiments. L-type cal-
cium channel blockers such as diltiazem and verapamil modestly inhibit TRPV6-mediated
calcium uptake at higher concentrations [162]. The presence of non-selective cation chan-
nels [163], store-operated [164] and receptor-operated calcium channels [165] in the human
placenta has been described, but the role of calcium in specific cellular functions remains
largely unknown. For example, in the liver, glycogen conversion to glucose is regulated
by calcium release from intracellular stores via glycogen phosphorylase [166]. However,
in mouse placental glycogen trophoblast cells, glycogen granules occupy almost all of the
cytoplasm, leaving little space for organelles [167]. Therefore, it remains uncertain whether
extracellular calcium influx through plasma membrane channels is necessary for glycogen
conversion in trophoblast cells.

Significant changes occur in maternal vitamin D levels and calcium metabolism during
pregnancy. Calcium is transferred from the mother to the fetus through the placenta. In
rats, the placenta transports 25(OH)2D and 24,25(OH)2D, but not 1,25(OH)2D. Although
this transplacental transport has not been extensively studied in humans, it is believed that
vitamin D transfer from mother to fetus is facilitated by higher serum levels of 1,25(OH)2D
in the mother compared to the fetus. During pregnancy, the synthesis of 1,25(OH)2D in
the kidney increases, and both the decidua and placenta produce significant amounts
of 1,25(OH)2D through the activity of the enzyme CYP27B1 [168]. Additionally, specific
methylation of the placental CYP24A1 gene suppresses its transcription, leading to in-
creased production and accumulation of 1,25(OH)2D, which reaches levels in the maternal
serum that are twice as high in the third trimester compared to non-pregnant or postpartum
women. The synthesis, metabolism, and functions of vitamin D during pregnancy are
intricate. The human endometrial decidua produces 1,25(OH)2D and 24,25(OH)2D, while
the placenta synthesizes 24,25OH2D. Notably, 24,25(OH)2D produced by the placenta
accumulates in fetal bone and may play a role in fetal skeletal ossification. In the fetal
lamb, 24,25(OH)2D is the main form of vitamin D, and it may support calcium absorp-
tion through the placenta and enhance skeletal ossification without increasing calcium
levels in the fetal blood or urine [168]. 1,25(OH)2D and the enzyme CYP27B1 are involved
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in important autocrine and paracrine immune-modulatory networks during pregnancy.
1,25(OH)2D influences decidual dendritic cells and macrophages, which interact at the
maternal–fetal interface to stimulate regulatory T cells. It also inhibits the release of T
helper 1 (Th1) cytokines while promoting the release of T helper 2 (Th2) cytokines, which
are predominant during implantation. This immune modulation likely prevents the re-
jection of the implanted embryo. Additionally, 1,25(OH)2D facilitates the transformation
of endometrial cells into decidual cells and upregulates the expression of the homeobox
A10 (HOXA10) gene, which is crucial for embryo implantation and early pregnancy de-
velopment [169]. Once the chorioallantoic placenta is established at the end of the first
trimester, the villous tissues secrete various hormones essential for maintaining pregnancy
and regulating placental function. In human syncytiotrophoblasts, vitamin D receptor
(VDR), CYP27B1, CYP24A1, and 1,25(OH)2D work together in an autocrine manner to
regulate the expression of key placental hormones such as hCG, human placental lactogen
(hPL), estradiol, and progesterone [170]. The collective data suggest that 1,25(OH)2D sup-
ports implantation, maintains a healthy pregnancy, promotes fetal growth by facilitating
calcium delivery, regulates the secretion of multiple placental hormones, and limits the
production of proinflammatory cytokines.

8. Probiotics

The use of probiotics by pregnant women in the US and Canada ranges from 1.3% to
3.6% while the likelihood of probiotic use in the Netherlands has risen to 13.7% [171]. The
correct use of probiotics in women, in general, can promote a condition of eubiosis among
species of the reproductive tract microbiota, which is not always in a normal homeostasis,
thus improved urogenital tract health and normal physiological functions. In the field of
reproductive medicine, the Lactobacillus species (Lactobacillus reuteri RC-14, Lactobacillus
fermentum, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus
crispatus) are of particular interest. The main representatives of probiotics that modulate
fertility dysbiosis are Lactobacillus casei and Lactobacillus salivarius, Bifidobacterium species
and Bacillus species [172]. The characteristics and capabilities of select probiotic strains
employed to enhance reproductive function and reproductive health are elucidated in
Table 5.

Table 5. Characteristics and capabilities of selected probiotic strains in the reproductive tract.

Probiotic Species Properties/Function

Lactobacillus rhamnosus (E21 and L3)
Lactobacillus helveticus (P7, P12, S7, U13)

Lactobacillus salivarius (N30)

- High survival during in vitro gastrointestinal passage
- Adhesion to both intestinal and vaginal epithelia
- Hydrophobicity
- Auto-aggregation
- Co-aggregation
- Reduces pH
- Produces organic acids (mainly acetic acid) and hydrogen

peroxide (H2O2)-Inhibits Candida species growth

Lactobacillus strain (SQ0048)

- Colonizes the vaginal microflora of healthy cows
- Acts as a microbiological barrier to genital pathogen infections
- Adheres to specific epithelia
- Produces bacteriocins

Lactobacillus reuteri RC14
Lactobacillus rhamnosus GR1

- Excellent colonizing ability
- Preferred for preventing urogenital tract infections
- Tolerates low pH
- High adherence to uroepithelial and vaginal cells
- Colonizes the vagina when administered orally
- Integral to the female genital tract
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Table 5. Cont.

Probiotic Species Properties/Function

Lactobacillus rhamnosus BPL005

- Reduces pH
- Produces organic acids (mainly acetic acid)
- Suppresses Propionibacterium acnes and Streptococcus

agalactiae growth
- No signs of cytotoxicity, vaginal irritation, or allergic contact

dermatitis potential

Lactobacillus buchneri (DSM 32407)

- Does not affect the viability of epithelial cells
- Does not evoke a pro-inflammatory response
- Improves antioxidant status
- Reduces pH
- Produces organic acids such as lactic acid
- Produces H2O2 and bacteriocins
- Produces co-aggregation molecules that block pathogen spread

Lactobacillus reuteri ATCC PTA 6475 - Anti-inflammatory strain

Lactobacillus rhamnosus CICC6141
Lactobacillus casei BL23v

- Adheres to the gut epithelium

Lactobacillus rhamnosus CECT8361
Bifidobacterium longum CECT7347

- Antioxidant and anti-inflammatory activities

Lactobacillus gasseri OLL2809 - Immunostimulatory activity

Bacillus amyloliquefaciens
- Tolerates high temperatures
- Reduces pH
- Improves antioxidant status

Bacillus subtilis (DSM10)
Bacillus clausii (DSM 8716)
Bacillus coagulans (DSM 1)

Bacillus amyloliquefaciens (DSM 7)

- Safe Bacillus species with probiotic properties

Bifidobacterium lactis V9 - Probiotic characteristics

Saccharomyces cerevisiae
- Induces pathogen co-aggregation
- Has antibiotic resistance profile
- Possesses anti-inflammatory properties
- Suppresses Candida albicans growth

Studies have evaluated the effect of probiotics on maternal serum and placental mor-
phology, although there is no direct information on the effect of probiotics on placental
development. Probiotics play an important role in prenatal health, placental health and fetal
development. They have been associated with a reduced risk of preterm birth and develop-
ment of pre-eclampsia, improved maternal health with a role in maternal gut microbiota,
lipid metabolism, vaginal infections, gestational diabetes mellitus, allergic diseases and
alleviation of inflammatory conditions [173–175]. Table 6 presents the findings of multiple
epidemiological studies conducted by diverse research teams in various countries between
2008 and 2023, with a focus on women experiencing and not experiencing complications
during pregnancy [176].
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Table 6. Synthesis of the effects of probiotics in pregnancy: maternal, fetal and neonatal health outcomes [176].

First Author
(Year)

Country of
Study Study Population Sample

Size Intervention Control Route of
Administration

Intervention
Period

Treatment
Regime

Review Outcomes
Reported

Aaltonen et al.,
2008 [177] Finland Pregnant women and

their infants 256

Probiotic capsules
containing Lactobacillus

rhamnosus GG and
Bifidobacterium lactis

Bb12 at a dose of 1010

CFU plus dietary
counselling

Placebo plus
dietary

counselling
Oral (capsule) 20 wk

(unspecified) Not reported PE, PTB (<37 wk),
GDM

Asgharian et al.,
2020 [178] Iran

Pregnant women with a
pre- or early-pregnancy
BMI ≥25, aged 18 y or

older, fasting blood
glucose <92 mg/dL,

20–22 weeks’ gestation

130

Streptococcus
thermophilus,

Lactobacillus delbrueckii
subsp. bulgaricus

107 CFU/g, Lactobacillus
acidophilus, and

Bifidobacterium lactis
Bb12

Streptococcus
thermophilus and

Lactobacillus
delbrueckii subsp.
bulgaricus 107

CFU/g

Oral (yogurt)
From 24 wk

gestation
until delivery

100 g yogurt/day PE, PTB (<37 wk),
GDM, NNM, stillbirth

Axling et al., 2021
[179] Sweden

Healthy nonanemic
(hemoglobin ≥ 110 g/L)
pregnant women, aged
18–42 y with a singleton

gestation, BMI
18–30 kg/m2

326

Freeze-dried
Lactiplantibacillus

plantarum 299v capsule
1010 CFU/g, + low level
iron (4.2 mg), ascorbic
acid (12 mg), and folic

acid (30 µg)

Placebo Oral (capsule)

From 10–12
weeks’

gestation
until delivery

Twice daily

PTB (<37 wk), PE,
PROM, maternal

mortality, stillbirth,
maternal sepsis, LBW

(<2500 g), adverse
effects of intervention,
gestational age at birth

Callaway et al.,
2019 [180] Australia

Pregnant women before
16 weeks’ gestation with

singleton pregnancy,
BMI >25.0 kg/m2, >18 y,

<20 weeks’ gestation

433
Lactobacillus rhamnosus

and Bifidobacterium
animalis lactis at a dose

of >1 × 109 CFU/g
Placebo Oral (capsule)

From <20
weeks’

gestation
until birth

Once daily

PE, PTB (<37 wk), PTB
(<34 wk), GDM, PIH,
stillbirth, SGA, LBW
(<2500 g), maternal
ICU, gestational age

at birth

Daskalakis and
Karambelas, 2017

[181]
Greece

Women with PPROM
between 24 and 34 wk

of gestation
115

Lactobacillus rhamnosus
and L. gasseri at 1 × 108

CFU (Ecovag Balance
capsules) plus 3 daily

doses of 1 g amoxicillin
and 2 daily doses of

500 mg metronidazole
intravenously for 2 d,

then orally for
another 8 d period.

Antibiotic
treatment

(amoxicillin,
metronidazole)

Vaginal (capsule)

From
recruitment

(24–34 weeks’
gestation) for

10 d

Daily (capsule
number not

reported)

NNM, RDS, IVH,
sepsis, NEC,

gestational age at birth

Ebrahimzadeh
et al., 2020 [182] Iran High-risk diabetic

pregnant women 255

500 mg probiotic
capsules containing

Lactobacillus, Bifidium,
and Streptococcus

Placebo Oral (capsule)

From
recruitment

(14–16 weeks’
gestation) for

12 wk

Once daily GDM
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Table 6. Cont.

First Author
(Year)

Country of
Study Study Population Sample

Size Intervention Control Route of
Administration

Intervention
Period

Treatment
Regime

Review Outcomes
Reported

Facchinetti et al.,
2013 [183] Italy

Pregnant women
carrying a singleton
pregnancy between

10–34 weeks’ gestation,
diagnosed with BV, aged

18–40 y

48

Streptococcus
thermophilius,

3 bifidobacterium strains
(B. longum, B. breve, B.
infantis), 4 lactobacilli

(Acidophilus, Plantarum,
Paracasei, Delbrueckii

subsp. bulgaricus, at least
112 billion bacteria

per capsule

Clindamycin
(100 mg) Oral (capsule)

From
recruitment

for 15 d

2 tablets per d for
5 d, followed by
1 tablet a d for

10 d

BV

Farr et al., 2020
[184] Austria

Women with singleton
pregnancies, who were

GBS positive
82

84 mg
fructo-oligosaccharides;

0.2 billion Lactobacilli
jensenii 100 B CFU/g.
1 billion Lactobacilli

crispatus 100 B CFU/g,
1 billion Lactobacilli

rhamnosus 100 B CFU/g,
0.3 billion Lactobacilli
gasseri 100 B CFU/g

Placebo Oral (capsule)

From
recruitment

(33–37 weeks’
gestation) for

2 wk

Twice daily
PTB (<37 wk),

PPROM, sepsis,
gestational age at birth

Gille et al., 2016
[185] Germany Pregnant women > 18 y 320

Lactobacillus rhamnosus
GR-1 and Lactobacillus
reuteri RC-14 (1 × 109

CFU of each strain
per capsule)

Placebo Oral (capsule)
From first

trimester for
8 wk

Once daily
PTB (<37 wk), BV,

maternal
adverse events

Halkjær et al.,
2023 [186] Denmark

Pregnant women with
obesity (BMI ≥ 30 and

<35 kg/m2), aged > 18 y.
50

Streptococcus
thermophilus,

Bifidobacterium breve,
Bifidobacterium longum,
Bifidobacterium infantis,

and Lactobacillus
acidophilus, Lactobacillus
plantarum, Lactobacillus
paracasei, Lactobacillus

delbrueckii subsp.
bulgaricus in 450 billion

CFU/d

Placebo Oral (capsule)

From
14–20 weeks’

gestation until
delivery

2 capsules twice
daily

PE, PTB (<37 wk),
GDM, PIH, SGA,

gestational age at birth

Hantoushzadeh
et al., 2012 [187] Iran

Patients with
symptomatic BV in the

third trimester of
pregnancy

310

Lactobacillus bulgaris,
Streptococcus

thermophilus, probiotic
Lactobacillus, and

Bifidobacterium lactis 107

colonies per milliliter

Orally
administered
clindamycin

Oral (yogurt)
From the third
trimester for

1 wk
100 g twice daily PTB (<37 wk), PROM,

BV
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Table 6. Cont.

First Author
(Year)

Country of
Study Study Population Sample

Size Intervention Control Route of
Administration

Intervention
Period

Treatment
Regime

Review Outcomes
Reported

Liu et al., 2020
[188] China Pregnant women

positive for vaginal GBS 155

Lactobacillus rhamnosus
GR-1 & Lactobacillus

reuteri RC-14 3 × 1010

CFU in warm water
below 30 ◦C

No treatment Oral (liquid)

From
34 weeks’

gestation for
2 wk

1 pack per day PROM

Husain et al., 2020
[189]

United
Kingdom

Women between
9–14 weeks’ gestation,

aged ≥ 16 y
304

2.5 billion CFUs each of
Lactobacillus rhamnosus

GR-1 and
Lactobacillus reuteri

Placebo Oral (capsule)

From
recruitment

gestation
until delivery

Once daily BV, PTB (<37 wk)

Krauss-Silva et al.,
2011 [190] Brazil

Pregnant women with
asymptomatic BV or
intermediate vaginal
infection, after 8 and

before
20 weeks’ gestation

644
Lactobacillus rhamnosus
GR-1 and Lactobacillus

reuteri RC-14, more than
1 million bacilli of each

Placebo Oral (capsule)

From
recruitment
(8–20 weeks’
gestation) for

16 wk

Once daily PTB (<37 wk), GDM

Lindsay et al.,
2014 [191] Ireland

Pregnant women
between 24–28 weeks’

gestation, fasting blood
glucose ≤ 7 mmol/L,

aged 18–45 y

175
Lacticaseibacillus

rhamnosus GG (6.5 × 109

CFU per capsule)
Placebo Oral (capsule)

From
recruitment

(24–28 weeks’
gestation) for

4 wk

Twice daily GDM

Mantaring et al.,
2018 [192]

The
Philippines

Pregnant women at 24 to
28 weeks of gestation,

planning to exclusively
breastfeed for at least

2 months

233

Nutritional supplement
powder with probiotics

(7 × 108 CFU of
Bifidobacterium lactis and

7 × 108 CFU of
Lactobacillus rhamnosus)

Nutritional
supplement

powder
Oral (liquid)

From
24−28 weeks
gestation to

2 months after
birth

(minimum)

Twice daily
PE, PTB (<37 wk), PIH,

SGA, maternal
adverse events

Neri et al., 1993
[193] Israel Pregnant women with

BV, in the first trimester 84 Lactobacillus acidophilus Acetic acid-soaked
tampon Vaginal (yogurt) From first

trimester

Two doses daily
for 7 days,

regimen repeated
after 1 week

BV

OijNjideka
Hemphill et al.,

2023 [194]
US

Women at risk for iron
deficiency anemia,

pregnant with singleton,
<20 weeks’ gestation,

18−45 years

20

Lactobacillus plantarum
299v 1 × 1010 CFU plus

prenatal vitamins
containing 27 mg iron as

ferrous fumarate

Placebo plus
prenatal vitamins
containing 27 mg

iron

Oral (capsule)

From
15−20 weeks’
gestation until
admission for

delivery

Once daily GDM, gestational age
at birth
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Table 6. Cont.

First Author
(Year)

Country of
Study Study Population Sample

Size Intervention Control Route of
Administration

Intervention
Period

Treatment
Regime

Review Outcomes
Reported

Okesene-Gafa
et al., 2019 [195]

New
Zealand

Pregnant women with a
singleton pregnancy at

12−17 weeks’ gestation,
BMI ≥30

230

Lactobacillus rhamnosus
GG and Bifidobacterium

lactis 6.5 × 109 CFU.
Also received healthy

nutritious foods, recipes,
managing cravings, and

physical
activity education

Placebo Oral (capsule)

From
12−17 weeks’
gestation until

delivery

Once daily

PTB (<37 wk), GDM,
PIH, composite

maternal morbidity,
stillbirth, SGA,

maternal well-being

Pellonperä et al.,
2019 [196] Finland

Women with a
self-reported

prepregnancy BMI
≥25 kg/m²

439

Lacticaseibacillus
rhamnosus HN001 and
Bifidobacterium animalis

ssp. Lactis 420, 1010 CFU
per capsule

Placebo Oral (capsule)
From <18
weeks to
6 months

postpartum
Once daily

PE, PTB (<37 wk),
GDM, PIH, PPH,
stillbirth, SGA,

maternal adverse
events, gestational age

at birth

Petricevic et al.,
2023 [197] Austria

Pregnant women
between 10+0 − 16+0

weeks with intermediate
vaginal microbiota
(Nugent score 4)

129

Lactobacillus casei
rhamnosus (Lcr

regenerans) of >107

CFU/mL

No treatment
Vaginal (tablet),

sustained release
of 4 days

From 10−16
weeks’

gestation

One tablet on day
1 and 1 on day 5

(8 days total)
PTB (<37 wk)

Sahhaf Ebrahimi
et al., 2019 [198] Iran

Pregnant women with
GDM, in the second

trimester
84

Lactobacillus acidophilus
and Bifidobacterium lactis

in yogurt
Normal yogurt Oral (yogurt)

From
recruitment
for 8 weeks

300 mg per day for
8 weeks

Gestational age
at birth

Shahriari et al.,
2021 [199] Iran

Women at high risk of
GDM with gestational

age <12 weeks,
18–40 years, BMI

18.5−39.9

542

Lactobacillus acidophilus
(>7.5 × 109 CFU),

Bifidobacterium longum
(>1.5 × 109 CFU),

Bifidobacterium bifidum
(>6 × 109 CFU)

Placebo Oral (capsule)

From
14 weeks

up to 24 weeks
gestational age

Once daily PE, GDM, gestational
age at birth

Si et al., 2019 [200] China

Pregnant women with
gestational diabetes,
carrying a singleton
pregnancy, before
12 weeks gestation

226

Naturally fermented
fresh garlic soaked in
distilled water, with L.

bulgaricus (108 CFU/mL)

Naturally
fermented fresh

garlic

Oral (fermented
garlic)

From
<12 weeks

gestation for
40 weeks total

5 g daily
PE, PTB (<37 wk),

NNM, stillbirth, RDS,
LBW (<2500 g)

Slykerman et al.,
2018 [201]

New
Zealand

Pregnant women with a
history (or partner
history) of treated
asthma, eczema, or

hayfever, at 35 weeks
gestation

512

Either Lactobacillus
rhamnosus strain HN001
(6 × 109 CFU/day) or
Bifidobacterium animalis
ssp. Lactis strain HN019

(9 × 109 CFU/day)

Placebo Oral (capsule)

From
enrollment to

6 months
postnatally if

still
breastfeeding

Once daily
Long-term cognitive
and developmental

outcomes

Wickens et al.,
2017 [202]

New
Zealand

Pregnant women aged
16–43 y 423

Lactobacillus rhamnosus
HN001, daily dose of 6
× 109 CFU per capsule

Placebo Oral (capsule)

From
< 15 weeks’

gestation until
delivery

Once daily GDM
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It is well known that the presence of microbes in the placenta, amniotic fluid and fetal
membranes influences the course of pregnancy from conception to birth, as well as the
development of the infant’s immune system [203].

It is known that the gut microbiota undergoes significant changes during pregnancy
from the first to the third trimester, independent of the health and diet of the pregnant
woman. It changes from a diverse to a less diverse composition, with an increase in
Proteobacteria and Actinobacteria [204], similar to that observed in inflammatory bowel
disease and obesity [205]. These changes are associated with several adverse health effects;
when women are overweight, there is a decrease in the number of Bifidobacterium and an
increase in the number of Bacteroides, Enterobacteriaceae, Staphylococci and Clostridia [206],
and infants born have higher concentrations of Bacteroides, Clostridia and Staphylococci and
lower concentrations of Bifidobacterium compared to infants born to women of healthy
weight [207]. In infants born to mothers with gestational diabetes, there is a significant
increase in the genera Lachnospiraceae, Bacteroides and Parabacteroides compared to healthy
non-diabetic mothers [208], with an increased risk of developing type 2 diabetes mellitus,
hypertension, cardiovascular disease, renal dysfunction, pre-eclampsia, macrosomia and
excess adiposity in infants later in life [209–211]. In addition, reduced Bifidobacterium and
increased Staphylococcus aureus indicate a high risk of childhood obesity [212]. Higher
numbers of Bacteroides, Gardnerella, Mobiluncus, Peptostreptococcus and Prevotellagenerail
bacteria in the maternal placental microbiota have also been associated with preterm
birth [213]. Low levels of Bifidobacterium and Lactobacillus strains in infants are associated
with an increased risk of developing allergic diseases [214]. This all points to the importance
of maternal biodiversity during pregnancy.

The use of probiotics with different formulations has shown positive effects on both
maternal and fetal health; the use of Lactobacillus rhamnosus and Bifidobacterium lactis
significantly reduced the incidence of gestational diabetes mellitus to 13% and resulted
in a normal growth rate in newborns; the use of L. acidophilus, L. casei and B. bifidum
significantly reduced fasting blood glucose, serum insulin levels, serum triglycerides, very
low density lipoprotein (VLDL) and cholesterol concentrations. Pregnant women showed
a reduction in insulin resistance [215]. In a review of the role of probiotics in the prevention
of pre-eclampsia, the consumption of dairy products containing the probiotic strains L.
rhamnosus GG, L. acidophilus LA-5 and B. lactis Bb12 was found to significantly reduce the
risk of pre-eclampsia and hypertension [216]. In addition, the use of Lactobacillus spp.,
Bifidobacterium spp. and Streptococcus has been shown to induce high tolerance and a good
ability to bind toxic elements such as arsenic, cadmium, mercury and lead, reducing their
absorption and leading to significantly lower levels of cadmium in infant stool samples.
This demonstrates the impact that probiotics can have in the fight against toxic elements,
which is useful in combating various birth defects in newborns [217].

Probiotics can regulate macrophages to induce an enhanced immune response; the
underlying mechanism is the enhancement of macrophage autophagy to defend against
probiotic-induced infection [218]. Lactobacillus acidophilus and Bacillus clausii have been
shown to be potent activators of the innate immune response in the murine macrophage
cell line RAW264.7 [219]. These mediate immunostimulatory activity by interacting with
both microorganism-associated molecular patterns and Toll-like receptors, which are also
involved in stimulating autophagy in macrophages. However, studies on this topic are
insufficient to provide a clear description of the process [220]. It is currently believed
that probiotics can regulate autophagy in the placenta of normal pregnant women, with
beneficial effects for the fetus and newborn, and provide a clinical basis for their use in
abnormal pregnancy. The role of probiotics in mediating autophagy in humans remains
poorly understood, with even less evidence available regarding the effects of probiotics
on placental autophagy in pregnant women. The basal autophagy level of the placental
trophoblast plays a pivotal role in the entire pregnancy process, including embryo implan-
tation and placental vascular recasting. If autophagy is excessive, it can transform from a
protective mechanism to a harmful one, hindering the metabolic functioning of placental
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trophoblasts and leading to certain diseases of placental origin, such as pre-eclampsia and
fetal growth restriction. The expression of autophagy proteins LC3 and Beclin1 is elevated
in pregnant women with pre-eclampsia in comparison to those without the condition [38].
The pathological process of pre-eclampsia is accompanied by impaired functioning of
placental trophoblastic cells, insufficient remodeling of uterine spiral arteries and oxidative
damage. It is conceivable that an increase in placental autophagic activity may facilitate
trophoblast adaptation to pathological changes, thereby maintaining bioenergetic home-
ostasis and removing damaged organelles. In a study published in 2020, Ping Yang and
colleagues [46] demonstrated that probiotic supplementation can induce a reduction of
the autophagy-related protein Beclin1 at the mRNA level in placentas. They proposed
that clinical supplementation of normal pregnant women with probiotics may prevent the
onset of placenta-derived diseases. However, the assessment of specific clinical effects still
requires multi-sample randomized controlled trials (RCTs) for confirmation [46].

A study has identified the role of probiotic interactions in the DNA methylation pattern
of genes associated with weight gain and obesity in pregnant women and their infants. The
women received probiotic capsules containing L. rhamnosus GG ATCC-53103 and B. lactis
Bb12, and after blood samples were taken from the mothers and infants to assess the DNA
methylation status of gene promoters, significantly reduced levels of DNA methylation
were observed in 37 gene promoters in the women and 68 gene promoters in the infants.
In addition, the DNA methylation pattern of five genes was similar between mothers and
infants: complement component (C3), insulin-like growth factor binding protein 1 (IGFBP1),
IL-5, myosin heavy chain 11 (MYH11) and solute carrier family 6 member 5 (SLC6A5).
This confirms the role of probiotic interactions in modulating the DNA methylation status
of genes associated with weight gain and obesity, highlighting the importance of using
probiotics to address these issues [221].

9. Placental Microbiome

The existence or non-existence of the placental microbiome is a matter of debate [222].
The presence of bacterial deoxyribonucleic acid (DNA) in the placenta does not necessarily
guarantee the presence of a thriving microbial community; rather, the presence of bacterial
DNA or microbial cell wall components could induce a host response [223]. A study by
Menon et al. [224] isolated 100–150 nm bacterial extracellular vesicles (BEV) from the pla-
centa, which could be confused with the placental microbiome as they carry bacterial DNA
and other components such as proteins, peptidoglycans, lipopolysaccharides, enzymes
and ribonucleic acid (RNA). The authors state that these bacterial extracellular vesicles
are normal components during pregnancy, derived from the microbiome that resides at
different sites in the maternal body (oral cavity, skin, vagina, intestine, urogenital and
respiratory tract) and reach the placenta by hematogenous route. They can cause low-
grade inflammation in the placenta but do not affect the fetus or the course of pregnancy;
they may also contribute to the development of the fetal immune system and protect the
offspring against subsequent bacterial infections [224]. DNA-based studies then provide
evidence for the presence of a low biomass endogenous microbial community within the
placenta [225]. They show that the microbiota of placentas from healthy term deliver-
ies is present and has a high abundance of Lactobacillus sp., Propionibacterium spp. and
members of the Enterobacteriaceae family [226,227]. Fewer Lactobacillus spp. were found
in placentas from preterm births, possibly supporting a role for this genus in positive
pregnancy outcomes [228]. However, it is not entirely clear how the microorganisms enter
the fetal placental compartment; hypotheses include that the microorganisms ascend from
the vagina, that maternal dendritic cells sample the bacteria from the gut lumen, which
are internalized and transported to the placenta, or that they enter through the blood
supply to seed the placental microbiota [229]. Of the various hypotheses, the evidence
for vaginal translocation is strong, in part because the Lactobacillus-dominant microbiota
is similar to the Lactobacilli spp. present in the vagina, which correlates positively with
gestational age [228,230]. The hypothesis of bacterial translocation by dissemination in
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the bloodstream is thought to be enhanced during pregnancy and lactation, when weak
intercellular junctions in the intestinal and oral mucosa allow the transfer of low numbers
of bacteria into the circulation [231]. But what is the role of the placental microbiota and can
its composition be modified by supplementation? It is possible that the placental microbiota
has a previously unrecognized role in early innate immune development as a source of
antigenic determinants. The presence of bacteria does not lead to adverse pregnancy out-
comes, further supporting the beneficial role of the interaction of the placental microbiome
with the mother and fetus [232]. The composition of the placental microbiota can indeed be
influenced by dietary supplementation. During pregnancy, any microbial supplementation
or bacterial suppression may alter the maternal microbiome. Probiotics or antibiotics may
alter the composition of the placental microbiota, although this is not entirely clear as direct
studies are lacking. It is clear that probiotic foods support beneficial commensals in the gut
microbiota, but it is unclear whether these effects extend to the placental microbiota [213].

10. Discussion

Micronutrient deficiencies are known to have a negative impact on maternal health
and pregnancy outcomes. Deficiencies of several micronutrients, rather than just one,
are linked to adverse effects on pregnancy outcomes, so addressing one deficiency is not
enough if others persist. The effectiveness of nutraceuticals is still uncertain, as no studies
have tested the effects of supplementation to meet all nutritional needs. Furthermore,
most studies on supplementation have been conducted in industrialized countries, where
deficiencies are less common, and this could lead to an underestimation of the benefits of
supplementation in developing countries, where deficiencies are more common.

The potential mechanisms through which micronutrient intake during the pre-concep-
tional period affects the development of pregnancy must be clearly defined and understood.
It can be concluded from the above that further experimental and interventional studies in
humans are required in order to adjust the recommended daily values and, consequently,
the recommended pre-conceptional diet for the mother. It is crucial to facilitate integration
through the dissemination of health education and the implementation of health campaigns
targeting women of reproductive age [233].

No documented cases of mortality or serious adverse effects have been reported in
connection with the safe use of probiotics during pregnancy. The majority of adverse
effects reported were of a gastrointestinal nature, including increased vaginal discharge
and alterations in stool consistency. However, these were typically mild and responsive to
lifestyle modifications.

A meta-analysis of 11 studies revealed the occurrence of 20 distinct adverse effects in
mothers during the third trimester, including nausea, vomiting and diarrhea. It is important
to note that these effects are common during pregnancy and may not be directly related to
probiotic use. Furthermore, documented benefits have been observed in the prevention of
gestational diabetes, mastitis, preterm delivery and infantile atopic dermatitis during and
after pregnancy. Improved glucose metabolism and a reduction in inflammatory events
have been observed, which suggests that the benefits may outweigh the minimal risks [234].
A significant obstacle to further research is the lack of understanding of the underlying
mechanisms responsible for adverse effects. The studies reviewed frequently involved
complex interventions comprising multiple probiotic strains, which makes it challenging to
determine the precise causes of adverse effects.

Moreover, the dearth of knowledge among healthcare professionals regarding the
potential benefits of probiotics may impede their ability to recommend them. It is thus
evident that there is a necessity for the development of tools that facilitate the translation of
scientific data into readily comprehensible information for both consumers and healthcare
professionals. Further research is required that focuses on individual strains, dosages
and the timing of administration. It is recommended that future research address these
gaps in order to provide clearer guidance on the safety of probiotics during pregnancy
and lactation.
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Nevertheless, it can be stated that the administration of probiotics during pregnancy
is currently considered to be relatively safe, with minimal risks and potential health bene-
fits [234] (Table 7).

Table 7. A comparison of the benefits and adverse effects of probiotics.

Category Benefits Adverse Effects

Gut Health Supports a balanced microbiome Mild nausea

Reduces risk of constipation and
gastrointestinal discomfort Vomiting

Pregnancy-Related Disorders May prevent gestational diabetes Diarrhea

Reduces the risk of preterm birth Abdominal cramping

Helps in the treatment and prevention
of mastitis Flatulence

Glucose Metabolism Associated with better glucose control in
pregnant women

Increased vaginal discharge
(minimal risk)

Inflammation May lower inflammation, benefiting both
mother and fetus

Changes in stool consistency
(slight changes)

Infant Health Linked to a reduced likelihood of infantile
atopic dermatitis Taste disturbance

Overall
Contributes to improved health status for

pre-pregnant, pregnant, and
postpartum individuals

No serious adverse effects or
mortality observed

11. Conclusions

It is well known that maternal nutritional status during pregnancy can influence
pregnancy outcomes through various mechanisms, including epigenetic mechanisms.
The use of nutraceuticals, by correcting nutritional deficiencies, should help to prevent
pregnancy disorders. Nutraceuticals, including probiotics and prebiotics, have been shown
to modulate the maternal microbiota, which in turn ensures proper placental development
and good health for both the pregnant woman and the unborn child.

The manipulation of the microbial communities can, therefore, represent a useful
strategy in the treatment of these pathologies, considering that current pharmacological
therapies are often insufficient and have several side effects. In this regard, the emphasis on
microbiota composition for preventive and therapeutic purposes is constantly expanding.

For example, supplementation with specific strains of probiotics is thought to alter
the composition of the maternal gut microbiota and influence the microbial environment
of the placenta through translocation or immune-mediated mechanisms. Understanding
and harnessing the ability to modulate the placental microbiota through dietary supple-
mentation may open new avenues for prevention. By promoting a beneficial microbial
environment within the placenta, it may be possible to enhance fetal immune development,
potentially reducing the risk of infection and other immune-related disorders later in life.
This approach is consistent with the broader perspective of using nutraceuticals to support
the overall health of both mother and fetus and highlights the need for further research to
optimize these interventions.

The choice to utilize probiotics or other nutraceuticals during pregnancy should
be made on the foundation of a comprehensive understanding of the potential benefits
and risks, in alignment with regulatory guidelines. A decision-making process may be
undertaken in a number of ways, including the following:

One may consider three principal avenues for decision-making:

1. Consulting with health professionals;
2. Evaluating scientific evidence;
3. Considering the specific needs of the individual.
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