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Abstract: Placenta accreta spectrum (PAS) disorders are characterized by abnormal trophoblastic
invasion into the myometrium, leading to significant maternal health risks. PAS includes placenta
accreta (invasion < 50% of the myometrium), increta (invasion > 50%), and percreta (invasion through
the entire myometrium). The condition is most associated with previous cesarean deliveries and
increases in chance with the number of prior cesarians. The increasing global cesarean rates heighten
the importance of early PAS diagnosis and management. This review explores genetic expression
and key regulatory processes, such as apoptosis, cell proliferation, invasion, and inflammation,
focusing on signaling pathways, genetic expression, biomarkers, and non-coding RNAs involved
in trophoblastic invasion. It compiles the recent scientific literature (2014–2024) from the Scopus,
PubMed, Google Scholar, and Web of Science databases. Identifying new biomarkers like AFP,
sFlt-1, β-hCG, PlGF, and PAPP-A aids in early detection and management. Understanding genetic
expression and non-coding RNAs is crucial for unraveling PAS complexities. In addition, aberrant
signaling pathways like Notch, PI3K/Akt, STAT3, and TGF-β offer potential therapeutic targets
to modulate trophoblastic invasion. This review underscores the need for interdisciplinary care,
early diagnosis, and ongoing research into PAS biomarkers and molecular mechanisms to improve
prognosis and quality of life for affected women.

Keywords: placenta accreta spectrum; trophoblast invasion; placenta acreta; placenta increta;
placenta percreta

1. Introduction

The placenta accreta spectrum (PAS) corresponds to a range of conditions characterized
by abnormal trophoblastic invasion into the myometrium, which carries significant risks
to maternal health [1]. The PAS is categorized based on the extent of invasion into the
uterine wall. Placenta accreta is characterized by an invasion of less than 50% of the
myometrium, increta by more than 50% invasion, and percreta by invasion through the
entire myometrium [2]. The PAS is considered a high-risk condition with serious associated
morbidities; therefore, the American College of Obstetricians and Gynecologists (ACOG)
and the Society for Maternal-Fetal Medicine recommend these patients receive level III
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(subspecialty) or higher care with consistent access to interdisciplinary staff with expertise
in critical care [3].

The most prevalent risk factor for PAS is a previous cesarean delivery, with the inci-
dence of PAS increasing with the number of prior cesarean deliveries [3,4]. According to a
systematic review, the rate of the PAS increases from 0.3% in women with one previous
cesarean delivery to 6.74% in women with five or more cesarean deliveries [5]. Additional
risk factors include advanced maternal age, multiparity, prior uterine surgeries or curet-
tage, the manual delivery of the placenta, Asherman syndrome, postpartum endometritis,
hysteroscopic surgery, endometrial ablation, and uterine artery embolization, which have
all been associated with PAS disorders in subsequent pregnancies [3,6,7].

In this regard, cesarean delivery rates have risen substantially globally, increasing
from less than 7% in the 1990s to exceeding the World Health Organization’s (WHO) recom-
mended upper limit of 10–15% at the population level in the past two decades [8,9]. There-
fore, early diagnosis is essential for management and a favorable outcome for the binomial.

This review aims to describe the molecular mechanisms driving PAS by exploring the
pathological signaling pathways implicated in this disease. We will delve into the roles of
critical proteins, chemokines, and other biomarkers and the role of non-coding RNAs in
trophoblastic invasion. Additionally, we will examine the contributions of epigenetic modi-
fications and genes in the involvement of key regulatory processes, including apoptosis,
cell proliferation, invasion, and inflammation.

2. Methodology

To identify relevant information on the PAS, this review was compiled based on
recent scientific literature (2014–2024) from the Scopus, PubMed, Google Scholar, and
Web of Science databases. The keywords used for the literature research were “Placenta
Acreta Spectrum; acreta; increta; percreta; trophoblast invasion; miRNAs, lncRNAs; genetic
expression; biomarkers; signaling pathways“. We included manuscripts concerning PAS,
specifically placenta accreta, increta, and percreta. We also considered research articles
focusing on the most relevant cellular processes involved in PAS pathogenesis, such as
angiogenesis, apoptosis, invasion, and the migration of trophoblastic cells. Publications
concerning other obstetric complications, such as preeclampsia, eclampsia, and HELLP
syndrome, among others, were excluded. We only included the literature in the English
language. Using these criteria, this review is composed of 80 papers.

3. The PAS Classification and Physiopathological Features

The International Federation of Gynecology and Obstetrics (FIGOs) Committee first
recognized the PAS classification for the Ethical Aspects of Human Reproduction and
Women’s Health in 2011. The clinical distinction of morbid adherence of the placenta is
associated with comprehensive prenatal diagnosis, a clinical approach, the correlation
of treatment methods, and the frequency of severe obstetric complications [10]. Later,
several retrospective and prospective studies were explicitly conducted to determine the
classification influence on the results of the PAS treatment, which showed its significant
impact on the choice of management [11].

In this regard, the classification of the PAS is based on the depth of placental invasion
within the uterine wall and its extension of involvement. The Society for Maternal-Fetal
Medicine (SMFM) developed a widely accepted classification system [12], dividing PAS
into three categories: placenta accreta (PA), placenta increta (PI), and placenta percreta (PP),
the features of which are presented in Figure 1.

The physiopathological features of the PAS involve a complex interplay of factors,
including abnormal placentation, uterine scarring, and impaired decidualization. In normal
pregnancies, the placenta separates easily from the uterine wall during childbirth due to
the formation of a specialized layer known as decidua. Angiogenesis is a necessary cellular
process for correct endometrial and embryonic growth and placentation. Invasion is pivotal
for blastocyst differentiation into villous and extravillous trophoblasts (EVTs), acquiring
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pathological characteristics once they invade the decidua and myometrium [13]. Once
implanted by migration, maternal uterine artery and vascular smooth muscle cells are
replaced by trophoblasts through apoptosis [14].
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trophoblast invasion to myometrium involving cellular differentiation, proliferation, and 
invasion in conjunction with growth factors and receptors [16].  

Decidual deficiency is another factor that promotes placenta accreta development, 
and it has been linked with calcitonin and MAPK for trophoblast penetration into the en-
dometrial epithelium [17]. Concerning trophoblastic invasion, molecules such as MMP-2 
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identified that PAS-associated proteins, including the vascular endothelial growth factor 
(VEGF), placenta growth factor (PlGF), along their respective receptors (VEGFR), 

Figure 1. The PAS classification. The invasive cells start at the uterine wall (1); the severity of the spec-
trum is relative to the invasive depth, affecting the myometrium layer (2) and subsequently invading
the serosa layer (3). Figure created by https://www.biorender.com/. Accessed on 7 May 2024.

However, in the PAS, the formation of the decidua is disrupted, leading to the ab-
normal adherence of the placenta [15]. The developmental behavior of severity in this
spectrum comprises complex mechanisms, highlighting abnormal placentation, which
allows trophoblast invasion to myometrium involving cellular differentiation, proliferation,
and invasion in conjunction with growth factors and receptors [16].

Decidual deficiency is another factor that promotes placenta accreta development, and
it has been linked with calcitonin and MAPK for trophoblast penetration into the endome-
trial epithelium [17]. Concerning trophoblastic invasion, molecules such as MMP-2 and 9,
oxygen, and integrins are mainly involved [18]. In addition, it has previously been identified
that PAS-associated proteins, including the vascular endothelial growth factor (VEGF), pla-
centa growth factor (PlGF), along their respective receptors (VEGFR), epidermal growth fac-
tor receptor, c-erbB-2 oncoprotein, angiopoietin-1, angiopoietin-2, and Tie receptors [19–21].
Herein, cellular and molecular processes involved in the PAS are discussed.

4. Biomarkers Associated with Placenta Accreta Development

Clinical suspicion is based on the risk factors for the PAS and imaging findings [22].
However, the PAS is sometimes diagnosed only at delivery or by pathology since placental
findings may not be visualized until the delivery time [23,24]. There is interest in iden-
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tifying potential biomarkers for the PAS, particularly those that may be clinically useful
and non-invasive.

Some researchers suggest combining serum biomarker values with imaging and
clinical data to improve the diagnostic performance of ultrasonography and MRI-based
methods for PAS disorders. The medical literature has shown that specific peripheral blood
biomarkers, including those related to angiogenesis, the immune system, beta-human
chorionic gonadotropin (β-hCG), and placental-derived cell-free DNA, may increase in
patients with placental invasion disorders compared to normal pregnancies [25,26]. The
most relevant biomarkers for the spectrum diagnosis are presented in Table 1.

Table 1. Biomarkers related to the PAS.

Biomarker Source Findings References

Alpha-fetoprotein
(AFP) Maternal serum

APF showed sensitivity and specificity of
71 and 46%, respectively, to serve as a

biomarker for pathological placentation,
specifically in women with placenta

previa and acreta in the second trimester.
Thus, a high level of AFP can be used as a

cause for suspicion in high-risk
pathological placentation.

[27]

Maternal serum AFP levels were
associated with PAS patients; it was

established as a predictor for PAS
patients that require hysterectomy with

85.94% sensitivity and 71.43% specificity.

[28]

Soluble fms-like
tyrosine kinase-1

(sFlt-1)

Maternal serum
Third trimester sFlt-1 serum levels were

decreased in PAS-affected women,
respectively, with pathological severity.

[29]

Maternal plasma

Concentrations of sFlt-1 were lower in
patients with PAS than those with normal
placentation, with 90.0% sensitivity and

82.0% specificity. The lower
concentrations were also associated with

intraoperative blood loss.

[21]

β human chorionic
gonadotrophin

(β-hCG)

Maternal plasma or serum

The elevated concentration of β-HCG in
serum may be appropriate for the

prenatal diagnosis of placenta accreta,
which suggests the relationship between

the risk of PAS and the first trimester.

[30]

Maternal serum

hCG showed a sensitivity and specificity
of 53 and 68%, respectively, to serve as a
biomarker for pathological placentation.
Higher levels of hCG can be used as a

cause for suspicion in high-risk
pathological placentation.

[27]

Maternal plasma
cell-free β-hCG mRNA

Cell-free β-hCG mRNA concentrations
were significantly elevated in women

with placenta accreta. This suggests that
β-hCG mRNA levels might be a marker

for identifying women with placenta
accreta likely to require hysterectomy.

[31]
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Table 1. Cont.

Biomarker Source Findings References

Placental
growth factor

(PlGF)

Maternal plasma

Concentrations of PlGF were higher in
patients with PAS than those with normal
placentation, with 86.0% sensitivity and
93.0% specificity. Higher concentrations

were also associated with
intraoperative bleeding.

[21]

Maternal serum

PIGF serum levels were higher in PAS
severity groups than in normal

placentation patients, including placenta
previa patients, suggesting these levels

are a predictor criterion exclusive for PAS
patients with 83% sensitivity

and 82% specificity.

[32]

Maternal serum and
placental bed tissues

High serum levels and high placental bed
expression in placenta previa patients

with PAS disorders were explored. PlGF
serum levels might predict PAS affection,

excepting the severity grade
based on FIGO.

[19]

Pregnancy-associated plasma
protein-A (PAPP-A) Maternal serum

Increased first-trimester serum was
positively associated with placenta

accreta, suggesting the potential role of
PAPP-A as a biomarker in identifying

pregnancies at high risk
for placenta accreta.

[30,33–36]

A significant correlation was found
between PAPP-A levels and blood loss

volume. This suggests that first-trimester
PAPP-A levels may be useful for the early
prediction of pathological blood loss at
delivery in pregnant women with PAS

and for recognizing a high-risk
group for PAS.

[37]

Human placental
lactogen mRNA

(hPL mRNA)
Maternal plasma

The expression of hPL mRNA is elevated
in the plasma of women diagnosed with

placenta previa and invasive placenta
between 28 and 32 weeks of gestation.

[38]

The multiple of the median (MoM) for
hPL mRNA was significantly higher in
the placenta accreta group compared to
the control and placenta previa groups.

[39]

5. Molecular Mechanisms Involved in the Placenta Acreta Spectrum

The PAS comprehends several mechanisms involving multifactorial processes, high-
lighting proliferation and invasion into local tissues, similar to a tumor. Other characteristics
involved in PAS physiopathology include angiogenesis induction and cell death resistance,
including the epithelial-to-mesenchymal transition (EMT) [40–42]. Despite several reports
of placental pathologies, the precise molecular mechanisms of the PAS are still poorly
understood. Here, we enlist the most relevant molecular mechanisms involved in the
spectrum to date (Figure 2).
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Figure 2. The PAS expression profile. The placenta accreta spectrum is accompanied by changes in the
expression of several genes and non-coding RNAs, which are crucial in the dysregulation of cellular
processes, such as migration, invasiveness, proliferation, and resistance to cell death, which facilitates
trophoblastic invasion into the uterine layers. Figure created by https://www.biorender.com/.
Accessed on 7 May 2024.

5.1. Gene Expression

In the process of invasion, proliferation, and migration, excessive trophoblast invasion
and decidual deficiency are the main pathophysiological mechanisms of PA; these processes,
in combination with other mechanisms such as endometrial invasion, migration through
the myometrium, among others, trigger the spectrum [43].

In this regard, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, are
known to play pivotal roles in the invasion process of trophoblast cells. Consequently, the
mechanisms underlying the excessive invasion of trophoblasts in patients diagnosed with
PAS present an upregulation of CXCL12 and CXCR4/CXCR7 in extravillous trophoblastic
cells in a dose-dependent manner, increasing their proliferative capabilities at higher
expressions, and contributing to the invasion into the uterine wall. Moreover, it was
noted that the regulation of trophoblast migration and invasion are related to CXCL12
and CXCR4/CXCR7 expressions in the same manner, suggesting the participation of
these chemokines in the PAS development [44]. On the other hand, a study conducted
by Arakaza et al. indicated that the expression of insulin-like growth factor 1 (IGF-1),
fibroblast growth factor 2 (bFGF), and PlGF are important for PAS development since
their expression was found to be higher in PAS placental tissue in comparison to normal
placental samples [19]. Interestingly, IGF-1 expression increased among them in relation
to disease severity. This phenomenon might be associated with the function of IGF-1 in
trophoblastic invasion because it acts as an angiogenic growth factor since it has been
demonstrated to promote tubular formation through the activation of PI3 and _MAPK

https://www.biorender.com/
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pathways in human endothelial cells. In addition, IGF-1 is overexpressed in women with
endometriosis, favoring invasiveness, proliferation, decreased apoptosis, and angiogenesis
on ectopic cells in conjunction with HGF and IGF-1 [45–47]. This last point might explain
the behavior of IGF-1 expression in relation to severity since it is relative to invasion rates.

The role of β-catenin has been studied regarding placental disparities; it plays an
important role in the maintenance of cellular homeostasis as well as intercellular connec-
tions, which consolidate cell adhesion [48]. Concerning placental affections, in women with
placenta accreta, β-catenin expression is downregulated, leading to excessive trophoblastic
invasion by losing interstitial connections [49]. In addition, EMT in trophoblasts has been
linked with high BAP1 expression; this mechanism was elucidated by observing Bap1-null
mouse trophoblast stem cells (mTSCs) using CRISPR/Cas9, resulting in augmented ETM
rates, which, in turn, promotes differentiation, invasion, and proliferation capacities [50].

Inflammation is another mechanism involved in the PAS since an interaction exists
between the trophoblast and the uterine tissue, resulting in the exacerbated release of
proinflammatory mediators [51]. In this regard, in a recent study conducted by Abdel-
Hamid, Mesbah, Soliman and Firgany [15], the expression of tumor necrosis factor-alpha
(TNF-α), interleukin-1 beta (IL-1β), and IL6 were overexpressed in placentas of patients
with placenta accreta; interestingly, their expression levels were associated with the number
of EVT, which also were higher in comparison to normal placentation tissue samples. It was
argued that it might be mainly comprised TNF-α due to its ability to inhibit trophoblastic
invasion. In addition, the increased co-expression of TNF-α, IL-1β, and IL6 suggest their
pivotal role as pro-inflammatory mediators in placenta accreta pathogenesis.

5.2. The Roles of Non-Coding RNAs in the PAS

Non-coding RNAs are pivotal in regulating biological processes, including pathologic
development. ncRNAs comprise regulatory molecules, of which micro RNAs (miRNAs)
and long non-coding RNAs (lncRNAs) are mainly addressed in the context of biological
regulation [52]. Concerning placenta-related illnesses, there have been several ncRNAs
identified for their roles in these pathologic disorders, mainly in intrauterine growth
retardation, preeclampsia, and PAS stages [53]. Several studies have identified valuable
information about how ncRNAs present differential expression levels and their roles in
regulating the PAS [54]. Nonetheless, physiopathological regulation coffered by both
miRNAs and lncRNAs is still limited. In this regard, we summarize ncRNA’s most relevant
pathological roles based on PAS patients.

5.2.1. microRNAs

One of the key functions of miRNAs is regulating genes by mediating the degradation
of mRNAs. miRNAs influence transcription and translation through two primary mech-
anisms: the canonical pathway, as briefly described earlier, involves the degradation of
mRNAs based on the miRNA seed sequence [55]. Furthermore, circulating microRNAs
have been demonstrated to play crucial roles in research and clinical settings, particularly
in disease monitoring. Changes in circulating miRNAs have been linked to pathological
processes, including chronic diseases, cancer, and the PAS [56,57].

miRNA behavior in PAS development is still poorly explored. Nonetheless, there is ev-
idence that its role is related to cellular processes that accompany pathological development.
In this regard, miR-7-5p plays an important role in trophoblast invasion since its overexpres-
sion converged in a significant diminution of cell invasion in HTR-8/SVneo cells; moreover,
its downregulation results in an increase in SNAIL, SLUG, TWIST, and vimentin expression,
promoting EMT and trophoblast invasion [58]. In extravillous trophoblast cells, miR-519d
is highly expressed, and its main activity is to control migration by suppressing CXCL6,
FOXL2, and NR4A2; in addition, MMP2 is a target gene of miR-519d, which suggests that it
is involved in trophoblast invasiveness [59]. Murrieta-Coxca et al. [60] identified a plethora
of deregulated expressed miRNAs in placenta accreta tissue; miR-24-3p, miR-193b-3p,
miR-331-3p, miR-376c-3p, miR-382-3p, miR-495-3p, miR-519d-3p, and miR-3074-5p were
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overexpressed in PAS tissue while miR-106b-3p, miR-222-3p, miR-370-3p, miR-454-5p,
and miR-3615-3p presented a downregulation in PAS tissue. Through biological pathway
analysis, a significant reduction in NF-kB mRNA was identified, which was also confirmed
in PAS samples, suggesting their influence of higher invasive capacities through the actions
of miR-382-3p and miR-495-3p.

On the other hand, miR-106b-3p, miR-222-3p, and miR-519d-3p target PTEN, which
controls the cell cycle, mainly in trophoblast proliferation and migration. The microRNA
1296-5p is overexpressed in the tissue of the PAS patient; its role is presumed to provide the
regulation of apoptosis since its overexpression affected AGGF1, which, in turn, inhibits P53
and Bax expression while also increasing the expression of Bcl-2 protein [61]. In placenta
accreta tissues, the overexpression of miR-518b was positively associated with OPN and
VEGF, playing essential roles in regulating villous trophoblast cell migration, invasion, and
adhesion [62]. In placenta accreta tissues, MCL1 expression is higher than in normal tissue,
specifically in intermediate trophoblast cells, which inhibits apoptosis. The gene MCL1
has been reported as a target gene for both miR-29a/b/c and miR-125a; its cellular role
results in the promotion of the apoptosis of trophoblast cells while downregulating MCL1
expression [63,64].

5.2.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are crucial because they play a vital role in main-
taining homeostasis in biological processes. However, lncRNAs also contribute significantly
to the development of diseases. Their biogenesis involves a comprehensive genomic system,
including promoters, enhancers, and intergenic regions in eukaryotic genomes [65].

The roles exerted by lncRNAs are also pivotal in regulating cellular processes con-
cerning placental invasive behaviors. In this regard, H19 downregulation can sponge
miRNA let-7; as a consequence, TβR3 (type III TGF-β receptor) expression is negatively
affected, promoting the invasion of EVT by increasing migration and invasion rates [66].
The high expression of lncRNA SNHG6 enhances the invasion of the human extravil-
lous trophoblast HTR-8/SVneo cell line; this mechanism is argued to occur due to the
SNHG6/miR-101-3p/OTUD3 regulatory axis [67]. Another regulatory axis in the PAS has
been linked to lncRNA SNHG16 since its expression was diminished in placental affections,
like preeclampsia. Nonetheless, its behavior has been evaluated in HTR-8/SVneo cells and
is often overexpressed, resulting in the creation of cell proliferation, migration, and invasion
as well as the inhibition of apoptosis, thus sponging miR-218-5p which, in turn, suppresses
LASP1, which is a protein that facilitates cell invasion in diverse types of malignancies [68].

In addition, lncRNA uc.187 aberrant expression has been linked with higher prolifera-
tion rates, invasion, and lower apoptotic activities in HTR-8/SVneo cells. Regarding these
mechanisms, they are activated by the increasing expression of MMP-2/-9 and PCNA/Ki-
67 proteins, leading to enhanced invasion and proliferation, respectively; on the contrary,
uc.187 overexpression affects the Bcl-2 protein, converging in a reduction in cell death in
trophoblast cells [69].

Several reports indicate the cellular behavior of ncRNAs in placental pathologies.
Since placenta accreta is an emerging pathology, and many aspects are still unknown. Com-
prehending molecular mechanisms can aid in developing early diagnostics and treatment
in affected women.

6. Aberrant Signaling Pathways in the PAS

Several signaling pathways have been involved in the etiology of the PAS, such as
the Notch signaling pathway, which is essential in regulating angiogenesis through the
overexpression of periostin (POSTN) in the HUVEC cell line during the neovascularization
process in conjunction with HES1 and Hey1 overexpression [70,71]. The above-mentioned
pathway has been linked to an exacerbated hemorrhage in the PAS, mainly attributed to
hypervascularity in the uteroplacental and utero–bladder interfaces [72].
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Interestingly, AGGF1 is downregulated in PAS samples, and its deletion in human
trophoblast HTR8/SVneo cells enhances mechanisms related to the invasive phenotype
of PAS, such as proliferation, invasion, and migration. It also represses apoptosis by
downregulating P53 and Bax and stimulating Bcl-2 overexpression, highlighting AGGF1 as
a regulator of the P53 signaling axis [61].

Furthermore, the invasive trait of trophoblastic cells has been related to YKL-40 en-
hancer activity since it is overexpressed both in PAS samples and in vitro using HTR8/SVneo
cells, promoting proliferation, migration, and invasion, but also inhibiting apoptosis
through the activation of the Akt/MMP9 signaling pathway [73]. Additionally, STAT3,
p38, and JNK pathways have been related to trophoblast invasion in the PAS since FYN
stimulates the activation of STAT3, p38, and JNK through phosphorylation [74]. In addition,
LAMC2 is overexpressed in placental cells, and in vitro has shown an increase in cell pro-
liferation, invasion, and migration but inhibited apoptosis, accompanied by the elevated
protein expression of MMP2, MMP9, and phosphorylated Akt (pAkt), which means that
LAMC2 is implicated in the pathogenesis of PAS by activating the PI3K/Akt/MMP2/9
signaling pathway to stimulate trophoblast over-invasion [75].

Duan et al. [76] found that immunoblotting and qPCR analysis in abnormally invasive
placentas (AIP), including PA, PI, or PP, showed that CCN3 overexpression is accompanied
by high levels of p53, p16, p21, cyclin D1, Notch-1 cleaved, pFAK, pAkt, and pmTOR,
as well as low levels of pRb, suggesting that CCN3 mediates senescence by cell cycle
arrest through the activation of the FAK-Akt-mTOR pathway and cleaved Notch-1/p21,
contributing to increasing the invasion properties of EVT.

Furthermore, growth factor signaling pathways, such as the macrophage-induced
netrin-1/DCC/VEGF signaling pathway, have been implicated in trophoblastic angiogene-
sis in the PAS tissues through netrin-1, DCC receptors, VEGF overexpression, and the high
recruitment of macrophages compared to normal placental tissue [77]. Likewise, using
in vitro assays using the gestational choriocarcinoma cell line JEG-3 and the trophoblast cell
line HTR-8/SVneo, it was found that the non-canonical TGF-β-UCHL5-Smad2 signaling
pathway is essential for the invasion of EVTs, a critical step in placental development,
in which Smad1/5/9 are the governing factors. In addition, the TGF-β-UCHL5-Smad2
pathway is also regulated by the ERK signaling pathway since it promotes angiogenesis
and vascularization, and the alteration of these signaling pathways can cause abnormal
placental invasion and angiogenesis, which leads to triggering PA [78]. Another novel
mechanism described as involved in the development of the PAS consists of suppressing
Wnt-β-catenin/VEGF signaling through the pigment epithelium-derived factor (PEDF),
which is downregulated in PAS tissues [79]. In addition, it has been reported that PEDF
overexpression inhibits EVTs proliferation, invasion, and angiogenesis and induces fer-
roptosis, a newly described form of regulated cell death creating a favorable scenario for
adequate trophoblastic invasion; -

7. Perspectives and Conclusions

We provide an overview of available therapeutic strategies that could aid in the early
diagnosis of the PAS. It is essential to comprehend the molecular mechanisms underlying
the PAS, particularly the signaling pathways involved in the early stages accompanying this
pathology, which is addressed by trophoblastic invasiveness and angiogenesis. Researchers
aim to develop specific biomarkers that can effectively prevent the PAS. Moreover, ex-
ploring the signaling pathways involved could provide valuable tools to develop targeted
therapies that treat the PAS, which is mainly attributed to TGF-β-UCHL5-Smad2, ERK,
and Wnt-β-catenin/VEGF pathways, which play significant roles in the development and
progression of the PAS. Therapeutic strategies targeting these pathways could potentially
inhibit abnormal placental invasion and angiogenesis.

Additionally, implementing other molecules as novel biomarkers, such as PEDF,
is pivotal to reducing the severity of the PAS since it is downregulated in pathological
tissues. Otherwise, the overexpression of PEDF in vitro has been shown to inhibit the
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proliferation, invasion, and angiogenesis of EVTs and induce ferroptosis, suggesting a
promising therapeutic strategy.

Physiopathology accompanying the spectrum is a multifactorial interplay of abnor-
mal placentation, uterine scarring, and impaired decidualization, resulting in abnormal
placental adherence [80]. Promising advances in identifying new biomarkers, such as AFP,
sFlt-1, β-hCG, PlGF, and PAPP-A, could aid in the early detection and correct management
of affected women [21,27,37]. In addition, the comprehension of molecular mechanisms,
such as genetic expression and the roles of non-coding RNAs, are pivotal for unveiling the
complexities of the PAS [43,53,54].

In addition, identifying aberrant signaling pathways, such as Notch, PI3K/Akt, STAT3,
and TGF-β, offers potential targets for therapeutic interventions to modulate trophoblastic
invasion and improve patient outcomes since they play pivotal roles in the invasiveness of
trophoblastic cells contributing to the PAS pathogenesis [71,74]

Overall, this review highlights the importance of interdisciplinary care, early diagnosis,
and a comprehensive understanding of the molecular underpinnings of PAS. Continued re-
search into PAS’s biomarkers and molecular mechanisms is crucial for developing effective
diagnostic and therapeutic strategies, ultimately improving affected women’s prognosis
and quality of life.
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