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Abstract: Understanding the pig immune function is crucial for disease-resistant breeding and
potentially for human health research due to shared immune system features. Immune cell ratios,
like monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), offer a more com-
prehensive view of immune status compared to individual cell counts. However, research on pig
immune cell ratios remains limited. This study investigated MLR and NLR in a Duroc × Erhualian
F2 resource population. Heritability analysis revealed high values (0.649 and 0.688 for MLR and NLR,
respectively), suggesting a strong genetic component. Furthermore, we employed an ensemble-like
GWAS (E-GWAS) strategy and functional annotation analysis to identify 11 MLR-associated and
6 NLR-associated candidate genes. These genes were significantly enriched in immune-related
biological processes. These findings provide novel genetic markers and candidate genes associated
with porcine immunity, thereby providing valuable insights for addressing biosecurity and animal
welfare concerns in the pig industry.

Keywords: immune cell; monocyte/lymphocyte ratio; neutrophil/lymphocyte ratio; pig; genome-wide
association study; gene

1. Introduction

The immune system, a complex network of immune organs, immune cells, and
immune molecules, plays a crucial role in executing immune responses and maintaining the
stability of the body’s internal environment and physiological equilibrium [1,2]. Within this
system, immune cells, commonly referred to as leukocytes, serve as key players in various
immunological processes [3]. These cells, including lymphocyte, monocyte, granulocyte,
and other cellular components, form the cellular foundation of the immune response [4].
Immune cell parameters can serve as an immunological index for livestock, reflecting their
health status [5].

The pig industry faces urgent challenges related to biosafety and animal welfare caused
by various infectious diseases [6,7]. Investigating immune-cell traits in pigs contributes
significantly to genetic improvements in health and immune traits, thereby promoting
biological safety prevention and control and enhancing disease-resistant breeding [8].
Additionally, due to their remarkable anatomical and immunological similarities to humans,
pigs are widely used as animal models in human disease research [9]. Studying immune-cell
traits in pigs can therefore contribute to our understanding of human diseases.

The immune response relies on the coordinated action of various immune cells. Im-
mune cells ratios, emerging biomarkers in recent years, can combine the immune response
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of various immune cells. Recent research suggests that ratios of these immune cells, rather
than individual immune cell counts, offer a more comprehensive view of the immune
system’s health [10–14]. Among these emerging biomarkers, the monocyte/lymphocyte
ratio (MLR) and neutrophil/lymphocyte ratio (NLR) can capture the synergistic interplay
between innate and adaptive immunity [15–17]. Monocytes and neutrophils are integral
components of the second line of defense against pathogen invasion, playing a pivotal role
in the innate immune response. Neutrophils possess the ability to phagocytize pathogens,
and their chemotaxis can reflect the state of the innate immune system [18]. Monocytes
possess robust phagocytic capabilities and are capable of stimulating lymphocytes and
other immune cells [19]. Additionally, the involvement of lymphocytes in the immune
system’s third line of defense is characterized by their ability to specifically recognize
pathogens and actively participate in both cellular and humoral immune responses [20].
Therefore, the MLR and NLR can offer a more precise assessment of the overall immune
system status compared to individual cell counts. Analyzing the MLR and NLR provides
a more nuanced understanding of the immune system by capturing the balance between
different cell types, potentially revealing subtle changes that might be missed by examining
individual cell counts alone.

Genome-wide association study (GWAS) has been extensively employed in the analy-
sis of complex traits to identify associations between molecular markers and traits [21,22].
Past GWAS success in analyzing immune traits demonstrates its potential for elucidating
the genetic architecture underlying immune traits [23–27]. A series of GWAS models were
developed based on various genetic or statistical hypotheses [28–31]. However, given the
diversity in the genetic architecture of complex traits, no single GWAS model is universally
applicable. Combining multiple models has become an increasingly utilized approach to
analyzing complex traits [32–35].

Previous studies have identified numerous quantitative trait loci (QTL) associated with
immune-cell traits in pigs (https://www.animalgenome.org/cgi-bin/QTLdb, accessed
on 20 May 2024). For example, 111 QTL on chromosomes 4, 6, 12, 13, and 17 have been
linked to the neutrophil count. Similarly, approximately 39 QTL have been associated with
the monocyte count, and around 112 QTL with the lymphocyte count. However, research
on the genetic associations of the MLR and NLR in pigs remains limited. This limitation
greatly hinders our understanding of the genetic mechanism underlying immune cells
in pigs.

To comprehensively understand the porcine immune response, this study conducted a
GWAS analysis on two immune cell-derived traits (MLR and NLR) in a Duroc × Erhualian
F2 resource population. Finally, we identified potential single-nucleotide polymorphisms
(SNPs) and candidate genes associated with these immune cell ratios. This research will
facilitate the genetic improvement of immune traits in pigs and offer useful information for
disease-resistant breeding within the pig industry.

2. Results
2.1. MLR and NLR of Duroc × Erhualian F2 Resource Population Exhibited High Heritability

The genetic variance, residual variance, and heritability of the NLR and MLR were
estimated. All estimated genetic parameters are presented in Table 1. Our analysis revealed
high heritability for both MLR and NLR traits in the Duroc × Erhualian F2 resource
population. The heritability estimates were 0.649 for the MLR and 0.688 for the NLR.

Table 1. Estimation of variance components and heritability for mononuclear-lymphocyte ratio
(MLR), and neutrophil-lymphocyte ratio (NLR).

Trait 1 σ2
u ± SE 2 σ2

e ± SE 3 h2 ± 4 SE

MLR 0.008 ± 0.002 0.004 ± 0.001 0.649 ± 0.080

NLR 1.384 ± 0.273 0.627 ± 0.118 0.688 ± 0.076
1 σ2

u , additive genetic variance; 2 σ2
e , dominance genetic variance; 3 h2, additive heritability; 4 SE, standard error.

https://www.animalgenome.org/cgi-bin/QTLdb
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2.2. GWAS Analysis Identified Five SNPs Associated with MLR Trait

The E-GWAS analysis identified five genome-wide SNPs associated with the MLR
trait (Figure 1, Table 2). The genetic marker H3GA0032308, located on chromosome 11,
exceeded the significance threshold in both FarmCPU and BLINK models. Based on
the gene annotation information from the Sus scrofa genome, we identified the SLIT and
NTRK like family member 1 (SLITRK1) gene located close to the SNP (Table S1). The
SNPs INRA0058297 on chromosome 2 and DRGA001794 on chromosome 12 surpassed
the significance threshold in the BLINK model and exceeded the suggestive threshold in
the MLMA-LOCO model. Notably, the DRGA001794 falls within the range of the QTL
that has been reported to exhibit significant association with the trait of the monocyte
count (https://www.animalgenome.org/cgi-bin/QTLdb). Further, we identified 26 and
8 genes based on the two SNPs, respectively (Table S1). INRA0058297 on chromosome 14
was determined using FarmCPU and MLMA-LOCO models, and two genes, cell division
cycle associated 2 (CDCA2) and EBF transcription factor 2 (EBF2), were identified in the
Sus scrofa genome (Table S1). CDCA2 is located approximately 5kb upstream of the SNP,
while EBF2 is located about 246kb downstream of the SNP. We also identified ASGA0022554
on chromosome 4 using the MLM and MLMA-LOCO models, but no genes were found
within a 500kb range upstream and downstream of this SNP.
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Figure 1. Manhattan plots of different GWAS models for MLR. (A), Manhattan plot of MLM model.
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plot of BLINK model. The rows represent the GWAS results of different models, and the annotated SNPs
are the ones identified by the E-GWAS. The dotted lines represent the Bonferroni correction thresholds.
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Table 2. SNPs associated with monocyte/lymphocyte ratio (MLR).

SNP 1 Chr Position Model 2 p-Value

INRA0058297 2 7110358
MLMA-LOCO 1.51 × 10−5

BLINK 2.71 × 10−7 *

ASGA0022554 4 116094650
MLM 9.41 × 10−6

MLMA-LOCO 6.07 × 10−6

H3GA0032308 11 54602515
FarmCPU 8.25 × 10−7 *

BLINK 2.27 × 10−8 *

DRGA0011794 12 25068363
MLMA-LOCO 2.28 × 10−5

BLINK 6.92 × 10−7 *

ALGA0075031 14 9571032
MLMA-LOCO 2.54 × 10−5

FarmCPU 2.98 × 10−12 *
1 Chr, Chromosome; 2 p-value, p values of different GWAS models are represented by * above the significant
threshold and without * above the suggestiveness threshold.

2.3. GWAS Analysis Identified Four SNPs Associated with NLR Trait

The E-GWAS analysis for the NLR trait identified four associated SNPs located on
chromosomes 1, 5, 13, and 18 (Figure 2, Table 3). The SNP M1GA0023131, located on
chromosome 18, exhibited a significant association with the trait across all four models.
The genetic variant ASGA0023911 on chromosome 5 surpassed the threshold in the BLINK
model and exceeded the suggestive threshold in both MLMA-LOCO and FarmCPU models.
Based on the suggestive threshold, two SNPs, ASGA0006650 and ASGA0057335, were also
detected to be associated with the NLR trait. Among these, ASGA0006650 was detected
in the MLM, MLMA-LOCO, and FarmCPU models, and ASGA0057335 was detected in
MLMA-LOCO and FarmCPU. Within a 500kb range upstream and downstream of these
four SNPs, we further identified 3, 5, 3, and 8 genes, respectively (Table S2).

Table 3. SNPs associated with neutrophil/lymphocyte ratio (NLR).

SNP 1 Chr Position Model 2 p-Value

ASGA0006650 1 223397796
MLM 2.53 × 10−5

MLMA-LOCO 1.08 × 10−5

FarmCPU 2.21 × 10−6

ASGA0023911 5 2488153
MLMA-LOCO 2.47 × 10−5

FarmCPU 4.67 × 10−6

BLINK 3.50 × 10−8 *

ASGA0057335 13 26494790
MLMA-LOCO 1.94 × 10−5

FarmCPU 8.84 × 10−6

M1GA0023131 18 9230153

MLM 1.32 × 10−6 *
MLMA-LOCO 8.52 × 10−7 *

FarmCPU 2.52 × 10−8 *
BLINK 6.60 × 10−9 *

1 Chr, Chromosome; 2 p-value, p values of different GWAS models are represented by * above the significant
threshold and without * above the suggestiveness threshold.

2.4. Functional Enrichment Analysis Identified Multiple Candidate Genes for MLR and NLR

GO and KEGG enrichment analyses were performed on 37 MLR-related genes and
19 NLR-related genes (Table S3). The results revealed the involvement of multiple genes
in immune-related biological processes, including the defense response to protozoan, the
response to interferon-gamma, MicroRNAs in cancer, the sphingolipid metabolic process,
autophagy and endocytosis (Figure 3, Table S3). We further consulted relevant PubMed
literature (https://pubmed.ncbi.nlm.nih.gov/, accessed on 25 May 2024) and identified
11 and 6 candidate genes related to MLR and NLR traits, respectively (Table 4).

https://pubmed.ncbi.nlm.nih.gov/
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Table 4. Summary of candidate genes associated with monocyte/lymphocyte ratio (MLR) and
neutrophil/lymphocyte ratio (NLR).

Trait Gene 1 Chr 2 Term Database ID 3 p-Value

MLR

SYVN1 2 Ubiquitin mediated proteolysis KEGG PATHWAY ssc04120 0.014

negative regulation of endoplasmic
reticulum stress-induced intrinsic

apoptotic signaling pathway
Gene Ontology GO:1902236 0.016

TM7SF2 2 Steroid biosynthesis KEGG PATHWAY ssc00100 0.027

CDCA5 2 MicroRNAs in cancer KEGG PATHWAY ssc05206 0.004

BATF2 2

Endocytosis KEGG PATHWAY ssc04144 0.041

myeloid dendritic cell differentiation Gene Ontology GO:0043011 0.019

defense response to protozoan Gene Ontology GO:0042832 0.020

ATG2A 2 Autophagy—other KEGG PATHWAY ssc04136 0.043

MIR192 2 MicroRNAs in cancer KEGG PATHWAY ssc05206 0.004

SLITRK1 11 synaptic membrane adhesion Gene Ontology GO:0099560 0.027

CALCOCO2 12 response to interferon-gamma Gene Ontology GO:0034341 0.023

SNF8 12 positive regulation of exosomal secretion Gene Ontology GO:1903543 0.009

IGF2BP1 12 MicroRNAs in cancer KEGG PATHWAY ssc05206 0.004

CDCA2 14 positive regulation of protein
dephosphorylation Gene Ontology GO:0035307 0.021

NLR

KLF9 1

cellular response to thyroid
hormone stimulus Gene Ontology GO:0097067 0.006

negative regulation of
keratinocyte proliferation Gene Ontology GO:0010839 0.006

TBC1D22A 5 14-3-3 protein binding Gene Ontology GO:0071889 0.006

CERK 5 sphingolipid metabolic process Gene Ontology GO:0006665 0.009

GRAMD4 5
positive regulation of cysteine-type
endopeptidase activity involved in

apoptotic process
Gene Ontology GO:0043280 0.016

POMGNT2 13 Mannose type O-glycan biosynthesis KEGG PATHWAY ssc00515 0.013

KDM7A 18 histone demethylase activity
(H3-K27 specific) Gene Ontology GO:0071558 0.003

1 Chr, Chromosome; 2 Term, biological processes of enrichment analysis, 3 p-Value, p value of enrichment analysis.
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3. Discussion

The maintenance of porcine health relies on the coordinated action of multiple immune
cells. While numerous GWAS analyses have been conducted to identify QTL associated
with individual immune-cell traits in pigs [36–39], our study focuses on the ratios between
different immune cell types. These ratios, specifically the MLR and NLR, provide a more
comprehensive view of the immune response by combining the actions of distinct im-
mune cells [10–12]. Applying E-GWAS to the Duroc × Erhualian F2 resource population,
we successfully identified 5 SNPs associated with the MLR and 4 SNPs associated with
the NLR.

Most immune-cell traits are heritable. Research has shown that most immune-cell
traits in pigs exhibit moderate to high heritability, with estimates ranging from 0.4 to
0.8 [40–42]. Our study corroborates and extends these findings, revealing high heritability
for both MLR and NLR traits in the Duroc × Erhualian F2 resource population. These
results provide robust evidence for the significant genetic influence on the MLR and NLR,
reinforcing the potential for genetic improvement of these traits through selective breeding.

The present study successfully identified a total of 11 candidate genes associated with
the MLR. Notably, IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1), MIR192
(microRNA mir-192), and CACD5 (cell division cycle associated 5) are significantly enriched
in the KEGG pathway of MicroRNAs in cancer. Among them, IGF2BP1 has been reported
to modulate both innate and adaptive immune responses [43]. Similarly, the MIR192 gene,
a crucial component of exosomes, regulates gene expression and mediates the host’s an-
tiviral immune response [44]. A study has demonstrated that exosomes from simulated
infected newborn piglets can inhibit porcine epidemic diarrhea virus infection [45]. Addi-
tionally, silencing the CDCA5 gene has been shown to inhibit the AKT signaling pathway,
activating the pro-apoptotic signaling pathway and revealing CDCA5’s functional role
in hepatocellular carcinoma [46]. SYVN1 (synoviolin 1) is significantly enriched in the
ubiquitin-mediated proteolysis pathway, and defects in this system are linked to various
diseases [47]. An analysis of miRNA expression profiles in lawsonia intracellularis-infected
porcine intestines revealed an upregulation of SYVN1 [48]. TM7SF2 (transmembrane 7
superfamily member 2) on chromosome 4 is involved in steroid biosynthesis, with steroids
known to have immunosuppressive effects [49,50]. SLITRK1 (SLIT and NTRK like family
member 1) function changes may be implicated in neuropsychiatric disorders [51]. ATG2A
(autophagy-related 2A) is significantly enriched in the biological process of autophagy,
an essential pathway for immune balance [52]. The CALCOCO2 (calcium binding and
coiled-coil domain 2) gene responds to interferon-gamma and regulates pro-apoptotic
and autophagy-related genes [53]. The SNF8 (SNF8 subunit of ESCRT-II) participates in
interferon-mediated antiviral responses [54,55]. CDCA2 (cell division cycle associated 2),
a member of cell cycle-related proteins, regulates cell proliferation and is involved in the
development of various cancers [56–58]. Lastly, BATF2 (basic leucine zipper ATF-like tran-
scription factor 2) plays a crucial role in the innate immune response and defense against
protozoan infections [59].

Our NLR analysis identified six potential candidate genes, each with distinct roles
in immune-related processes. Among these genes, the POMGNT2 (protein O-linked man-
nose N-acetylglucosaminyltransferase 2 (beta 1, 4-)) gene is involved in the biosynthesis
of Mannose type O-glycans which can participate in hematopoiesis and inflammatory
responses [60,61]. It was identified as a candidate gene for a significantly reduced total
number born by a separate study on lethal recessive mutations in pigs [62]. The KDM7A (ly-
sine demethylase 7A) gene functions in post-translational modification and has been linked
to cancer development and inflammatory responses [63,64]. The TBC1D22A (TBC1 domain
family member 22A) gene interacts with 14-3-3 proteins, which play a crucial role in vari-
ous neurological diseases [51]. The KLF9 (KLF transcription factor 9) gene is significantly
enriched in the biological processes of the cellular response to thyroid hormone stimulus
and negative regulation of keratinocyte proliferation. The thyroid hormone is believed to
maintain immune cell activity and function [65–67]. Additionally, keratinocytes contribute
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significantly to innate immune responses [68]. The GRAMD4 (GRAM domain containing 4)
gene positively regulates cysteine-type endopeptidase activity in the apoptotic process.
Lastly, CERK (ceramide kinase) is involved in the sphingolipid metabolic process, and the
regulatory mechanisms of key sphingolipids affect various biological processes such as
inflammation, cellular proliferation, and apoptosis [69,70].

While our findings provide valuable insights for the investigation of immune re-
sponses in pigs as well as genetic diseases relevant to humans, they also highlight the
need for further study. Most of the identified genes, though known to be involved in
immune regulation, require additional functional characterization to elucidate their precise
mechanisms of action in both porcine and human contexts. Future studies focusing on the
functional validation of these genes will provide a comprehensive and robust explanation
for this statistical analysis, further enhancing our understanding of immune mechanisms
in both pigs and humans.

4. Materials and Methods
4.1. Animals

The study used an F2 resource population (393 pigs) resulting from crossbreeding
Duroc and Erhualian [8]. A total of 8 Duroc boars were crossed with 18 Erhualien sows,
and subsequently, 31 boars and 38 sows from the F1 generation were selected for mating to
obtain the F2 population. All animals were raised at the experimental facility operated by a
prominent breeding company. The ear or tail tissues of the F2 hybrids were collected.

4.2. Phenotype

It has been demonstrated that 7-week-old pigs possess a fully developed immune
system, rendering them suitable as an animal model for immunological investigations [71].
In this study, blood samples (1 mL) were collected from the jugular vein of the piglets
using vacuum tubes containing EDTA-K2 at the age of 35 days. Subsequently, blood
parameters were measured using a photoelectric MEK-8222K fully automatic five-category
blood cell analyzer (Nihon Kohden, Tokyo, Japan) at the People’s Hospital of Xinxing
County, Yunfu, Guangdong, China [8]. The MLR and NLR were computed based on three
blood parameters, namely the monocyte count, lymphocyte count, and neutrophil count,
for subsequent analysis.

4.3. Genotype

The DNA samples were extracted from ear or tail tissues (336 pigs), followed by
genotyping using an iScan system (Illumina Inc., San Diego, CA, USA) with PorcineSNP60
BeadChips, resulting in a total of 62,163 SNPs. SNPs with a missing rate higher than
0.05 underwent quality control using Plink (v1.9) [72], while the remaining genotypes
were imputed using Beagle (v5.4) [73]. After imputation, SNPs with a minor allele fre-
quency (MAF) < 0.01 were excluded [72]. Following genotype data processing, a total of
39,292 SNPs were used for analysis.

4.4. Estimation of Genetic Variance and Heritability

The genetic variance and heritability were estimated through restricted maximum
likelihood (REML) analysis with GCTA software (v1.94.1) [29]. The model of estimating
variance can be written as:

y = Xb + Zu + e

where y is the vector of trait (including MLR and NLR); b is the fixed effects; u denotes the
additive genetic effect, with a normal distribution u ∼ N

(
0, Gσ2

u
)
; X and Z are respective

incidence matrices for the fixed effect and additive genetic effect, respectively; e is the
residual error following a normal distribution e ∼ N

(
0, Iσ2

e
)
, where I indicates the identity

matrix. Heritability (h2) was estimated using the formula: h2 = σ2
u/σ2

y , where σ2
u and σ2

y
represent the additive genetic variance and phenotypic variance, respectively.
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4.5. Genome-Wide Association Study

E-GWAS can efficiently integrate diverse GWAS models to yield more robust and
dependable outcomes [74]. In the analysis, the mixed-effect linear model (MLM) [28],
MLM leaving-one-chromosome-out (MLMA-LOCO) [29], fixed and random model cir-
culating probability unification (FarmCPU) [30], and Bayesian-information and linkage-
disequilibrium iteratively nested keyway (BLINK) [31] models were integrated by the
E-GWAS strategy to conduct genome-wide association studies (GWASs).

The MLM model controls false positives by stratifying groups as a fixed effect and
using the individual relationship matrix as a random effect [28]. The MLM model was
implemented using GCTA software, with the following formula:

y = Xb + Sd + Zu + e

where y is the phenotype, b is the fixed effects; d is the additive effect of the candidate
SNP to be tested for association; u is the additive genetic effect, with a normal distribution
u ∼ N

(
0, Gσ2

u
)
, the G was calculated using all SNPs; X and Z are respective incidence

matrices for b and u; S is the genotype indicator variable of the candidate SNP to be tested,
coded as 0, 1, or 2; Z is the incidence matrices for u; e is the residual error following a
normal distribution e ∼ N

(
0, Iσ2

e
)
, where I indicates the identity matrix.

The MLMA-LOCO model builds upon the MLM by excluding the influence of SNPs on
the chromosome where the candidate SNP is located, further improving accuracy [29]. The
MLMA-LOCO model was performed using GCTA software, with the following formula:

y = Xb + Sd + Zu− + e

where y, b, d, e, X, S, and Z are the same as those in the MLM model; u− is the additive
genetic effect, with the assumption that u− ∼ N

(
0, G−σ

2
u−

)
; the G− was calculated using

all SNPs except those on the chromosome where the candidate SNP is located; the σ2
u− will

be re-estimated each time when a chromosome is excluded from the G− calculation.
The FarmCPU model improves SNP detection by dividing the MLM into a separate

fixed-effects model (FEM) and random-effects model (REM), and iteratively utilizing both
models [30]. The FarmCPU model was implemented using the rMVP (v1.0.6) package [75].

The FEM was calculated based on the following formula:

y = Xb + Mp + Sd + e

where y, b, d, e, X, and S are the same as those in the MLM model; M is the genotype matrix
of pseudo-SNPs that are used as fixed effects; p is the relevant design matrix for M.

The REM was employed to select the most suitable pseudo-SNPs, as follows:

y = g + e

where y and e are the same as those in the FEM; g is the additive genetic effect, with a
normal distribution g ∼ N

(
0, Kσ2

g

)
, the K was calculated using pseudo-SNPs.

The BLINK model replaces the REM in FarmCPU with the FEM based on Bayesian
information criteria, and substitutes the bin method of FarmCPU with linkage disequi-
librium information, significantly reducing the computational time while improving the
statistical power [31]. The BLINK model was built using the BLINK (v1.0.6) package, with
the following formula:

The first FEM : y = Mp + Sd + e

The second FEM : y = Mp + e

where y, p, d, e, M, and S are the same as those in the FarmCPU model. The two FEM
models have two differences: firstly, the second FEM excludes the testing marker in the
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first FEM; secondly, the number of covariate pseudo QTNs varies in the second FEM to
select an optimal set of k out of t pseudo QTNs.

A Bonferroni correction was applied to establish the threshold for significance [76]. To
avoid overlooking potential linkage signals, the genome-wide levels of significance and
suggestiveness thresholds were defined as p = 0.05/N and p = 1/N, respectively, where N
represents the number of SNPs.

4.6. Identification and Functional Analysis of Candidate Genes

The biomaRt (v2.58.2) package [77,78] was employed to identify genes associated
with the MLR and NLR within a 500 kb region upstream and downstream of identified
SNPs by GWAS. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis and gene ontology (GO) enrichment analysis using the KOBAS 3.0 website
(http://kobas.cbi.pku.edu.cn, accessed on 25 May 2024) [79,80].

5. Conclusions

Our analysis of the MLR and NLR in the Duroc × Erhualian F2 resource population
has successfully identified several SNPs and candidate genes associated with these immune
cell ratios. These findings offer valuable insights into the underlying genetic mechanisms
of immune regulation in pigs. This knowledge can be leveraged to develop breeding
programs for disease resistance, a significant goal within the pig industry. Furthermore,
the identified candidate genes have been implicated in human disease development and
immune processes. Since pigs are a well-established animal model for human diseases, our
findings also offer valuable reference for human disease research.
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