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Abstract: Polyphenol oxidase (PPO) plays a key role in the enzymatic browning process, and this
study employed Gaussian-accelerated molecular dynamics (GaMD) simulations to investigate the
catalytic efficiency mechanisms of lotus root PPO with different substrates, including catechin,
epicatechin, and chlorogenic acid, as well as the inhibitor oxalic acid. Key findings reveal significant
conformational changes in PPO that correlate with its enzymatic activity. Upon substrate binding,
the alpha-helix in the Q53-D63 region near the copper ion extends, likely stabilizing the active
site and enhancing catalysis. In contrast, this helix is disrupted in the presence of the inhibitor,
resulting in a decrease in enzymatic efficiency. Additionally, the F350-V378 region, which covers the
substrate-binding site, forms an alpha-helix upon substrate binding, further stabilizing the substrate
and promoting catalytic function. However, this alpha-helix does not form when the inhibitor is
bound, destabilizing the binding site and contributing to inhibition. These findings offer new insights
into the substrate-specific and inhibitor-induced structural dynamics of lotus root PPO, providing
valuable information for enhancing food processing and preservation techniques.

Keywords: polyphenol oxidase; conformational changes; molecular dynamics simulation; Markov
state model

1. Introduction

Polyphenol oxidases (PPOs) are a class of copper-containing enzymes that are widely
distributed in plants, fungi, bacteria, and animals [1]. These enzymes play a key role in the
enzymatic browning process [2], which results in the formation of brown pigments when
phenolic compounds in fruits [3] and vegetables [4] are oxidized to quinones. This browning
reaction can significantly affect the nutritional quality, visual appeal, and commercial value
of food products [5]. In recent years, the study of PPOs has received much attention due to
their dual role in the browning reaction [6–8]. On the one hand, PPO activity is essential
for the development of flavor, color, and antioxidant properties of certain foods such as
tea [9], coffee [10], and cocoa [11]. On the other hand, enzymatic browning of fresh produce
such as apples [12], potatoes [13], and avocados [14] poses a major challenge to the food
industry, leading to considerable economic losses and waste.

The molecular mechanisms of PPO activity, substrate specificity, and inhibition have
been extensively studied, and many studies have been devoted to elucidating the structure–
function relationships of these enzymes [15]. In recent years, advances in computational
and experimental techniques have provided deeper insights into the catalytic mechanisms
of PPOs [16]. For example, molecular docking and molecular dynamics (MD) simulations
have become powerful tools for studying the binding interactions between PPOs and
various substrates or inhibitors [17]. These studies have revealed key information about
active pocket, substrate-binding modes, and the dynamic behavior of PPOs during catalysis.
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In addition, identifying and characterizing natural and synthetic PPO inhibitors have
opened new avenues for controlling enzymatic browning in foods. Natural inhibitors such
as polyphenols, peptides, and small organic molecules have shown promising potential
for reducing PPO activity and extending the shelf life of fresh produce [18]. Recent studies
have also explored genetic engineering approaches to down-regulate PPO expression in
transgenic plants to mitigate browning and improve produce quality [19].

Lotus root (Nelumbo nucifera) is a specific source of PPOs and is of interest for its
abundance of bioactive phytochemicals such as polyphenols and flavonoids. Lotus root
is known for its numerous health benefits, such as antioxidant, anti-inflammatory, and
anti-cancer properties [20]. However, like other fresh produce, lotus root is susceptible
to enzymatic browning after cutting, which affects its color, flavor, and nutritional value.
The main cause of browning is the PPO-catalyzed oxidation of polyphenols to produce
quinones, which subsequently polymerize to form brown pigments [21].

It was reported that the mechanism of the specific selection of polyphenol substrates
by polyphenol oxidase (PPO) in lotus roots reveals the biochemical basis of browning in
lotus roots. After identification and purification of lotus root PPO, it was found to have
the highest catalytic activity at 35 ◦C and pH 6.5, and its catalytic activity towards a wide
range of substrates was identified [22]. Despite these advances, there are still gaps in our
understanding of the specific molecular interactions and catalytic mechanisms between
PPO extracted from lotus roots and various substrates. This present study aims to fill this
knowledge gap by exploring the reaction mechanisms of PPO from lotus root through
Gaussian-accelerated molecular dynamics (GaMD) simulation methods. We specifically
selected three substrates from a previously studied set of five, focusing on those with the
first, third, and fifth highest catalytic activities—(+)-catechin, (−)-epicatechin, and chloro-
genic acid, respectively [22]. This selection was made to provide a clearer differentiation of
substrate specificity, allowing us to better elucidate the unique catalytic behavior of lotus
root PPO. Catechin and epicatechin, both flavonoids, possess multiple hydroxyl groups
on their aromatic rings, which enhance their solubility in polar solvents and contribute to
their strong antioxidative properties. These hydroxyl groups also facilitate participation
in acid–base reactions and electrophilic substitution, making them ideal candidates for
studying PPO’s substrate interactions. Chlorogenic acid, a polyphenol ester, contains
polar functional groups that participate in electrophilic and nucleophilic reactions, and
its hydroxyl groups further contribute to its electron-donating capacity and antioxidative
properties. To further investigate the inhibitory mechanisms of lotus root PPO, we included
oxalic acid, a well-established inhibitor from a previous study [22], to assess its influence
on substrate specificity and better understand its effects on the enzyme’s activity. Oxalic
acid, a small dicarboxylic acid, lacks the aromatic structures seen in the other substrates but
exhibits distinct behavior due to its highly polar carboxyl groups, which allow it to chelate
metal ions and interfere with PPO’s catalytic function. GaMD makes the potential energy
surface smoother by adding a harmonic lifting potential to the potential energy surface
of the system, which significantly reduces the energy barriers and improves the sampling
efficiency [23]. GaMD significantly enhances the sampling ability of the system, enabling
the capture of more comprehensive conformational changes and kinetic processes [24],
which helps to reveal the details of the catalytic mechanism of PPO. In this study, 500 ns
Gaussian-accelerated molecular dynamics (GaMD) simulations were performed for five
systems: ligand-free protein, catechin-bound protein, epicatechin-bound protein, chloro-
genic acid-bound protein, and oxalic acid-bound protein as inhibitors. The simulations
revealed that the alpha-helix in the Q53-D63 region, located near the copper ion, extended
during substrate binding, likely stabilizing the active site and enhancing catalytic efficiency.
However, in the presence of the inhibitor, this helix was disrupted, reducing enzymatic
activity. Additionally, a new alpha-helix was observed in the F350-V378 region at the
substrate-binding site upon substrate binding, which may have further stabilized substrate
interactions. Markov state model-based flux analysis and MM-PBSA energy analysis were
also performed to further investigate the catalytic mechanisms. Detailed molecular dy-
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namics simulations and energy calculations were performed to further understand the
specificity of PPO for different substrates.

The understanding of these mechanisms in this study has deepened our knowledge
of PPO function and substrate selectivity, providing a theoretical basis for optimizing
food processing and storage methods to improve the preservation and quality of lotus
root and other PPO-rich foods. This study also revealed the molecular basis of substrate
specificity, which can help design more effective inhibitors or modifications of enzyme
activity. Understanding the catalytic efficiency of PPO on different substrates can help
develop effective inhibitors or modulation techniques that can improve food quality, extend
shelf life, and reduce spoilage with significant economic and environmental benefits. In
addition, this study provides valuable insights into the role of PPO in plant biology, which
will benefit plant growth, development, and disease resistance studies.

2. Results
2.1. Molecular Docking Results

The molecular docking results for the interactions between the protein and the four
compounds, as shown in Figure 1 and the corresponding supplementary figures, highlight
crucial hydrogen bonds that stabilize the binding of each molecule within the protein’s
active site. For (+)-catechin (Figures 1A and S1), hydrogen bonds were formed with G181,
G203, N207, F405, and S408, playing a key role in securing its position. (−)-Epicatechin
(Figures 1B and S2) similarly formed hydrogen bonds with N207, G203, Q176, and F405,
ensuring stable interaction within the binding pocket. In the case of chlorogenic acid
(Figures 1C and S3), multiple hydrogen bonds were observed with residues G181, G203,
N207, Q176, S204, V208, and F405, anchoring it effectively in the active site. Lastly, for
oxalic acid (Figures 1D and S4), hydrogen bonds were established with S81, L188, and
G203, highlighting its strong inhibitory interaction with the protein. These hydrogen
bonds are critical for the stability and proper function of each molecule in relation to the
protein. The molecular docking affinities for the four compounds were as follows: catechin
(−7.9 kcal/mol), epicatechin (−7.9 kcal/mol), chlorogenic acid (−8.1 kcal/mol), and oxalic
acid (−4.0 kcal/mol).
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Figure 1. Binding pockets and interaction residues of polyphenol oxidase for (A) catechin, (B) epi-
catechin, (C) chlorogenic acid, and (D) oxalic acid. (E) Binding positions of four small molecules on
polyphenol oxidase. Blue molecule represents catechin, green molecule represents epicatechin, pink
molecule represents chlorogenic acid, and yellow molecule represents oxalic acid. The red color in
the structure of the small molecule indicates an oxygen atom.

2.2. Structural Stability and Flexibility between Substrates and PPO

In this study, five molecular dynamics simulation systems were constructed, which
are: ligand-free, catechin-bound, epicatechin-bound, chlorogenic acid-bound proteins,
and oxalic acid-bound proteins, to investigate the effect of different substrate binding on
the structure of PPO. The root mean square deviation (RMSD) analysis was performed
for the four systems, as shown in Figure 2A. Their kernel density distribution curves
are shown in Figure 2B. Calculation of the root mean square deviation (RMSD) of
the Cα atom of the protein backbone allowed for assessment of the stability of the
protein conformation [25]. The RMSD values for all five systems stabilized around 5 Å
after fluctuation. Since the protein structure was not a resolved crystal structure but
was predicted, the system was considered to be in equilibrium and could be used for
further analysis.

The radius of gyration (Rg) can reflect the plasticity potential of protein structures.
As shown in Figure 3A,B, the Rg values of the oxalic acid system, fluctuating between
21.00 and 21.75 Å, indicate that oxalic acid, as an inhibitor, made the protein structure
more compact and stable, likely suppressing enzyme activity. In contrast, the catechin
and epicatechin systems, with Rg values fluctuating between 21.50 and 23.50 Å, suggest
that these substrates increased the fluffiness of the protein structure. The chlorogenic acid
system showed Rg values between 21.00 and 22.50 Å, indicating a more compact structure
compared to catechin and epicatechin, which aligns with its lower catalytic activity [26].
The solvent-accessible surface area (SASA) value responds to the area of the surface of a
protein or protein–ligand complex exposed to the solvent [27]. As shown in Figure 3C,D,
the oxalic acid system has the lowest SASA values, indicating that inhibitor binding results
in the most compact and stable protein structure, reducing enzyme activity by limiting
active site accessibility. The catechin system shows slightly higher SASA values than oxalic
acid, with a modest increase in surface exposure but still relatively compact. Epicatechin
and chlorogenic acid have similar, slightly higher SASA values compared to catechin,
reflecting more surface exposure and a less compact structure. While increased SASA
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may improve active site accessibility and potentially enhance enzyme activity, excessive
exposure could destabilize the protein and reduce catalytic efficiency.
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2.3. Analysis of Conformational Changes

In order to measure the atomic motions during kinetic simulations to reflect the
flexibility of protein regional motions, root mean square fluctuation (RMSF) calcula-
tions were performed in this study. Figure 4A illustrates the RMSF values for the four
systems. The labeled regions are Q53-D63 (shown in Figure 4B) and F350-V378 (shown
in Figure 4C). Residues Q53-D63 are alpha-helical structures near the two copper ion
positions. Residues F350-V378 are adjacent to the active pocket and cover the substrate-
binding site. For these two residue regions, we performed further secondary structure
change probability analysis.

The probability of secondary structure change at positions Q53-D63 is shown in
Figure 5. We chose the 2500 frame of the 500 ns simulation trajectory for the schematic.
Green represents the oxalic acid system, yellow represents the catechin system, blue rep-
resents the epicatechin system, purple represents the chlorogenic acid system, and pink
represents the apo system. In both the apo and oxalic acid systems, the alpha-helix in this
region unfolds. The copper center is a crucial structural domain in polyphenol oxidase
(PPO), as it is directly involved in the enzyme’s catalytic activity [1]. This region is located
in close proximity to the copper ion in polyphenol oxidase, which plays a crucial role in
the enzyme’s catalytic activity. The unfolding of the alpha-helix near the copper ion likely
disrupts the stability and positioning of the active site, reducing catalytic efficiency. Since
oxalic acid is an inhibitor, its binding may induce or stabilize this structural disruption,
thereby inhibiting enzyme activity by preventing proper substrate interaction with the
copper ion.
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The probability of secondary structure change at positions F350-V378 is shown in
Figure 6. Residues covering the substrate-binding site play a crucial regulatory role in
enzyme activity, as modifications in these regions can significantly enhance or inhibit
catalytic efficiency by altering the enzyme’s interaction with the substrate [28]. This region,
which lies above the substrate-binding site, is mainly composed of random coils and
exhibits high flexibility. Upon substrate binding, particularly with catechin and epicatechin,
an alpha-helix forms during the simulation, potentially stabilizing the substrate interaction
and enhancing enzyme activity. In contrast, the alpha-helix in the apo system exists
only briefly, suggesting reduced structural stability without a bound substrate. When the
inhibitor oxalic acid is bound, the formation of the alpha-helix in this region is suppressed,
which likely contributes to the inhibition of enzyme activity by preventing the structural
stabilization needed for effective substrate binding and catalysis.



Int. J. Mol. Sci. 2024, 25, 10074 8 of 21
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 5. (A) The secondary structure timeline in the Q53-D63 region. (B) The secondary structure 
of the Q53-D63 region. Green represents the oxalic acid system, yellow represents the catechin sys-
tem, blue represents the epicatechin system, purple represents the chlorogenic acid system, and pink 
represents the apo system. 

The probability of secondary structure change at positions F350-V378 is shown in 
Figure 6. Residues covering the substrate-binding site play a crucial regulatory role in 
enzyme activity, as modifications in these regions can significantly enhance or inhibit cat-
alytic efficiency by altering the enzyme’s interaction with the substrate [28]. This region, 
which lies above the substrate-binding site, is mainly composed of random coils and ex-
hibits high flexibility. Upon substrate binding, particularly with catechin and epicatechin, 
an alpha-helix forms during the simulation, potentially stabilizing the substrate interac-
tion and enhancing enzyme activity. In contrast, the alpha-helix in the apo system exists 
only briefly, suggesting reduced structural stability without a bound substrate. When the 
inhibitor oxalic acid is bound, the formation of the alpha-helix in this region is suppressed, 
which likely contributes to the inhibition of enzyme activity by preventing the structural 
stabilization needed for effective substrate binding and catalysis. 

Figure 5. (A) The secondary structure timeline in the Q53-D63 region. (B) The secondary structure of
the Q53-D63 region. Green represents the oxalic acid system, yellow represents the catechin system,
blue represents the epicatechin system, purple represents the chlorogenic acid system, and pink
represents the apo system.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 6. The secondary structure timeline in the F350-V378 region and the corresponding second-
ary structure diagrams for five systems: (A) ligand-free, (B) catechin-bound, (C) epicatechin-bound, 
(D) chlorogenic acid-bound proteins, and (E) oxalic acid-bound proteins. 

We used GaMD trajectories at equilibrium to calculate the inter-correlations between 
residues to explore the internal dynamics of PPO. Figure 7A–E shows the interaction cor-
relation plots of the intermolecular motions associated between the distal regions of the 
proteins in the different complexes. The Dynamic Cross-Correlation Matrix (DCCM) in 
protein molecular dynamics simulations is used to identify and quantify the correlated 
movements between atoms or residues over time, helping to reveal functional relation-
ships and allosteric interactions within the protein structure, which are critical for under-
standing enzyme mechanisms and structural dynamics [29]. After binding the substrates, 
the proteins of each system showed stronger interactions. Additionally, we observe a neg-
ative interaction between residues F350-V378 and those near Q53-D63, highlighted by red 
circles. The binding of oxalic acid disrupts this interaction. Structurally, the F350-V378 
region, located above the substrate-binding site, and the Q53-D63 region, near the copper 
ion, play key roles in maintaining the enzyme’s functional conformation. The negative 
interaction between these regions may help regulate the flexibility and dynamics neces-
sary for efficient catalysis. The disruption of this interaction by oxalic acid binding likely 
destabilizes this coordination, further inhibiting enzyme activity by preventing the proper 
structural alignment required for effective substrate processing and catalysis. 

Figure 6. The secondary structure timeline in the F350-V378 region and the corresponding secondary
structure diagrams for five systems: (A) ligand-free, (B) catechin-bound, (C) epicatechin-bound,
(D) chlorogenic acid-bound proteins, and (E) oxalic acid-bound proteins.

We used GaMD trajectories at equilibrium to calculate the inter-correlations between
residues to explore the internal dynamics of PPO. Figure 7A–E shows the interaction
correlation plots of the intermolecular motions associated between the distal regions of
the proteins in the different complexes. The Dynamic Cross-Correlation Matrix (DCCM)
in protein molecular dynamics simulations is used to identify and quantify the correlated
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movements between atoms or residues over time, helping to reveal functional relationships
and allosteric interactions within the protein structure, which are critical for understanding
enzyme mechanisms and structural dynamics [29]. After binding the substrates, the
proteins of each system showed stronger interactions. Additionally, we observe a negative
interaction between residues F350-V378 and those near Q53-D63, highlighted by red circles.
The binding of oxalic acid disrupts this interaction. Structurally, the F350-V378 region,
located above the substrate-binding site, and the Q53-D63 region, near the copper ion, play
key roles in maintaining the enzyme’s functional conformation. The negative interaction
between these regions may help regulate the flexibility and dynamics necessary for efficient
catalysis. The disruption of this interaction by oxalic acid binding likely destabilizes
this coordination, further inhibiting enzyme activity by preventing the proper structural
alignment required for effective substrate processing and catalysis.
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The distance between the two histidine residues (H88 and H214) coordinating the
copper ion in the enzyme is shown in Figure 8. The amino acids that coordinate copper
ions in polyphenol oxidase (PPO), particularly histidine residues, are crucial for facili-
tating electron transfer during catalysis, which directly impacts the enzyme’s ability to
oxidize phenolic substrates and regulate enzymatic browning reactions [30]. After sub-
strate binding, these two residues move closer together, and the degree of this proximity
correlates positively with the experimentally measured catalytic activity, indicating that a
more compact coordination around the copper ion enhances enzyme function. In contrast,
upon inhibitor binding, there is a slight increase in the distance between these residues,
suggesting a disruption in the optimal copper ion coordination, which may lead to a reduc-
tion in catalytic efficiency. This highlights the importance of maintaining proper histidine
coordination for effective enzyme activity. Previous studies have shown that a shorter
distance between copper ions and histidine residues enhances PPO catalytic activity [16].
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In comparison, our study similarly found that the reduced spacing between histidines
coordinating the copper ion promotes increased PPO catalytic efficiency.
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acid-bound proteins (chlorogenic_acid), and oxalic acid-bound proteins (oxalic_acid). (B) Distance
kernel density distributions for the five simulated systems.
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The major conformational changes of the protein were determined with PCA analysis
of the Cα atoms in the GaMD trajectory. The two largest eigenvalues, PCA1 and PCA2,
were used as reaction coordinates to calculate the relative Gibbs free energies and to
generate Gibbs free energy landscapes (FELs). The FELs provide valuable information
about the different conformational states and reveal the energetic barriers of the proteins
between conformations or states [31]. Figure 9 illustrates the free energy surface maps of
the five systems with the lowest energy conformations, with different structural trends in
the two main active regions identified by the previous analysis.
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Figure 9. Free energy landscapes of the five systems: (A) ligand-free, (B) catechin-bound, (C) epicatechin-
bound, (D) chlorogenic acid-bound proteins, and (E) oxalic acid-bound proteins. The lowest energy
conformations are shown, highlighting the secondary structures of the Q53-D63 region (pink) and the
F350-V378 region (cyan). The yellow color indicates copper ions. Green molecules indicate substrate
molecules. The colors in the free energy landscape represent the energy levels, with red indicating
lower free energy and blue indicating higher free energy.

In Figure 9A, the free energy surface diagram of the ligand-free protein system is
shown. After comparative calculations, the global energy minimum (PCA1: 19.82, PCA2:
128.53) was chosen for the analysis. The corresponding conformation occurs at 197.3 ns.
The alpha-helix in the Q53-D63 region unfolds, while a transient alpha-helix forms briefly
in the F350-V378 residue region.
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The catechin-bound system’s free energy surface diagram is displayed in Figure 9B.
The global energy minimum (PCA1: −160.55, PCA2: 65.42) was selected for examina-
tion following comparison computations. At 354.80 ns, the corresponding conformation
takes place.

The epicatechin system’s free energy surface diagram is shown in Figure 9C. The global
energy minima (PCA1: −60.62, PCA2: −54.39) were selected for examination following
comparison computations. At 3.30 ns, the appropriate conformation takes place. For these
two highly active substrates, the Q53-D63 region forms a relatively long alpha-helix, and
an alpha-helix also develops in the F350-V378 residue region. In Figure 9D, the free energy
surface diagram of the chlorogenic acid system is shown. After comparative calculations,
the global energy minima (PCA1: 97.18, PCA2: −10.68) was chosen as the reference for
the analysis. The corresponding conformation occurs at 313.00 ns. In the chlorogenic acid
system, the alpha-helix in the Q53-D63 residue region shortens to some extent. Consistent
with the secondary structure timeline analysis, the duration of the alpha-helix in the F350-
V378 residue region is also reduced, presenting as a random coil in the principal component
structure diagram.

The free energy surface diagram of the oxalic acid system is displayed in Figure 9E. The
global energy minimum (PCA1: −14.45, PCA2: −51.52) was identified after performing
comparison calculations. The corresponding conformation occurs at 238.20 ns. Upon
inhibitor binding, the alpha-helix in the Q53-D63 residue region significantly shortens, and
the F350-V378 residues remain in a random coil structure. The PCA analysis results are
consistent with the earlier secondary structure analysis, supporting the regulatory role of
these two regions in the catalytic activity of polyphenol oxidase.

To further investigate the relative steady states of each system and the key secondary
structure changes during the simulation, we performed a Markov state model analysis of
the trajectories.

These states correspond to distinct conformational ensembles, and the flux between
them illustrates the probability of transitions during the simulation. In the ligand-free
system, as shown in Figure 10A, S3 and S4 represent more stable conformations. The
Q53-D63 region consistently adopts a disrupted alpha-helix, while F350-V378 fluctuates
between random coil and alpha-helix structures. In the catechin-bound system (Figure 10B),
S3 and S4 represent stable states, with the Q53-D63 region maintaining a fully formed
alpha-helix throughout. In the epicatechin-bound system (Figure 10C), S2 and S3 are stable
conformations. In this system, Q53-D63 retains a stable long alpha-helix, and the F350-V378
region forms beta-sheets at the terminal regions while maintaining an alpha-helix in the
central part, stabilizing the substrate binding and catalytic function. In the chlorogenic acid-
bound system (Figure 10D), the Q53-D63 alpha-helix undergoes significant unwinding and
flux analysis identifies S2 and S3 as stable conformations. The Q53-D63 alpha-helix shortens,
and this destabilization likely reduces catalytic efficiency, aligning with chlorogenic acid’s
lower activity observed experimentally. In the oxalic acid-bound system (Figure 10E), S3
and S4 represent stable conformations. Upon oxalic acid binding, the Q53-D63 region’s
alpha-helix shortens significantly, while the F350-V378 region experiences helix unwinding
and remains in a random coil state, further inhibiting enzymatic activity.

We also conducted free energy barrier calculations to quantify the transitions between
these metastable states. The calculation of these barriers is crucial for understanding
the kinetic pathways and timescales of the transitions, allowing us to better interpret
how the system moves between different stable conformations [32]. The results of these
calculations are presented in Table 1. These energy barriers provide further insight into the
dynamics of the system, supporting the observed stability and conformational transitions
between states.
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Figure 10. Flux analysis of the five systems: (A) ligand-free, (B) catechin-bound, (C) epicatechin-
bound, (D) chlorogenic acid-bound proteins, and (E) oxalic acid-bound proteins, highlighting the
secondary structures of the Q53-D63 region (pink) and the F350-V378 region (cyan). S1, S2, S3, and S4
represent the most significant metastable states identified in the Markov state model (MSM) analysis.
The yellow color indicates copper ions. Green molecules indicate substrate molecules.
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Table 1. Free energy barriers (∆G) between metastable states calculated using transition path theory
(TPT) in kcal/mol.

S1–S2 S1–S3 S1–S4 S2–S3 S2–S4 S3–S4

Ligand-free protein 3.95 3.69 3.18 2.83 3.23 3.09
Catechin-bound protein 3.78 3.70 3.82 3.86 3.77 3.96

Epicatechin-bound protein 2.31 4.28 4.26 4.13 4.17 4.25
Chlorogenic acid-bound protein 2.96 2.62 4.36 1.78 4.33 4.25

Oxalic acid-bound protein 2.83 3.99 4.18 3.77 4.04 2.87

2.4. MM-PBSA Analysis

The results of MM-PBSA calculations for the three systems—catechin, epicatechin, and
chlorogenic acid—are summarized in Table 2. For catechin, the total binding free energy
(∆Gtotal) is −11.53 ± 1.00 kJ/mol. For epicatechin, the ∆Gtotal is −10.75 ± 1.29 kJ/mol.
For chlorogenic acid, the ∆Gtotal is −28.03 ± 1.04 kJ/mol. For oxalic acid, the ∆Gtotal is
−0.31 ± 0.36 kJ/mol. These results indicate that among the three systems, chlorogenic acid
shows the most favorable binding free energy, followed by catechin, epicatechin, and oxalic
acid. In our molecular docking analyses, we found that more residues do interact with
chlorogenic acid. This may explain the main reason why its G value is greater than that of
the other substrates.

Table 2. MM-PBSA (kJ/mol) of the five systems.

Catechin Epicatechin Chlorogenic Acid Oxalic Acid

∆EvdW −19.32 ± 1.17 −22.50 ± 2.10 −51.40 ± 1.17 −0.76 ± 0.44
∆Eele −51.65 ± 2.97 −46.71 ± 5.13 −22.35 ± 3.00 −3.57 ± 2.53
∆Ggas −70.96 ± 2.83 −69.21 ± 3.91 −73.76 ± 3.82 −4.33 ± 2.94
∆Gsolv 59.43 ± 2.07 58.46 ± 2.80 45.73 ± 3.27 4.02 ± 2.62
∆Gtotal −11.53 ± 1.00 −10.75 ± 1.29 −28.03 ± 1.04 −0.31 ± 0.36

3. Discussion

This study provides valuable insights into the catalytic efficiency mechanisms of
lotus root polyphenol oxidase (PPO) with various substrates—catechin, epicatechin, and
chlorogenic acid—as well as the inhibitor oxalic acid. Molecular docking studies identified
key residues involved in substrate binding, shedding light on the molecular basis of
substrate specificity. Notably, the alpha-helix in the Q53-D63 region near the copper ion
was extended upon substrate binding, likely stabilizing the active site and enhancing
catalytic efficiency. In contrast, this helix was disrupted in the presence of the inhibitor,
leading to a reduction in enzymatic activity. Furthermore, the formation of a new alpha-
helix in the F350-V378 region upon substrate binding may further stabilize the substrate
and contribute to improved catalytic efficiency.

This study is the first to unveil the substrate-specific catalytic mechanisms of lotus root
PPO, providing theoretical support for experimentally observed differences in catalytic
activity. These findings contribute to a deeper understanding of how PPO discriminates
between different substrates and optimizes its catalytic function. Additionally, the research
highlights the inhibitory mechanisms of oxalic acid, a potent PPO inhibitor. This study
explores both the mechanisms of substrate specificity and inhibition, offering a valuable
foundation for future research aimed at regulating enzymatic browning in food products
through targeted PPO inhibition.

However, there are limitations to this study. The absence of an experimentally resolved
crystal structure for lotus root PPO means that the protein model used contains many regions
of random coils, leading to fluctuations during simulations. Achieving equilibrium required
extended simulation times. Future studies that obtain and utilize a crystal structure of
lotus root PPO would likely yield more accurate and detailed insights. Additionally, this
study primarily focuses on three specific substrates, which, while informative, may not fully
represent the broad range of phenolic compounds that PPO can interact with. Future studies
should aim to obtain a high-resolution crystal structure of lotus root PPO to validate and
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refine our findings. Expanding the range of substrates and inhibitors studied, as well as
exploring genetic modifications to PPO, could provide a more comprehensive understanding
of its catalytic behavior. Furthermore, integrating experimental validation, such as enzyme
kinetics and site-directed mutagenesis, would strengthen the conclusions drawn from the
computational analyses and offer more actionable insights for food processing applications.

Looking forward, this research holds substantial implications for food science and
technology. Understanding the catalytic mechanisms of PPO can inform the development
of more effective inhibitors to prevent enzymatic browning in food products, thus im-
proving quality and shelf-life. Additionally, this study lays the groundwork for further
exploration of PPO’s role in plant physiology and its potential applications in agricultural
biotechnology. Future research directions could include the investigation of PPO interac-
tions with a broader range of substrates and inhibitors, as well as the exploration of genetic
modifications to enhance desirable PPO functions or suppress undesirable activities.

In conclusion, this study advances our knowledge of PPO’s catalytic mechanisms,
offering theoretical foundations for practical applications and future research avenues
aimed at optimizing food quality and extending our understanding of plant biochemistry.

4. Materials and Methods
4.1. Preparation of Simulated Molecular Systems

The lotus root polyphenol oxidase sequence used in this study was obtained from
the UniProt database (https://www.uniprot.org/, accessed on 16 January 2024) under
sequence number E5L9E4 [33]. Protein structures were obtained using Alpha Fold 3 [34],
removing the part of the tail at the end that could not be modeled. After modeling, the
system was performed with equilibration simulation for 150 ns to obtain a more stable
equilibrium structure for further molecular dynamics simulation. To ensure the quality
of the homology-modeled structure, we conducted several validation steps. Initially,
the model was assessed using the ipTM (interface predicted Template Modeling) and
pTM (predicted Template Modeling) scores, which are common metrics derived from the
Template Modeling (TM) score to evaluate the accuracy of predicted protein structures and
their interfaces. The ipTM value of 0.98 and pTM value of 0.79 for this structure indicate
that it has high structural reliability. Additionally, we performed an Expected Position Error
(EPE) analysis to assess the positional accuracy of the retained residues, confirming the
model’s reliability. To further strengthen the validation, we also conducted a Ramachandran
Plot Analysis [35]. Using the PROCHECK [36] tool (https://www.ebi.ac.uk/thornton-srv/
software/PROCHECK/), we generated a Ramachandran plot (Figure S5), which showed
that the majority of the residues are located within the allowed regions (core or favored
regions), verifying the geometric quality and correct distribution of the backbone dihedral
angles in the model. These comprehensive validation steps indicate that the generated lotus
root polyphenol oxidase model is robust and suitable for subsequent molecular dynamics
simulations and other computational analyses. The three substrates selected for this study—
(+)-catechin, (−)-epicatechin, and chlorogenic acid—were chosen based on their ranking
in catalytic activity from a previous study. These substrates were selected to explore the
enzyme’s substrate specificity and to examine the molecular interactions that contribute
to the unique catalytic behavior of lotus root PPO. In addition to the substrate studies,
we included oxalic acid, a known potent inhibitor of PPO identified in previous research,
to examine its effects on substrate specificity and to further understand the inhibitory
mechanisms of lotus root PPO. Small molecule structures were obtained from the PubChem
database [37] (https://pubchem.ncbi.nlm.nih.gov/, accessed on 16 January 2024) for (+)-
catechin (CID: 9064), chlorogenic acid (CID: 1794427), and (−)-epicatechin (CID: 72276).
The molecular docking was carried out using Autodock Vina 1.2.0 [38–40] for the study. The
coordinates of the center of the docking site were x = 17.000, y = 39.600, z = 71.991, and the
box size was 25.00 Å × 25.00 Å × 25.00 Å. A total of four molecular dynamics simulation
systems were set up for the study, namely ligand-free protein system, catechin-protein
system, epicatechin-protein system, and chlorogenic acid-protein system.

https://www.uniprot.org/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://pubchem.ncbi.nlm.nih.gov/
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4.2. Conventional Molecular Dynamics Simulations

AMBER 22 [41] software was used to run conventional molecular dynamics (cMD)
simulations utilizing the pmemd.cuda module [42]. Force field parameters for proteins
were produced using the ff19SB [43] force field in the Leap module prior to simulation.
Ligands were parameterized using the General AMBER Force Field (GAFF) with atomic
charges derived from the AM1-BCC method. Every system was solved using the OPC [44]
water model inside an octahedral box. In order to reduce edge effects, periodic boundary
conditions (PBC) were used, keeping a 15 Å buffer between the solute surface and the
box edges. Na+ ions were introduced to the systems in order to neutralize them. The
particle mesh Ewald (PME) approach with a cutoff of 10 Å was used to address non-bonded
electrostatic interactions, while the SHAKE algorithm [45] was used to limit all connections
involving hydrogen atoms. The energy minimization process consisted of 5000 steps each
of the steepest descent and conjugate gradient algorithms. The systems were gradually
heated to 300 K under an NVT ensemble and equilibrated for 50 ns under an NPT ensemble,
employing a time step of 2 fs for the entire simulation.

4.3. Gaussian-Accelerated Molecular Dynamics Simulations

Equipped structures from the previous cMD simulations were used in Gaussian-
accelerated molecular dynamics (GaMD) simulations [23]. Using a harmonic boost potential
to lower energy barriers and smooth the potential energy surface, GaMD improves sampling
and makes shifting between various conformational states easier. Dual-boost settings from an
initial 50 ns cMD run were used in this investigation. Then, under an NVT ensemble, a 500 ns
GaMD simulation was run, with coordinates collected every 10 ps. To ensure transparency
and reproducibility, the specific parameters used in our Gaussian-Accelerated Molecular
Dynamics (GaMD) simulations are detailed in the Supplementary Materials, including the full
input files. These parameters were carefully chosen to optimize the accuracy and robustness
of our simulations, and they include settings for the initial equilibration, production runs, and
other key simulation conditions. All simulations were conducted with three independent
parallel runs, with the results provided in the Supplementary Materials (Figures S6–S8,
Table S1). Corresponding conformational changes were consistently observed across the
parallel trajectories, confirming the reproducibility of the study.

4.4. Trajectory Analysis

The Cpptraj module [46,47] of AMBER 22 was utilized to calculate the trajectory anal-
ysis’s root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg), solvent-accessible surface area (SASA), dynamic cross-correlation matrices
(DCCM) and distance analysis. Additionally, Cpptraj was used to perform principal com-
ponent analysis (PCA) in order to record the coordinated movements of the protein [48]. To
determine the main structural states and associated energy barriers, free energy landscapes
(FEL) were created [49].

4.5. MM-PBSA Calculations

Binding free energy calculations between proteins and substrates were performed us-
ing the molecular mechanics/Poisson–Boltzmann surface area [50,51] (MM/PBSA) method.
The binding free energy (∆G_bind) was determined as follows:

∆G_bind = ∆H − T∆S, (1)

The solvate entropy term was not determined because the changes in the protein
and ligand following binding were identical in all systems, with extremely tiny entropy
differences. The enthalpy change (∆H) was calculated by adding the average changes in
the solvation-free energy (∆Gsol) and the gas phase energy (∆EMM) over a conformational
ensemble produced using MD simulations:

∆H = ∆EMM + ∆Gsol, (2)
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To estimate ∆EMM, the following formula was applied:

∆EMM = ∆Eele + ∆EvdW + ∆Eint, (3)

where ∆Eele, ∆EvdW, and ∆Eint stand for the electrostatic energies, vdW energies, and
internal energies corresponding to the bond, angle, and dihedral energies, respectively.

The protein–ligand complex and protein and ligand conformational structures were
acquired from a single MD trajectory (just the complex trajectory) in this study, which
treated the protein–ligand structure as a rigid body. Because this energy term was computed
from the same MD-simulated trajectory, the ∆Eint between the complex and the isolated
components could therefore offset each other.

Moreover, in the subsequent investigation, just the ∆Eele and ∆EvdW of Equation (3)
were examined.

The total of the polar solvation-free energy (∆Gpb) and non-polar solvation-free energy
(∆Gnp) was denoted by the symbol ∆Gsol:

∆Gsol = ∆Gpb + ∆Gnp, (4)

The linearized Poisson–Boltzmann equation was solved using the PBSA tool in the
AMBER 22 suite to determine ∆Gpb [52,53]. To calculate MM/PBSA, 50 snapshots were
taken from the final trajectory [54].

4.6. Markov Model Analysis

Following the AMBER tutorials, we performed a Markov model analysis using the
PyEMMA 2.5.7 package [55]. We analyzed the 500 ns trajectory data for each system,
focusing on reducing noise and computational costs by estimating the channel size as
a feature with the MDAnalysis 2.2.0 package. We calculated the free energy barriers
(∆G) between metastable states in a Markov state model (MSM) by identifying transition
pathways using Transition Path Theory (TPT) and computing the Mean First Passage
Time (MFPT) for each transition. These free energy barriers offer insights into the
stability and kinetics of the state transitions. The minimum RMSD was also utilized
as a feature. The lag time was selected based on the relatively resolved timescales, as
indicated by the implied timescales (ITS) shown in Figure S9. A Chapman–Kolmogorov
test was conducted for each system, and all four systems successfully passed validation,
as demonstrated in Figure S10.

5. Conclusions

This study employed Gaussian-accelerated molecular dynamics (GaMD) simula-
tions to investigate the catalytic efficiency mechanisms of lotus root polyphenol oxidase
(PPO) with different substrates, including catechin, epicatechin, chlorogenic acid, and
the inhibitor oxalic acid. The key findings reveal significant conformational changes in
PPO that correlate with its enzymatic activity. The alpha-helix in the Q53-D63 region,
near the copper ion, extends upon substrate binding, likely stabilizing the active site
and enhancing catalysis. In contrast, this helix is disrupted when the inhibitor binds,
leading to decreased enzymatic efficiency. Additionally, the F350-V378 region, which
covers the substrate-binding site, forms an alpha-helix upon substrate binding, further
stabilizing the substrate and promoting catalytic function. However, in the presence of
the inhibitor, this alpha-helix does not form, destabilizing the binding site and inhibiting
activity. This research provides the first detailed analysis of the substrate-specific cat-
alytic mechanisms of lotus root PPO, revealing insights that can improve food quality
and shelf life.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms251810074/s1.

https://www.mdpi.com/article/10.3390/ijms251810074/s1
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GaMD Gaussian-Accelerated Molecular Dynamics
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(from French: Normale-Volume-Température)

PCA Principal Component Analysis
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PBC Periodic Boundary Conditions
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
Rg Radius of Gyration
SASA Solvent Accessible Surface Area
TPT Transition Path Theory
∆Eele Electrostatic Energies
∆EMM Gas Phase Energy
∆EvdW Van der Waals Energies
∆Gsol Solvation-Free Energy
Amino Acid Single-Letter Abbreviation
F Phenylalanine
G Glycine
L Leucine
V Valine
N Asparagine
Q Glutamine
S Serine
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