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Abstract: The time dynamics of charge accumulation at the electrochemical interface between
graphene and water is important for supercapacitors, batteries, and chemical and biological sensors.
By using impedance spectroscopy, we have found that measured capacitance (Cm) at this interface
with the gate voltage Vgate ≈ 0.1 V follows approximate laws Cm~T1.2 and Cm~T0.11 (T is Vgate

period) in frequency ranges (1000–50,000) Hz and (0.02–300) Hz, respectively. In the first range, this
dependence demonstrates that the interfacial capacitance (Cint) is only partially charged during the
charging period. The observed weaker frequency dependence of the measured capacitance (Cm) at
frequencies below 300 Hz is primarily determined by the molecular relaxation of the double-layer
capacitance (Cdl) and by the graphene quantum capacitance (Cq), and it also implies that Cint is
mostly charged. We have also found a voltage dependence of Cm below 10 Hz, which is likely related
to the voltage dependence of Cq. The observation of this effect only at low frequencies indicates that
Cq relaxation time is much longer than is typical for electron processes, probably due to Dirac cone
reconstruction from graphene electrons with increased effective mass as a result of their quasichemical
bonding with interfacial molecular charges.

Keywords: graphene; molecule; nanostructure; water; quantum capacitance; Dirac cone; impedance
spectroscopy; sensor; relaxation time; interfacial bonding

1. Introduction

Graphene-based nanostructures interfaced with aqueous and other electrolytic solu-
tions are promising candidates for the fabrication of a new generation of various devices.
Examples of these devices include supercapacitors [1–6], batteries [7–11], and chemical and
biological sensors [12–29]. The time dynamic of charge accumulation at these interfaces is
important because this dynamic strongly affects these applications. Understanding this
dynamic requires impedance studies in a broad range of frequencies, including a low
frequency range. However, the reported impedance measurements at these interfaces
were mainly fulfilled at frequencies in the range of 5–1000 Hz [12,30], and low frequency
measurements that are required for obtaining the electrostatic parameters of these inter-
faces are very limited [3,31]. Moreover, experimental studies by impedance spectroscopy
were mainly reported at the graphene interface with solutions of various salts; meanwhile,
practically important interfaces between graphene and water are less studied experimen-
tally. The capacitance of the electrochemical interface (Cint) between graphene and water
was described as being connected in series Cdl and Cq (see Figure 1) by a number of
researchers [12,30,32–36].

These capacitances are considered to be important parameters and are currently under
intensive investigation [3,30]. Quantum capacitance that was introduced for the first time
in work [37] is primarily important for low-density-of-states systems, such as graphene.
The quantum capacitance of graphene is directly related to the density of states of Dirac
fermions that form Dirac cones in which the electronic energy and momentum have a linear
dispersion [38]. The two conical surfaces for electrons and holes touch each other at the
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Dirac point and form a zero-band gap semimetal [38]. In spite of the importance of Cq and
Cdl, the time dynamics of these parameters remain largely unexplored [39]. Therefore, in
this work, we focus on obtaining the frequency dependence of the electrical capacitance at
the interfaces of graphene with deionized water in a broad frequency range from 0.02 Hz to
50 kHz, as well as on establishing the main dynamical features of Dirac electrons in these
systems.
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Figure 1. Schematic illustrations of equivalent circuits of Cint.

2. Results and Discussion

Figure 2a–e shows the typical capacitances (Cm) measured at different gate voltages
between graphene and two different types of gate electrodes in water.

One can see from Figure 2a–c that the measured capacitance (Cm) at this interface with
the applied gate voltage Vgate ≈ 0.1 V follows approximate laws Cm~T1.2 and Cm~T0.11

(T is Vgate period) in frequency ranges (1000–50,000) Hz and (0.02–300) Hz, respectively.
Figure 2a also demonstrates the stability of the studied interfaces over time and that the
observed effects are reproducible.

To explain the observed effects, we propose a charge accumulation model at the
graphene interface with water. In this model, Cm in frequency ranges (1000–50,000) Hz is
mainly limited by the charge passing through the water during the charging period under
the applied gate voltage, and Cm is only a fraction of the electrostatic value of the interfacial
capacitance (Cint). The observed weak superlinear dependence of Cm on T in this frequency
range indicates that molecular charges participate in accelerated motion under the applied
voltage. Taking into account that Cint is connected in series with the resistance of water in
the measuring circuit (see Figure 3), this dependence implies that Cm is mainly limited by
the amount of charge passing through the resistance of water during the charging period.
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Figure 2. Typical frequency dependencies of the capacitance measured in water between graphene 
and gate electrodes normalized to the graphene surface area (a) at Vgate = 0.1 V with a single gold 
wire gate electrode (graphene#1) and a gate electrode of 6 gold wires (graphene#2) on the 
logarithmic scale, (b) at 8 different gate voltages with a gate electrode of 6 gold wires on the 
logarithmic scale, (c) at 7 different gate voltages with a single gold wire gate electrode on the 
logarithmic scale, (d) at 8 different gate voltages with a gate electrode of 6 gold wires on the linear 
scale, and (e) at 7 different gate voltages with a single gold wire gate electrode on the linear scale. 
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Figure 2. Typical frequency dependencies of the capacitance measured in water between graphene
and gate electrodes normalized to the graphene surface area (a) at Vgate = 0.1 V with a single gold
wire gate electrode (graphene#1) and a gate electrode of 6 gold wires (graphene#2) on the logarithmic
scale, (b) at 8 different gate voltages with a gate electrode of 6 gold wires on the logarithmic scale,
(c) at 7 different gate voltages with a single gold wire gate electrode on the logarithmic scale, (d) at
8 different gate voltages with a gate electrode of 6 gold wires on the linear scale, and (e) at 7 different
gate voltages with a single gold wire gate electrode on the linear scale.
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enough to charge Cint, Cm is primarily determined by the double-layer capacitance (Cdl) and
the graphene quantum capacitance (Cq), and the molecular relaxation of these capacitances
plays an important role in the frequency dependence of Cm.

One can also see from Figure 2b–e that Cm has a voltage dependence approximately
below 10 Hz. This dependence is likely related to the voltage dependence of Cq that is given
by the formula [30] Cq ≈ (2 e3 Vch)/(π 2 νF

2), where èis the Planck constant, e is an electron
charge, νF ≈ c/300 is the Fermi velocity of the Dirac electrons, and Vch is the potential
of graphene. It was recently suggested [40] that electrochemical impedance spectroscopy
measurements of the chemical capacitance in contact with electrolytes enable the direct
analysis of the density of states (DOS) properties. Experimentally, Dirac cone manifestations
in capacitance measurements at the electrochemical interfaces with graphene were observed
previously [3,30]. In the vicinity of the Dirac point, graphene bares some similarities to the
quantum metallic state studied [41,42] in quasi-2D metallic films. In particular, the maximal
resistance of graphene is close to the quantum resistance level [38], and electron tunneling
DOS suppression is linear [43]. This suppression likely plays a role in the limitation of the
quantum capacitance from above, and the fundamental origin of the voltage dependence
of Cq is the voltage-controlled Dirac cone reconstruction in graphene. The observation
of the gate voltage dependence of Cm in this paper only at low frequencies indicates that
Cq relaxation time is by orders of magnitude longer than is typical for electron processes.
Defects and impurities in graphene samples can decrease the charge carrier mobility in
graphene and increase the quantum capacitance relaxation time. However, this mechanism
is limited due to the typical density of defects being as low as 5·1010 cm−2 [44] for these
graphene samples. We primarily attributed the observed increase in the relaxation time of
the quantum capacitance to quasichemical bonding between Dirac electrons in graphene
and molecular charges at the interface (see Figure 4).
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Figure 4. Schematic illustrations of the bonding between Dirac electrons in graphene and molecular
charges at the electrochemical interface between graphene and water and of the Dirac cone formed
from the bonded electrons.

This Figure illustrates bonding between electrons in graphene and molecular charges
at the electrochemical interface between graphene and water, and also shows the Dirac
cone formed by the bonded electrons. As one can see from Figure 2b–e, the reconstruction
of the Dirac cone by applying gate voltage requires a relaxation time that is greater than
0.1 s. This relaxation time is more typical for molecules rather than for electrons. Therefore,
Dirac electrons at the interface between graphene and water are bonded to molecular
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charges and behave as quasiparticles with an effective mass that is similar to the mass of
the water molecules.

Future studies are required to establish the applicability of the observed effects. Among
these studies are investigations of graphene obtained by CVD and exfoliation methods
with a surface roughness, a defect density, and electronic properties that may be different
from the properties of graphene fabricated by the thermal decomposition of silicon carbide.
Another interesting direction for future research is the investigation of the observed effects
in bilayer or trilayer graphene that often demonstrate qualitatively different properties from
the properties of monolayer graphene (see for instance [45]). The quantum capacitance
of graphene and double-layer capacitance plays an important role at the electrochemical
interfaces with carbon nanotubes (see, for example, [46]). For this reason, effects observed
in our work may also be relevant at these interfaces. Our findings are important for under-
standing the charging and discharging process in supercapacitors and sensor applications.
The speed dynamic of these processes can be controlled by choosing the types of charged
molecules and their concentrations. The observed dependence of the measurable param-
eter (quantum capacitance) on bonding between electrons and molecular charges at the
electrochemical interfaces opens additional opportunities for selective molecule detection
in sensor applications.

3. Materials and Methods

In this work, we study the dynamics of capacitance at the electrochemical interface
between graphene and water by low frequency impedance spectroscopy. We use monolayer
graphene fabricated by the thermal decomposition of silicon carbide in work [15]. The
growth method and the Raman structural characterization of graphene samples are thor-
oughly discussed in that paper [15]. We apply silver paste contacts to the graphene surface
to prevent possible damage to graphene from the alternative lithographic process of elec-
trode preparation. To prevent the degradation of the electrodes, we cover the silver paste
contact pads with epoxy glue. The samples with the contacts would typically be subject to
temperature treatment at 80–100 ◦C for up to 2 h in a dry box. The typical distance between
electrodes on graphene, their length, and their typical width are between (1–1.5) mm,
(3–4 mm), and (2.5–3) mm, respectively. To ensure that the contacts to graphene are
ohmic [3], we compare 2 and 4 contact measurements and observe the approximate linear
scaling of the graphene resistance with the length of the graphene sample. In this work, we
use non-faradaic capacitors with blocking polarizable electrodes that carbon (graphene)
and gold form at the interface with water [47]. Gold wires 50 µm in diameter are positioned
~200 µm away from graphene to act as gating electrodes. We study samples with gating elec-
trodes made with a single gold wire and with six gold wires. Deionized water is positioned
between the gating electrode and graphene for electrical impedance spectroscopy (EIS)
measurements. Nonpolarizable reference electrodes such as Ag/AgCl were not used to
avoid the addition of anions to the deionized water. Potentiostat-galvanostat Electrochem-
ical Instruments P-45X, containing an FRA-24M module for measuring electrochemical
impedance, is used for our measurements. This device allows electrochemical impedance
measurements automatically calibrated in a broad frequency range. We check that this
calibration is in good agreement with nominal capacitance values for a few commercially
available capacitors and with results of a few fixed-frequency measurements, fulfilled by
using AKIP 6108 LCR meter and Agilent U1242B multimeter (Santa Clara, CA, USA). All
reported measurements have been made at the graphene interface with water at room tem-
perature (≈20 ◦C), normal atmospheric pressure (≈760 mm Hg), and with an air humidity
of about (≈70%). These parameters are within the certified spec range of P-45X. The input
resistance of P-45X potentiostat-galvanostat is 1012 Ω. The impedance measurable range is
from 5 mΩ up to 50 MΩ. The entire frequency range for P-45X potentiostat-galvanostat
with the FRA-24M module is from 0.1 mHz to 1 MHz. In our experiments, a frequency
range from 0.02 Hz to 50 kHz has been chosen to ensure that parasitic capacitances are
negligible and that the measured parameters are in the measurable range according to
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the spec of the P-45X with the FRA-24M module. Impedance is measured between the
gate electrode and graphene for different applied gate voltages ranging from −0.2 V to
1.4 V with DC offset scans within the amplitude range of ±20 mV. This asymmetric voltage
range is chosen to minimize possible hysteretic phenomena and possible water decom-
position [3,44]. Due to the mentioned blocking nature of the contacts between water and
electrodes, the capacitance (Cm) between the gate electrodes and graphene is obtained from
the formula Z = 1/(i2πfCm), where f is the frequency of the applied gate voltage, i is the
square root of negative 1, and Z is the measured impedance.

4. Conclusions

The frequency dependence of the electrical capacitance at the interfaces of graphene
with deionized water has been studied in the frequency range from 0.02 Hz to 50 kHz. We
have found that Cm at this interface with the gate voltage Vgate ≈ 0.1 V follows approxi-
mate laws Cm~T1.2 and Cm~T0.11 in frequency ranges (1000–50,000) Hz and (0.02–300) Hz,
respectively. The observed dependence in the first frequency range is consistent with an
assumption that Cm is only a fraction of the electrostatic value of Cint and is mainly deter-
mined by the accelerated motion of the molecular electrical charges in water to the graphene
electrode under the applied gate voltage. Below 300 Hz, our model assumes that T is long
enough to charge Cint and Cm is primarily determined by the double-layer capacitance (Cdl)
and the graphene quantum capacitance (Cq). The observed frequency dependence of Cm in
this range can be explained by the molecular relaxation of these capacitances. The obtained
data on voltage dependence of Cm indicate that the gate voltage-dependent reconstruction
of the Dirac cone requires a relaxation time that is greater than 0.1 s, which is much longer
than is typical for electron processes, probably due to the quasichemical bonding between
Dirac electrons in graphene and molecular charges at the interface. So, Dirac electrons at
the interface between graphene and water are bonded to molecular charges and behave as
quasiparticles with an effective mass that is about the mass of the water molecules. Future
deeper theoretical analysis needs to be fulfilled to clarify the details of the voltage controlled
Dirac cone reconstruction accompanied by electron bonding with molecular charges at the
electrochemical graphene interface. Future studies of graphene obtained by CVD and exfo-
liation methods, bilayer and trilayer graphene, carbon nanotubes, other graphene-related
systems, and other low-density-of-states systems in which quantum capacitance plays
an important role are required to establish the applicability of the observed effects. Our
findings are important for understanding the interfacial charging and discharging process
and their applications in supercapacitors and selective chemical and biological sensors.
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