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Abstract: Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates devel-
opment growth and responses to abiotic and biotic stresses. However, research on AsA’s role in
cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in
improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA signifi-
cantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and
increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we
found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving
the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA
significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA
synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In
conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings
through various molecular and physiological responses. This provides a theoretical foundation
for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical
guidance for enhancing cold tolerance in tomato cultivation.
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1. Introduction

Low-temperature (LT) stress is a significant abiotic factor that strongly inhibits plant
growth and development, yield, and vegetation distribution [1]. To cope with cold stress,
plants have developed intricate mechanisms involving signal recognition and transduction,
transcriptional and metabolic alterations, and phytohormone homeostasis to modulate
their tolerance [2]. Exposure to low temperatures can compromise cell membrane stability,
leading to variations in lipid composition, changes in membrane structure, and the leakage
of cellular contents. Furthermore, low temperature also induces the overproduction of reac-
tive oxygen species (ROS), resulting in oxidative damage [3,4]. Initially, the cold signal is
firstly perceived by membrane-localized proteins, which then triggers Ca2+ influx, initiating
downstream pathways in the cold stress signaling pathway [5,6]. Plants enhance their cold
tolerance by synthesizing various chemicals and functional proteins, such as soluble sugar,
proline, and cold-responsive proteins. These substances regulate multiple physiological
processes under cold stress, including cell membrane stability, osmotic potential balance,
and reactive oxygen species (ROS) scavenging in plants [7,8].

The components of cold stress-triggered signaling components involve messenger
molecules, protein kinases, phosphatases, and transcription factors, which constitute an
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elaborate regulatory network to enhance plant cold tolerance [9,10]. The inducer of CBF
expression1 (ICE1), C-repeat binding factor/dehydration-responsive element binding
(CBF/DREBs), and cold-regulated (COR) constitute the well-known ICE1-CBF/DREBs-
COR cascade, which has been extensively reported as the most important cold-regulated
pathway [10,11]. ICE binds to the typical MYC cis-elements (CANNTG) in the promoters of
CBF1/2/3, thereby promoting the expression of CBF1/2/3 under cold stress to enable plants to
better cope with cold stress [12]. The activity and stability of ICE1, a key positive regulator
in the cold signaling cascade, are modulated by various factors including E3 ubiquitin
ligase SIZ1 and HOS1, MPK3, MPK6, and OST1 [9,13,14]. Recent research has unveiled
that the SlGRAS4-related signaling pathway modulates cold response independently of
the ICE1-CBF pathway in tomato. SlGRAS4 directly regulates SlCBF1/2/3 expression by
binding to their promoters. In addition, SlGRAS4 can activate the expression of other target
genes involved in antioxidant capacity, calcium signaling, photosynthetic capacity, and
energy metabolism [15].

AsA is an important non-enzymatic antioxidant in plants, crucial for plant growth,
development, and antioxidant functions [16]. AsA plays vital roles in various processes
including photoprotection, the wounding response, and ethylene and gibberellin biosyn-
thesis. Moreover, AsA regulates cell division and expansion, thereby controlling cell
growth [17,18]. AsA influences the activity of antioxidant enzymes such as SOD, POD, CAT,
and APX and enables the production of non-enzymatic antioxidants, thereby protecting
plants against oxidative stress-related damage through effectively scavenging ROS [19].
The application of AsA enhances photosynthetic capacity and maintains ion homeostasis
in wheat under salt-induced oxidative stress, mitigating the adverse effects of salt stress
on wheat growth [20,21]. The ABI4-VTC2 module regulates seedling growth under salt
stress by modulating AsA levels to scavenge ROS accumulation [22]. Exogenous AsA
may dramatically increase resistance to salt stress in many plants, including maize, rice,
and alfalfa [23–25]. However, whether AsA modulates plant LT stress remains largely to
be elucidated.

Cold stress leads to enormous yield losses due to reduced leaf area, photosynthetic
efficiency, and plant biomass [26]. The degree of cold-induced damage in plants can
be characterized by the appearance, temperature, and optical properties of the plants.
Hyperspectral image analysis techniques, including RGB, multispectral, hyperspectral,
thermal, chlorophyll fluorescence, and 3D sensors, have been increasingly applied to
detect and differentiate early plant diseases and identify subtle changes in plant growth
and development. These techniques offer the advantages of simple, rapid, and reagent-
free [27,28]. One of the widely used metrics is the Normalized Difference Vegetation
Index (NDVI), which is calculated as a simple ratio of near-infrared to visible light and
is used to describe the physiological attributes of vegetation and thus represents overall
health [29,30]. Chlorophyll content is an indicator of photosynthetic activity, stress, and
nutritional status in plants. Studies using the ground truth data (chlorophyll content and
reflectance data) of winter wheat during its growing season have confirmed a strong linear
relationship between the Modified Chlorophyll Absorption Ratio Index (MCARI) and
chlorophyll content [31]. Remote sensing plant stress indicators based on visible and near-
infrared spectral regions offer an alternative approach to traditional plant stress parameter
measurements. This method is currently widely applied in research on various crops such
as wheat, rice, and tomato [32–34].

Tomato (Solanum lycopersicum L.) originates from warm tropical areas, and most tomato
varieties are sensitive to low temperatures (0–15 ◦C) at various stages [35]. Exogenous
AsA, known for its protective effects, is frequently employed in research on plant stress
tolerance. However, the role of exogenous AsA in the cold tolerance of tomato seedlings
has rarely been explored. The present study aimed to investigate the role of AsA in
regulating cold stress tolerance and the underlying mechanisms in tomato seedlings. Our
findings convincingly demonstrates that exogenous AsA positively improves cold tolerance
in tomato seedlings. We propose that these results offer valuable insights for practical
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applications in tomato production and provide a theoretical basis for the use of exogenous
AsA to enhance cold tolerance in tomato.

2. Results
2.1. Effects of AsA on the Growth and Development of Tomato Seedlings

Exogenous AsA treatment significantly alleviated the damage caused by cold stress in
tomato, both morphologically and in terms of biomass distribution (Figure 1). Compared
to the control (CK) group, the chilling (CK + L) group treated with LT for 7 days exhibited
stunted seedling growth. The leaves were thin, accumulated a substantial amount of
anthocyanin, and showed clear spots due to cold damage. Additionally, the leaf margins
showed severe dehydration, wilting, and curling, suggesting significantly poorer overall
growth. In contrast, the AsA + L group exhibited less leaf wilting and displayed better
overall growth (Figure 1A).
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Figure 1. Effects of exogenous AsA on the photosynthetic system of tomato leaves under LT. (A) Im-
ages of tomato seedling phenotype. (B) Survival rate of seedlings at day 7. (C) Seedling root length at
day 7 (* and *** represent significant at 0.05 and 0.001 level, respectively. Data are presented as the
means of 3 biological replicates; different letters indicate significant difference at p-value < 0.05 using
one-way ANOVA test).

Further observations revealed that the survival rate of seedlings in the AsA + L group
was significantly higher than that in the CK + L group, with the survival rate in the AsA + L
group being 6.5 times that of the CK + L group (Figure 1B). Under cold stress, the exogenous
application of AsA resulted in a 25% increase in root length compared to the control group
(Figure 1C). These results suggest that exogenous AsA treatment can effectively mitigate
the adverse effects of LT on both the aerial and underground tissues of tomato seedlings,
maintaining their morphological structure and improving cold tolerance.

2.2. Effect of Exogenous AsA on Chlorophyll Content and Photosynthesis of Tomato Seedlings

Chl fluorescence phenotypic investigation showed that tomato leaves in the CK + L
group were considerably damaged, which was more severe in tomato leaves that were
treated with cold stress for longer (Figure 2A). Under cold stress, the activity of PSII in leaves
decreased, and the fluorescence parameters Fv/Fm, ETR, and qP continued to decrease,
with maximum decreases of 28.6%, 58.5%, and 53.3%, respectively. The application of
AsA significantly suppressed the cold-induced damage in tomato leaves and alleviated the
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cold-triggered decreases in Fv/Fm, ETR, and qP (Figure 2B–D). Furthermore, we found
that exogenous AsA treatment significantly increased the NPQ value in tomato under cold
stress, increasing by 10.7–51.9% (Figure 2E).
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Figure 2. Effects of exogenous AsA on the photosynthetic system of tomato leaves under LT. (A) Im-
ages of chlorophyll fluorescence. (B) Maximum photochemical efficiency of PSII Fv/Fm. (C) Apparent
photosynthetic electron transport rate (ETR). (D) Photochemical quenching coefficient (qP). (E) Non-
photochemical quenching coefficient (NPQ). (F) Chl-a content. (G) Chl-b content. (H) Chl-total
content. (I) SlRubisco expression level. Data are presented as the means of 3 biological replicates;
different letters indicate significant difference at p-value < 0.05 using one-way ANOVA test.

Under normal growth conditions, AsA pretreatment displayed no significant effect
on the content of Chl-a but increased the contents of Chl-b and Chl-c by 73.4% and 20.9%,
respectively. Under LT conditions, the total contents of Chl-a, Chl-b, and Chl-c in the
leaves decreased significantly. However, the AsA + L group exhibited a slower rate of
decrease, and the Chl contents were nearly two times higher than those in the CK + L group
(Figure 2F–H).

We then identified the expression level of the ribulose-1, 5-bisphosphate carboxy-
lase/oxygenase gene (SlRubisco), which is a key photosynthetic carbon fixation enzyme
gene in plants [36]. Before cold treatment, the exogenous application of AsA increased the
expression of SlRubisco. After cold treatment for 1 h, the expression of SlRubisco significantly
decreased by 76.8%, but its expression level in the AsA + L group remained higher than
that in the CK + L group, suggesting that exogenous AsA could mitigate the decrease in
SlRubisco expression.

2.3. Effects of Exogenous AsA on High-Flux-Related Plant Phenotypes of Tomato Seedlings under
Cold Stress

As illustrated, no significant differences were found in VIs among the groups without
cold treatment (Figure 3). After 7 days of cold treatment, the RE-NDVI, GNDVI, VOG1,
and CIgreen indices, which positively correlate with chlorophyll content and vegetation
health, significantly decreased in the tomato seedlings subjected to cold stress. The CK + L
group decreased by 29.1%, 13.8%, 13.2%, and 25%, respectively, and the AsA + L group
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decreased by 25%, 5.28%, 10.6%, and 0.5%, respectively. The expression values of the
CK + L group were significantly lower than those of the AsA + L group, which were 12%,
7%, 9%, and 43%, respectively (Figure 3A–D). Conversely, the MCARI, which negatively
correlates with chlorophyll content and vegetation health, increased 11% in the AsA + L
group compared with that in the CK + L group (Figure 3E). These findings suggest that cold
treatment significantly decreased the chlorophyll content and growth in tomato seedlings.
Interestingly, AsA treatment decreased cold-induced decrease in chlorophyll content and
overall health status. These results demonstrates that although AsA cannot completely
eliminate the damage caused by cold stress on tomato seedlings, it can significantly mitigate
cold-induced adverse effects.
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Figure 3. Hyperspectral data of tomato seedlings in each treatment group under cold treatment.
Five vegetation indices which were closely related to plant physiology were calculated: (A) RE-
NDVI. (B) SGNDVI. (C) VOG1. (D) CIgreen. (E) MCARI. Data are presented as the means of
3 biological replicates; ** and *** represent significant at 0.01 and 0.001 level, respectively. Using
one-way ANOVA test.

2.4. Exogenous AsA Enhanced the Antioxidant Capacity of Tomato Seedlings

To further investigate the effects of exogenous AsA on ROS metabolism in tomato
leaves under LT, we analyzed the accumulation levels of O2− and H2O2 and the activity of
POD and SOD in the leaves. Interestingly, both the results of DAB staining and O2− and
H2O2 concentrations showed that during LT treatment, the CK + L group exhibited more
brown areas and severe oxidative damage in tomato leaves (Figure 4A–C). Compared to
the CK group, the contents of O2− and hydrogen peroxide in the AsA group were slightly
higher, with no significance. However, after 7 days of LT treatment, the accumulation levels
of O2− and hydrogen peroxide in the CK + L group were higher than that in the AsA + L
group by 3.4 and 1.28 times of detection, respectively (Figure 4B,C). Under normal growth
and LT conditions, the MDA content in AsA-treated tomato leaves did not significantly
change. However, under cold conditions, the MDA content in AsA-treated tomato leaves
was significantly lower than that in the mock-treated group (Figure 4G). Exogenous AsA
increased the activities of POD and CAT by 89% and 46.3%, respectively, in untreated
tomato seedings, but there was a slight increase in SOD activity. After 7 days of LT
treatment, the activities of POD, SOD, and CAT in the AsA + L group were more than
twice those in the CK + L group (Figure 4B–D). Our findings revealed that AsA treatment
contributed to the scavenging of ROS in tomato seedlings.
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Figure 4. Exogenous AsA enhanced the antioxidant capacity of tomato seedlings under LT. (A) Phe-
notypes of DAB staining. (B) POD activity. (C) SOD activity. (D) CAT activity. (E) O2− content.
(F) H2O2 content. (G) MDA content. (H) Endogenous AsA level. (I) SlGLDH expression level. Data
are presented as the means of 3 biological replicates; different letters indicate significant difference at
p-value < 0.05 using one-way ANOVA test.

Under LT conditions, the endogenous AsA content in tomato seedlings significantly
increased, along with the increased expression of the key AsA biosynthesis gene SlGLDH.
After exogenous AsA treatment, the accumulation of endogenous AsA content in tomato
plants was obviously increased by 125.37 ug·g−1 (AsA) and 243.05 ug·g−1 (AsA + L),
respectively (Figure 4H). Moreover, compared to untreated plants, the expression level of
SlGLDH was higher after AsA application. AsA pretreatment may act as an exogenous
signal to induce the expression of SlGLDH in tomato plants (Figure 4I). These results
suggested that exogenous AsA may initiate the synthesis of endogenous AsA in plants,
potentially through a preventive mechanism.

2.5. Exogenous AsA Promoted the Accumulation of Soluble Sugars, Proline, and ABA in
Tomato Seedlings

We further investigated the changes in two well-known stress defense substances,
proline and sugars, in tomato leaves under different treatments. Under normal conditions,
exogenous AsA increased the concentrations of sugars and proline in tomato leaves but
displayed no obvious effect on sucrose content. After LT treatment, the sucrose content
in the tomato leaves of the CK + L group significantly decreased, while exogenous AsA
increased the sucrose content by 84.7%, proline content by 75.6%, and soluble sugar content
by 48.9% (Figure 5). These results suggest that AsA may help tomato seedings adapt
to a low-temperature environment by promoting the biosynthesis of osmotic regulatory
compounds, such as soluble sugars, sucrose, and proline.
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Figure 5. Exogenous AsA increased the accumulation of soluble sugars, proline, and ABA in
tomato seedlings under LT. (A) Soluble sugar content. (B) Sucrose content. (C) Proline content.
(D) Endogenous ABA content. (E) SlABI3 expression level. (F) SlABA3 expression level. Data are
presented as the means of 3 biological replicates; different letters indicate significant difference at
p-value < 0.05 using one-way ANOVA test.

Under LT conditions, the endogenous ABA content in tomato leaves of the AsA + L
group significantly increased from 70 ng·mL−1 to 131.2 ng·mL−1, with an 87.5% increase. In
contrast, the endogenous ABA content in the CK + L group increased from 55.6 ng·mL−1 to
96.6 ng·mL−1, with a 73.8% increase. As the duration of LT increased, the expression of the
ABA signal transduction gene SlABI3 (ABA-insensitive3, an ABA-dependent transcription
factor) showed a significant increase in the CK + L group. However, the expression of the
SlABA3 (ABA deficient 3, an ABA synthesis gene) showed no significant changes.

Compared to the CK + L group, the expression levels of SlABA3 and SlABI3 showed
significant increases in the AsA + L group upon LT treatment for 1 h (Figure 5E,F). The
expression level of SlABA3 in the AsA + L group decreased after prolonged low-temperature
treatment, which may be due to the significant increase in endogenous ABA levels and the
elevated background level of SlABA3 itself following AsA pretreatment.

2.6. Exogenous AsA Afftected the Expression of Antioxidant-Related and Cold-Regulated Genes

We evaluated the expression levels of several genes, including antioxidant-related
genes SlPOD, SlSOD, SlCAT, SlAPX, SlGPX, and SlGlut, as well as SlICE1, SlGRAS4, SlCBF1,
SlCBF2, and SlCBF3 involved in the cold stress pathway. These genes have all been reported
to play important roles in tomato responses to cold stress (Figure 6). After cold treatment,
the expression levels of the SlPOD, SlCAT, SlAPX, and SlGPX genes in the control group
significantly increased. SlPOD exhibited an upregulation of 45.2 times that of the control
group and reached its peak within 1 h of cold exposure (Figure 6A).
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Figure 6. Effect of exogenous AsA on expression levels of antioxidative pathway genes in tomato
seedlings under LT. (A) SlPOD expression level. (B) SlSOD expression level. (C) SlCAT expression
level. (D) SlAPX expression level. (E) SlGPX expression level. (F) SlGlut expression level. Data are
presented as the means of 3 biological replicates; different letters indicate significant difference at
p-value < 0.05 using one-way ANOVA test.

The expression of SlAPX and SlGPX was upregulated at 12 h of LT. These results
indicated that cold stress can induce the expression of these genes, and in the short term,
SlPOD may play an important role in the antioxidant enzyme pathway under cold treatment.
Compared to the control, spraying AsA altered the baseline expression levels (0 h) of
antioxidant-related genes in tomato plants, with significant upregulation of the expression
levels of SlPOD, SlSOD, SlAPX, and SlGPX. Notably, under LT conditions, the expression
trends of these antioxidant genes were changed, except for SlPOD, SlSOD, and SlCAT.
Compared to the control group, the expression levels of SlPOD and SlCAT further increased
after 1 h of cold exposure (Figure 6A–C). The expression trends of SlSOD, SlAPX, and SlGPX
in the AsA + L group differed from those in the CK + L group, but their expression levels
were higher than those in the CK + L group (Figure 6D,E). Interestingly, the background
level of the SlGlut gene in tomato plants did not increase as the genes mentioned above
after the external application of AsA, but its expression was rapidly upregulated after 12 h
of LT, which was higher than that in the CK + L group. Its expression was upregulated by
313.3% (Figure 6F).

We then analyzed the expression of several key genes involved in the ICE1-CBF path-
way and the SlGRAS4 pathway (Figure 7), two currently recognized tomato cold-regulated
pathways. The results demonstrated that after 1 h, the expression of SlICE1, SlCBF1, SlCBF2,
and SlCBF3 was dramatically upregulated. Compared to the CK + L group, exogenous
AsA treatment further upregulated the expression of these genes (Figure 7A,C,D). How-
ever, the expression trend of SlGRAS4 in the exogenous AsA-treated group was similar to
that in the control group and did not display substantial changes (Figure 7E). These data
suggest that the effect of AsA in promoting cold tolerance primarily operates through the
ICE1-CBF pathway.
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3. Materials and Methods
3.1. Plant Materials and Growth Conditions

The material NRP20-7-2 used in this experiment is a cold-sensitive species obtained
from the Horticultural Research Institute, Shanghai Academy of Agricultural Sciences.
Seeds were routinely sterilized and sown in 72-well seedling trays; after reaching the
two-true-leaf stage, the seedlings were kept in a climate chamber under a 16:8 h light/dark
photoperiod with a temperature of 25 ◦C/20 ◦C (day/night) and 300 µM·m−2s·−1 of light
intensity, where the relative humidity was 60–70% [25].

3.2. Treatments

Tomato seedlings of 30 days old were divided into four groups: control (CK), AsA,
chilling (CK + L), and chilling + AsA (AsA + L). The environmental conditions were as
follows: The CK and AsA groups were subjected to normal conditions, while the other two
groups were transferred to a room at 4 ◦C. Based on previous studies, a 10 mM AsA solution
was selected to pretreat the tomato seedlings. Foliar spraying with distilled water was
applied to the CK and CK + L groups until runoff occurred (Figures S1 and S2). Spraying
began at 9:30 a.m., ensuring that each plant received the same volume of AsA solution
or distilled water, and then the plants were kept at 25 ◦C for 24 h after spraying was
completed. Subsequently, the seedlings were subjected to their respective treatments for
7 days. Each treatment was replicated three times, with 72 individual plants per replicate.
On days 0, 1, 3, 5, and 7 of the treatment, the third fully expanded leaves were collected
for 3,3-diaminobenzidine (DAB) staining and fluorescence measurements. Each assay was
repeated three times.
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3.3. Morphological Observation and Root Length Determination

To examine the phenotypes of tomato seedlings, we photographed seedlings after
7 days of different treatments and measured root length (below the root neck) and survival
rate for each treatment in 72 independent biological replicates.

Plant survival rate =
Nplant survived

Nplant
× 100%

3.4. Chl Fluorescence Parameters and Chlorophyll Content

To measure the chlorophyll (Chl) fluorescence parameters, we used the Chl fluores-
cence imaging system (WALZ, Echterdingen, Germany, IMAG-MAX/L). Seedlings were
dark-adapted for 20 min. First, the leaf surface was exposed to modulated measuring light
(0.6 kHz, PPFD ≤ 0.1 µmol m−2·s−1, “weak red light”) to measure initial fluorescence (Fo).
Then, the saturation pulse light (20 kHz, 300 ms pulse of 10,000 µmol m−2 s−1, “white
light”) was applied to determine maximal fluorescence (Fm) and the maximal change in
P700. Next, actinic light (AL, 531 µmol m−2·s−1) was used to stimulate normal photosyn-
thesis for several minutes. During illumination, steady-state fluorescence (Fs) and maximal
fluorescence in this light (Fm) were obtained. The tomato seedling leaves were darkened
for 20 min before being measured [37]. Winterman’s and De Mot’s approach was used to
determine the Chl content [38]. For each treatment, each leaf was selected at three points
on the same part of each leaf, and the main leaf veins were avoided.

3.5. DAB Chemical Staining

DAB dye is often used to assess the level of peroxide and superoxide in fresh leaves.
Parts of the leaf of tomato plants were taken for DAB staining, with a DAB solution
concentration of 1 mg/mL and a pH of 3.8. The removed leaves were immediately placed
in DAB solution, followed by vacuuming until the leaves sank to the bottom, after which
the leaves were put in an incubator at 28 ◦C for 6–10 h [39]. The process was accompanied
by the precipitation of dark red material, and the leaves were placed in 95% ethanol, boiling
the water bath for 10 min, repeatedly 3 times, and then decolored gradually in 85%, 70%,
and 50% ethanol solutions in turn; finally, they were photographed with a camera (EOS
M6, Tokyo, Japan).

3.6. Determination of Physiological Indicators

To assess the degree of cold injury to tomato leaves, we examined the MAD content,
H2O2 content, O2− content, proline content, soluble sugar content, sucrose content, POD,
SOD, CAT activity, and endogenous AsA level of the third completely developed leaf
on tomato plants after 7 days of treatment. The MDA content was measured using an
MDA reagent kit (Suzhou Comin Biotechnology Co., Ltd., Suzhou, China). The production
of a superoxide radical (O2−) was determined using an O2− reagent kit (Suzhou Comin
Biotechnology Co., Ltd., Suzhou, China). Hydrogen peroxide (H2O2) was measured using
a H2O2 reagent kit (Suzhou Comin Biotechnology Co., Ltd., Suzhou, China). The indices
listed above were determined to use an enzyme marker (INFINITE 200 PRO, TECAN,
Männedorf, Switzerland). The calculated approach of the aforementioned indices refers to
Chen et al. [40]. According to the instructions, the ABA content of leaves treated for 7 days
(three independent biological replicates) was determined (ELISA, Shanghai, China).

3.7. Hyperspectral Data Acquisition and Processing

In a darkroom setting, hyperspectral data were gathered, processed, and analyzed for
tomato seedlings arranged on a black light-absorbing backdrop. A hyperspectral imaging
system was employed to capture hyperspectral images of the seedlings, consisting of a
hyperspectral imaging instrument, a halogen light source, and an electric drive platform.
The hyperspectral imager (Resonon Pika L, LICA United Technology Limited, Beijing,
China) was a push-broom type device with a spectral range of 400–1000 nm, a spectral
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resolution of 2.1 nm, 281 spectral channels, and 900 spatial channels. ENVI 5.5 software
was utilized to extract each tomato seedling area from the background in the hyperspectral
image using a decision tree classification method. Additionally, the chemical properties of
the plants were quantitatively assessed at the individual plant level. The average spectral
reflectance data for all pixels in the pure tomato seedling image area were calculated as
the spectral reflectance data. Considering the increased noise at the beginning and end
wavelengths of the equipment, further analysis was performed on the spectral reflectance
within the 410–850 nm range.

The spectral reflectance of each tomato seedling was used to calculate five vegetation
indices (VIs) which were closely related to the plant’s physiology. RE-NDVI is sensitive to
canopy foliage content and senescence and could be used to detect vegetation stress [41].
GNDVI is sensitive to chlorophyll concentration and related to the radiation proportion
absorbed photosynthetically [42]. VOG1 is sensitive to the combined effects of foliage
chlorophyll concentration, canopy leaf area, and water content [43]. The MCARI is highly
sensitive to both chlorophyll concentrations and variations in leaf area index and could be
used to assess the depth of chlorophyll absorption and its concentration variations [31,44].
The total amount of chlorophyll in plants could be calculated using CIgreen [45]. NDVI,
GNDVI, VOG1, and CIgreen positively correlate with chlorophyll content and vegetation
health [41–43,45], whereas the MCARI exhibits negative correlations [31,44].

3.8. RNA Extraction and Expression Analysis

Leaves (the 3rd fully expanded leaf) at 0 h, 1 h, and 12 h of LT were used to obtain total
RNA. The RNA extraction process followed our laboratory’s experimental protocol [46]. We
examined the expression of representative genes. Table S1 lists the primers used for qPCR.

3.9. Statistics and Analysis

Data were produced using Microsoft Excel 2010 and analyzed for significance (one-
way ANOVA and Duncan’s test) using the SPSS 20.0 package and plotted using GraphPad
Prism 9 software.

4. Discussion

Low temperatures severely restrict the growth and productivity of field crops. Pro-
longed exposure to chilling stress negatively affects plant physiology, leading to leaf
damage, stunted growth, decreased leaf area, wilting, and even death [47]. Exogenous AsA
soaking seeds displayed an increased germination rate and seedling traits possibly through
attenuating the negative effects of low-temperature stress on seed germination [48]. In this
study, exogenous AsA can protect root development, leaf morphology, and plant growth,
significantly alleviating the harmful effects induced by LT in tomato seedlings. In recent
years, high-throughput plant phenotyping methods based on image data analysis have
been employed to investigate plant responses to various biotic and abiotic stresses [32,33].
Hyperspectral phenotypic measurements of tomatoes indicate that the RE-NDVI, GNDVI,
VOG1, and CIgreen index, which are positively correlated with chlorophyll content and
plant health, were significantly higher in the AsA + L group compared to the CK + L
group. Moreover, the MCARI, which is negatively correlated with chlorophyll content and
plant health, was significantly higher in the CK + L group than that in the AsA + L group.
Our results suggest that exogenous AsA provides a protective effect on tomatoes under
LT stress.

Photosynthesis is often one of the major processes challenged by cold stress, which
often hinders plants’ abilities to convert and use carbon dioxide [49]. Plants have evolved
various defense mechanisms to mitigate stress-related ROS damage and photo inhibi-
tion. These mechanisms include switching between PSI and PSII states, altering the
light-harvesting efficiency of PSII, dissipating excess thermal energy in PSII through non-
photochemical quenching (NPQ), and fine-tuning the balance of electron transfer between
PSI and PSII [4,50]. Our results indicated that exogenous AsA treatment can significantly
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mitigate the damage caused by low temperatures to the photosynthetic system of tomato.
We discovered that under LT, the Chl-a, Chl-b, and Chl-total contents of tomato leaves
were reduced. The content of Chl, as an important photosynthetic pigment involved in the
modulation of the photosynthetic capacity of plants, was often affected by LT [51]. Further
research revealed that the exogenous application of AsA can effectively reduce the loss of
chlorophyll content in tomato leaves. At the gene level, the cold-induced downregulation of
the key carbon-fixing enzyme gene SlRubiSco involved in photosynthesis was significantly
mitigated in the AsA treatment group, further suggesting that AsA pretreatment can protect
the photosynthetic system of tomato seedlings. Therefore, the regulation of chlorophyll
content and photosynthesis may be another strategy by which AsA helps plants adapt to
LT stress.

Under LT stress, the cell membrane becomes more permeable and unsaturated fatty
acids accumulate, which lead to the formation of ROS and cause the buildup of mem-
brane lipid peroxidation; MDA is the result of the breakdown of cell membrane lipid
peroxidation [52]. Under abiotic stress, plants employ both enzymatic and non-enzymatic
antioxidant mechanisms to remove ROS and alleviate oxidative stress [53]. SOD is an
antioxidant enzyme that protect plants against ROS-related damage; POD and CAT cat-
alyze the metabolism of H2O2 to simple water molecules by POD and CAT. In this study,
without the addition of AsA, tomato leaves suffered extensive membrane lipid peroxi-
dation damage, with significant accumulations of MDA, H2O2, and O2− (Figure 4E–G).
After the application of exogenous AsA, the activities of SOD and POD increased, and
the accumulation of O2− and H2O2 was significantly reduced. Other enzymes, such as
ascorbate peroxidase and glutathione peroxidase, also play roles in scavenging H2O2 [54].
The qRT-PCR results further demonstrated that exogenous AsA decreased ROS generation
in tomato leaves by activating antioxidant enzymes. As one of the most common non-
enzymatic antioxidants in plants, AsA has been reported to maintain the internal cellular
environment and protect plants under adverse conditions [17,55]. It is noteworthy that
exogenous AsA elevated endogenous AsA levels and enhanced the antioxidant system of
tomato plants, thereby reducing the damage caused by LT.

The main mechanisms underlying plant cold tolerance are also associated with alter-
ations in sugar synthesis, protein metabolism, and the accumulation of proline [56]. In
this study, a significant increase in proline accumulation was observed in tomato leaves
(Figure 5C). Numerous studies revealed a positive correlation between proline accumu-
lation and plant stress resistance. Proline acts as an osmolyte defense molecule and con-
tributes to intracellular homeostasis, water absorption, osmoregulation, redox balance, the
protection of cell structure integrity, and the stabilization of oxidative enzymes [57]. Soluble
sugars contribute to membrane freezing resistance and provide an energy source for plants
to adapt to low-temperature stress [58]. In our experiments, AsA application significantly
increased the soluble sugar and sucrose content in tomato seedlings, suggesting that AsA
enhanced the osmotic protection capacity of plants to some extent.

Plant hormones not only regulate growth and development by modulating various
cellular, physiological, and developmental processes but also play a crucial role in plant
stress responses [59–61]. The ABA signaling system has been identified as a key regulator
of plant responses to abiotic stress, inducing significant changes in gene expression and
adaptive physiological responses. LT stress induced ABA synthesis in tomato plants and
increased the level of endogenous ABA. Intriguingly, AsA treatment initiated a stronger
accumulation of endogenous ABA under LT stress (Figure 5D). The impact of exogenous
AsA on endogenous ABA levels may result from a potential interaction between AsA and
phytohormones [62]. AsA application enhances cold tolerance in tomatoes at the hormonal
level, with an interaction between AsA and phytohormones that likely regulates ROS
balance and subsequent developmental responses in plants.

Quite a few studies have demonstrated that under cold stress, many proteins were
misfolded, leading to an overproduction of ROS, which harms plants. To defend themselves
from the cold, plants produce cold-related protective proteins. ICE1 binds to the CBF cis-
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element to stimulate the expression of downstream COR genes, thereby enhancing plant
cold tolerance [6,63]. At the gene level, exogenous AsA treatment increased the expression
of positively regulated genes SlICE1, SlCBF1, SlCBF3, and SlGRAS4 in the cold response
pathway. These results further validate that AsA treatment enhances cold tolerance in
tomato plants. Our results are consistent with Kosová’s findings that the tolerant genotype
could successfully regulate energy metabolism to meet increased demands during stress
adaptation, and that levels of several stress-related proteins (protective proteins, chaperone
proteins, ROS scavenging, and detoxification-related enzymes) were significantly higher
in the tolerant genotype compared to the sensitive genotype [64]. Given these insights,
future applications in production could involve the use of exogenous AsA to improve
cold tolerance in tomato cultivation. Furthermore, integrating this approach with other
agronomic practices may optimize overall plant health and productivity, potentially leading
to higher yields and improved fruit quality during adverse climatic conditions.

5. Conclusions

Plants are often subjected to extreme temperatures, including cold stress. Plants
have developed a set of sophisticated mechanisms that allow them to withstand LT stress.
Using certain exogenous cryoprotectants to protect crops against cold stress is one effective
method in actual agricultural production. This study found that exogenous AsA plays a
significant role in a multifaceted and coordinated network of responses to LT in tomato,
including enhanced photosynthesis, antioxidant processes, and ABA synthesis; it also
upregulated the expression of genes related to cold stress pathways and ABA synthesis
pathways, accumulated some key metabolites, and increased antioxidant enzyme activity
(Figure 8). In conclusion, our study provides novel mechanisms underlying exogenous
ascorbic acid (AsA)-induced enhanced cold tolerance in tomato plants. The application of
exogenous substances provides new thoughts and effective means to help plants withstand
cold stress in agricultural cultivation.
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