
Citation: Daniels, N.J.; Hershberger,

C.E.; Kerosky, M.; Wehrle, C.J.; Raj, R.;

Aykun, N.; Allende, D.S.; Aucejo, F.N.;

Rotroff, D.M. Biomarker Discovery in

Liver Disease Using Untargeted

Metabolomics in Plasma and Saliva.

Int. J. Mol. Sci. 2024, 25, 10144.

https://doi.org/10.3390/

ijms251810144

Academic Editor: Satohiro Masuda

Received: 26 August 2024

Revised: 10 September 2024

Accepted: 18 September 2024

Published: 21 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Biomarker Discovery in Liver Disease Using Untargeted
Metabolomics in Plasma and Saliva
Noah J. Daniels 1,2, Courtney E. Hershberger 1,2, Matthew Kerosky 3, Chase J. Wehrle 3 , Roma Raj 3, Nihal Aykun 3,
Daniela S. Allende 4, Federico N. Aucejo 3 and Daniel M. Rotroff 1,2,5,*

1 Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic,
Cleveland, OH 44106, USA; danieln2@ccf.org (N.J.D.); hershbc@ccf.org (C.E.H.)

2 Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44106, USA
3 Department of HPB Surgery and Liver Transplantation, Cleveland Clinic, Cleveland, OH 44106, USA
4 Department of Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
5 Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44106, USA
* Correspondence: rotrofd@ccf.org

Abstract: Chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), cirrhosis, and
hepatocellular carcinoma (HCC), continue to be a global health burden with a rise in incidence and
mortality, necessitating a need for the discovery of novel biomarkers for HCC detection. This study
aimed to identify novel non-invasive biomarkers for these different liver disease states. We performed
untargeted metabolomics in plasma (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 34) and saliva
samples (Healthy = 9, NAFLD = 14, Cirrhosis = 10, HCC = 22) to test for significant metabolite
associations with each disease state. Additionally, we identified enriched biochemical pathways
and analyzed correlations of metabolites between, and within, the two biofluids. We identified two
salivary metabolites and 28 plasma metabolites significantly associated with at least one liver disease
state. No metabolites were significantly correlated between biofluids, but we did identify numerous
metabolites correlated within saliva and plasma, respectively. Pathway analysis revealed significant
pathways enriched within plasma metabolites for several disease states. Our work provides a detailed
analysis of the altered metabolome at various stages of liver disease while providing some context to
altered pathways and relationships between metabolites.

Keywords: hepatocellular carcinoma; NAFLD; liver cirrhosis; liver disease; biomarker discovery;
metabolomics

1. Introduction

Liver cancer accounts for nearly 800,000 deaths annually with the number expected
to rise in upcoming years [1]. More than 80% of primary liver cancers are diagnosed as
hepatocellular carcinoma (HCC), with the minority being intrahepatic and hepatocellular
cholangiocarcinomas [2]. Furthermore, nearly 80% of HCC cases occur against a back-
ground of cirrhosis, which can arise from multiple etiologies, but the majority are due
to hepatitis B and C infections [3]. However, in recent years, non-alcoholic-associated
fatty liver disease (NAFLD) has been increasing and is associated with HCC development.
Nearly 25% of the general population are diagnosed with NAFLD, histologically defined as
more than 5% hepatic steatosis [4]. NAFLD is associated with obesity and type 2 diabetes.
In fact, 90% of individuals with obesity and without type 2 diabetes (BMI ≥ 30 kg/m2),
and 65% with type 2 diabetes, are diagnosed with NAFLD [5,6]. In recent years, NAFLD
has been redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) to
better reflect the underlying metabolic factors associated with its progression. NAFLD with
simple steatosis can progress to nonalcoholic steatohepatitis (NASH) with chronic inflam-
mation, predisposing the liver to cirrhosis and ultimately to the development of HCC [7].
Annual HCC incidence from NASH with cirrhosis is 1–2% [8]. Additionally, nearly 50% of
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NAFLD patients that develop HCC do not have evidence of cirrhosis, making screening a
challenge for this population [9–11]. The current model for development and progression
of NAFLD includes initial excess fat deposition in the liver [7]. This can ultimately result in
lipotoxicity, oxidative stress, and mitochondrial dysfunction promoting an inflammatory
environment in the liver that can progress to fibrosis and cirrhosis and/or HCC.

Development of biomarkers and new screening tools are crucial for the early diagnosis
of these disease states, allowing for timely intervention to significantly slow or reverse
disease progression. Recent evidence has suggested that fibrosis in NAFLD and NASH
is reversible during primary stages through weight loss of >10% body weight [12]. In
addition to weight loss, Resmetirom has been FDA-approved for treatment of NASH
without cirrhosis [13]. Moreover, HCC can be more effectively treated in early stages when
liver function is preserved, allowing for curative options such as liver resection, ablation,
or transplantation. In fact, the five-year survival rate for early-stage HCC is more than
70%, but dips to <20% in the advanced stages of the disease [14–16]. Current guidelines
recommend ultrasound of the liver typically with monitoring serum alpha fetoprotein
levels for patients at-risk [17]. However, up to 40% of early-stage HCC cases are missed
using these screenings [18]. In addition, HCC that develops against a background of
NAFLD is generally identified at later stages than HCC with other etiologies, resulting in
worse prognosis for this subset of patients [10,19]. Therefore, it is critical that accurate and
non-invasive biomarkers can be made readily available to identify these patients.

Recent work has explored the use of metabolites for non-invasive biomarker discovery
in biofluids such as saliva and plasma for various cancers. Here, we add to the growing
field of the altered metabolome in liver diseases, including HCC [20,21]. We analyzed the
saliva and plasma metabolome in healthy, NAFLD, cirrhotic, and HCC patients, and found
significantly altered metabolites and metabolic pathways distinguishing liver disease states
in both biofluids. Overall, we provide a detailed analysis of the altered metabolome across
various liver disease pathologies.

2. Results
2.1. Saliva Metabolites Associated with Liver Disease

We set out to identify minimally invasive biomarkers for liver diseases, which included
NAFLD, cirrhosis, and HCC in different biofluids. The clinical characteristics of our patient co-
horts are described in Tables 1 and 2. A total of 111 salivary metabolites passed quality control
(see Methods). We performed an ANOVA to identify significant associations among the four
cohorts and each metabolite. This revealed 1-monopalmitin and 1-monostearin (FDR p < 0.05)
as being significantly different between groups (Supplementary Table S2). Pairwise logistic
regression revealed that 1-monopalmitin and 1-monostearin were significantly decreased in
HCC compared to NAFLD (Log2FC: −1.578, −1.156) and cirrhosis (Log2FC: −1.391, −0.782),
respectively (Figure 1, Supplementary Table S3). Additionally, 1-monostearin was significantly
increased in NAFLD compared to in individuals in the healthy group (Log2FC: 0.699), while
1-monopalmitin was significantly increased in those with cirrhosis compared to those in the
healthy group (Log2FC: 0.942). Neither metabolite was significantly associated with age, BMI,
sex, or smoking status after adjusting for disease status (p > 0.1).

Table 1. Summary statistics for saliva study cohort. Alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP), prothrombin time international normalized
ratio (PT-INR).

Saliva
Characteristic Healthy, N = 9 1 NAFLD, N = 14 1 Cirrhosis, N = 10 1 HCC, N = 22 1

Age 34 (30, 44) 55 (42, 62) 64 (62, 66) 67 (61, 77)
Sex

Male 5 (56%) 4 (29%) 7 (70%) 17 (77%)
Female 4 (44%) 10 (71%) 3 (30%) 5 (23%)
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Table 1. Cont.

Saliva
Characteristic Healthy, N = 9 1 NAFLD, N = 14 1 Cirrhosis, N = 10 1 HCC, N = 22 1

BMI 32.6 (28.4, 34.9) 30.9 (28.9, 35.1) 28.5 (27.7, 34.9) 28.2 (26.5, 32.3)
Cirrhosis Status
Compensated - - 2 (20%) 7 (32%)

Mild - - - -
Decompensated - - 8 (80%) 7 (32%)

Unspecified - - - 1 (4.5%)
None 9 (100%) 14 (100%) - 7 (32%)

Cirrhosis Etiology
Alcohol - - 5 (50%) 1 (4.5%)

Alcohol/HBV/HCV - - - 1 (4.5%)
HBV/HCV - - - 8 (36%)

NAFLD/NASH - - 5 (50%) 2 (9.1%)
Other - - - -

Origin Unknown - - - 3 (14%)
None 9 (100%) 14 (100%) - 7 (32%)

Child Pugh
A 9 (100%) 14 (100%) 3 (30%) 18 (82%)
B - - 5 (50%) 4 (18%)
C - - 2 (20%) -

Tumor Lesion
Multiple - - - 6 (27%)

Single - - - 16 (73%)
Tumor Size

<4 - - - 12 (55%)
≥4 - - - 10 (45%)

Smoker 2 (22%) 2 (14%) 7 (70%) 13 (59%)
Diabetes

Type 2 DM - 7 (50%) 5 (50%) 10 (45%)
Prediabetes - 2 (14%) - -

No 9 (100%) 5 (36%) 5 (50%) 12 (55%)
Hypertension 1 (11%) 11 (79%) 8 (80%) 21 (95%)

Coronary Artery Disease 1 (11%) 4 (29%) 4 (40%) 5 (23%)
Hyperlipidemia 2 (22%) 10 (71%) 7 (70%) 9 (41%)

Psychiatric Disorder 1 (11%) 4 (29%) 5 (50%) 4 (18%)
COPD/Asthma/OSA - 6 (43%) 4 (40%) 7 (32%)

Other Cancer - 7 (50%) 1 (10%) 6 (27%)
Thyroid disease - 3 (21%) 2 (20%) 4 (18%)

Other PMH 3 (33%) 14 (100%) 10 (100%) 19 (86%)
Ascites - 1 (7.1%) 7 (70%) 7 (32%)

Encephalopathy - - 7 (70%) 6 (27%)
Mean Hemoglobin (g/dL) 14.50 (13.50, 14.80) 12.95 (12.48, 13.98) 10.95 (8.55, 13.95) 11.80 (10.23, 13.18)

Mean Platelets (k/uL) 250 (231, 289) 293 (253, 332) 99 (84, 118) 187 (143, 218)
Mean AST (U/L) 20 (18, 25) 36 (26, 46) 62 (41, 125) 119 (84, 232)
Mean ALT (U/L) 24 (16, 29) 46 (29, 53) 27 (24, 134) 125 (68, 291)
Mean ALP (U/L) 63 (54, 72) 97 (82, 195) 124 (79, 179) 114 (77, 144)

Mean Bilirubin, Total (mg/dL) 0.40 (0.30, 0.50) 0.50 (0.43, 0.58) 1.30 (1.10, 1.40) 1.00 (0.63, 1.48)
Mean Albumin (g/dL) 4.80 (4.30, 4.80) 4.40 (4.15, 4.50) 3.55 (3.03, 3.70) 3.50 (3.25, 3.78)

Mean PT-INR 1.00 (1.00, 1.10) 1.00 (1.00, 1.00) 1.20 (1.13, 1.20) 1.20 (1.10, 1.30)
Mean Glucose (mg/dL) 89 (87, 91) 97 (88, 110) 138 (122, 164) 122 (112, 140)

Mean Creatinine (mg/dL) 0.82 (0.81, 0.90) 0.82 (0.73, 0.93) 1.36 (0.71, 1.86) 0.92 (0.77, 1.29)
1 Median (IQR); n (%).
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Table 2. Summary Statistics for plasma study cohort. Alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP), prothrombin time international normalized
ratio (PT-INR).

Plasma
Characteristic Healthy, N = 9 1 NAFLD, N = 14 1 Cirrhosis, N = 10 1 HCC, N = 34 1

Age 41 (30, 46) 55 (42, 62) 64 (62, 66) 68 (63, 74)
Sex

Male 4 (44%) 4 (29%) 7 (70%) 26 (76%)
Female 5 (56%) 10 (71%) 3 (30%) 8 (24%)

BMI 32.8 (30.2, 34.9) 30.9 (28.9, 35.1) 28.5 (27.7, 34.9) 29.7 (26.5, 32.4)
Cirrhosis Status
Compensated - - 2 (20%) 8 (24%)

Mild - - - 1 (2.9%)
Decompensated - - 8 (80%) 8 (24%)

Unspecified - - - 1 (2.9%)
None 9 (100%) 14 (100%) - 16 (47%)

Cirrhosis Etiology
Alcohol - - 5 (50%) 2 (5.9%)

Alcohol/HBV/HCV - - - 2 (5.9%)
HBV/HCV - - - 7 (21%)

NAFLD/NASH - - 5 (50%) 2 (5.9%)
Other - - - 2 (5.9%)

Origin Unknown - - - 3 (8.8%)
None 9 (100%) 14 (100%) - 16 (47%)

Child Pugh
A 9 (100%) 14 (100%) 3 (30%) 27 (79%)
B - - 5 (50%) 7 (21%)
C - - 2 (20%) -

Tumor Lesion
Multiple - - - 13 (38%)

Single - - - 21 (62%)
Tumor Size

<4 - - - 14 (41%)
≥4 - - - 20 (59%)

Smoker 2 (22%) 2 (14%) 7 (70%) 23 (68%)
Diabetes

Type 2 DM - 7 (50%) 5 (50%) 16 (47%)
Prediabetes - 2 (14%) - -

No 9 (100%) 5 (36%) 5 (50%) 18 (53%)
Hypertension 1 (11%) 11 (79%) 8 (80%) 27 (79%)

Coronary Artery Disease 1 (11%) 4 (29%) 4 (40%) 7 (21%)
Hyperlipidemia 2 (22%) 10 (71%) 7 (70%) 12 (35%)

Psychiatric Disorder 2 (22%) 4 (29%) 5 (50%) 12 (35%)
COPD/Asthma/OSA - 6 (43%) 4 (40%) 12 (35%)

Other Cancer - 7 (50%) 1 (10%) 12 (35%)
Thyroid disease - 3 (21%) 2 (20%) 3 (8.8%)

Other PMH 4 (44%) 14 (100%) 10 (100%) 33 (97%)
Ascites - 1 (7.1%) 7 (70%) 10 (29%)

Encephalopathy - - 7 (70%) 10 (29%)
Mean Hemoglobin (g/dL) 13.90 (13.50, 14.60) 12.95 (12.48, 13.98) 10.95 (8.55, 13.95) 12.05 (10.73, 13.08)

Mean Platelets (k/uL) 269 (231, 301) 293 (253, 332) 99 (84, 118) 197 (172, 231)
Mean AST (U/L) 20 (18, 24) 36 (26, 46) 62 (41, 125) 135 (96, 209)
Mean ALT (U/L) 20 (16, 29) 46 (29, 53) 27 (24, 134) 154 (82, 202)
Mean ALP (U/L) 63 (54, 72) 97 (82, 195) 124 (79, 179) 100 (69, 130)

Mean Bilirubin, Total (mg/dL) 0.40 (0.30, 0.50) 0.50 (0.43, 0.58) 1.30 (1.10, 1.40) 0.80 (0.63, 1.20)
Mean Albumin (g/dL) 4.60 (4.20, 4.80) 4.40 (4.15, 4.50) 3.55 (3.03, 3.70) 3.60 (3.20, 3.80)

Mean PT-INR 1.00 (1.00, 1.10) 1.00 (1.00, 1.00) 1.20 (1.13, 1.20) 1.10 (1.10, 1.20)
Mean Glucose (mg/dL) 89 (88, 96) 97 (88, 110) 138 (122, 164) 123 (108, 140)

Mean Creatinine (mg/dL) 0.82 (0.69, 0.84) 0.82 (0.73, 0.93) 1.36 (0.71, 1.86) 0.94 (0.69, 1.10)
1 Median (IQR); n (%).
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Figure 1. Salivary metabolomics from individuals with healthy, NALFD, cirrhosis, or HCC livers.
Boxplots depicting the relative abundances of metabolites and significant associations among pairwise
disease comparisons (* FDR p < 0.1, ** FDR p < 0.05).

2.2. Plasma Metabolites Associated with Liver Disease

We quantified 110 metabolites that passed QC in plasma, and 29 metabolites were as-
sociated with disease status (ANOVA: FDR p < 0.05) (Supplementary Table S4). Pairwise lo-
gistic regression of these metabolites revealed significant associations with many diagnosis
comparisons. Twenty-six of the metabolites were significantly associated with HCC when
compared to another diagnosis (Figure 2, Supplementary Table S5), and 22 of the metabo-
lites were significantly associated with NAFLD when compared to another diagnosis.

Hypoxanthine and xylitol were the only metabolites significantly lower and higher,
respectively, in HCC compared to all other diagnoses (Log2FC Healthy: −1.021, 1.106;
NAFLD: −0.878, 2.74; Cirrhosis −1.684, 1.829) (FDR p < 0.05). In cirrhosis, phenylethy-
lamine and pseudouridine were significantly increased compared to all other diagnoses,
respectively (Log2FC Healthy: 2.096, 1.725; NAFLD: 2.525, 1.192; HCC: 1.669, 1.432). Of
note, the relative abundance of cholesterol was significantly increased in NAFLD compared
to Healthy (Log2FC: 1.918), Cirrhosis (Log2FC: 1.325), and HCC (Log2FC: 1.198) in plasma
samples. Furthermore, the relative abundance of aconitic acid was significantly lower in
the healthy group compared to any other liver disease (Log2FC NAFLD: −1.7; Cirrhosis:
−2.912; HCC: −2.275). Of the 29 metabolites, isothreonic acid was significantly associated
with age, while isoleucine, leucine and valine were associated with sex (FDR p < 0.1).

2.3. Metabolite Correlations in Saliva and Plasma

Our cohort had matching plasma and saliva samples for 40 patients. Of the 110 and
111 metabolites measured in plasma and saliva, respectively, 65 were quantified in both.
However, we did not observe any significant correlations between metabolites in the two
biofluids, suggesting that each provides largely independent information (Figure 3A).

We also performed correlations among metabolites that were significant (ANOVA
FDR p < 0.05) in saliva and plasma separately. In saliva, we found 1-monopalmitin and
1-monostearin abundances were significantly correlated (r = 0.93, p-value < 2.2 × 10—16),
suggesting a potentially shared mechanism of regulation of these metabolites in saliva
(Figure 3B).

Of the 29 significant metabolites in plasma (ANOVA FDR p < 0.05), we found 82/406
metabolite combinations to be significantly correlated (FDR p < 0.05) (Figure 3C) (Supple-
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mentary Table S6). This included 63 positive and 19 negative correlations. We clustered the
correlation coefficients to identify similarly regulated metabolites (Figure 3D). Of note, all
the branched chain amino acids (BCAAs), which include valine, leucine, and isoleucine
were positively correlated (leucine-isoleucine: r = 0.88; leucine-valine: r = 0.86; isoleucine-
valine: r = 0.82). Furthermore, we identified a positively correlated cluster which included
xylitol, palmitoleic acid, linoleic acid, oleic acid, and 3-hydroxybutyric acid, as well as an-
other cluster which included xylose, myo-inositol, isothreonic acid, pseudouridine, fucose,
and phenylethylamine.
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Figure 3. Metabolite correlations between and within saliva and plasma biofluids. (A) Scatterplot
depicting correlations of relative metabolite abundances between plasma and saliva samples. No
metabolites met the significance threshold of FDR p < 0.05 (red). (B) Correlation of 1-monopalmitin
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and 1-monostearin relative abundances within saliva samples. (C) Scatterplot depicting correlations
of relative metabolite abundances within plasma samples. Significant correlations (FDR p < 0.05)
are depicted in red. (D) Heatmap depicting clustered relative metabolite abundances within plasma
samples. Heatmap colored by correlation (r). Asterisks depict significant metabolite correlations with
an FDR p < 0.05.

2.4. Enriched Metabolic Pathways Associated with Liver Disease

To gain a better understanding of the biological implications of the significantly altered
metabolic abundances, we performed pathway analysis using MetaboAnalyst to identify
pathways enriched in each type of liver disease [22]. After performing a logistic regression
for each metabolite and disease status for each biofluid, metabolites with an unadjusted
p < 0.05 were used as an input for pathway enrichment analysis (Supplementary Table S7).

Significant salivary metabolites were not found to be enriched (FDR p < 0.1) in any path-
way, whereas nine pathways were enriched with significant plasma metabolites (Figure 4).
In NAFLD vs. Healthy, the following pathways were enriched: ‘The Citric Acid Cycle’ (FDR
p = 0.0003), ‘glyoxate and dicarboxylate metabolism’ (FDR p = 0.0156), ‘alanine aspartate
and glutamate metabolism’ (FDR p = 0.0156), ‘pentose and glucoronate interconversions’
(FDR p = 0.0817), ‘glycine, serin, and threonine metabolism’ (FDR p = 0.0156), and ‘cys-
teine and methionine metabolism’ (FDR p = 0.0156) pathways. The ‘valine, leucine, and
isoleucine biosynthesis pathway’ was enriched in all comparisons besides HCC vs. Healthy,
and NAFLD vs. Healthy. Interestingly, this same pathway, as well as the ‘valine, leucine,
and isoleucine degradation pathway’, was enriched in HCC vs. Cirrhosis. Finally, the
‘phenylalanine metabolism pathway’ was enriched in all cirrhosis comparisons.

1 

 

 

Figure 4. Over-represented pathways in liver diseases from plasma metabolomics. Heatmap depict-
ing FDR of KEGG pathways over-represented in liver disease comparisons. Significant pathways
(FDR p < 0.1) are depicted by numerical FDR values.



Int. J. Mol. Sci. 2024, 25, 10144 9 of 15

3. Discussion

The spectrum of chronic liver diseases continues to be a global health burden with a
rise in incidence and mortality. Multiple etiologies contribute to the development of liver
disease. Globally, HBV and HCV dominate this landscape, significantly contributing to
cirrhosis, liver failure, and/or HCC. However, in recent years with the increase in obesity
and type 2 diabetes, NAFLD has become more prevalent, with nearly 25% of the population
diagnosed with this disease. Early stages of NAFLD with hepatic steatosis can impair liver
function and, if left unchecked, can progress to a more severe form termed NASH with
chronic inflammation and fibrosis, which can ultimately develop into cirrhosis and HCC.

The various etiologies of liver disease can progress in different ways via a combination
of common and unique molecular mechanisms. For example, NAFLD and HBV infections
can progress to HCC without presentation of cirrhosis, making screening challenging
for different at-risk populations and necessitates the discovery of new biomarkers for
individual liver disease etiologies to allow for timely intervention. In this study, we
performed untargeted metabolomics of saliva and plasma to discover novel non-invasive
biomarkers for NAFLD, cirrhosis, and HCC patients.

3.1. Salivary Metabolites Associated with Liver Disease

In saliva, we identified two metabolites, 1-monopalmatin and 1-monstearin, that
were significantly lower in HCC when compared to cirrhosis and NAFLD. Moreover, we
observed a positive correlation between these two monoglycerides in our saliva samples,
possibly suggesting a similar mechanism of regulation in saliva. These two monoglycerides
have previously been identified as biomarkers in serum for diabetes and obesity [23,24].
Furthermore, prior work has utilized these metabolites in a saliva model to help distinguish
healthy, cirrhosis, and HCC patients [21]. More work is necessary to understand the role
these monoglycerides play in liver disease.

3.2. Plasma Metabolites Associated with Liver Disease

Metabolomics in plasma revealed a wide array of significantly altered metabolites among
the liver disease groups. In fact, we identified at least one metabolite for healthy, cirrhosis,
NAFLD, and HCC that was significantly different when compared to all other diagnoses.

We identified two metabolites, cholesterol and xylitol, whose metabolic abundances
were significantly different in NAFLD compared to all other diagnoses. Cholesterol is
known to be associated with obesity. However, BMI did not significantly differ between
groups in our cohort, and cholesterol was not significantly associated with BMI within
our samples after adjusting for disease status. Of note, the relative abundance of xylitol
was significantly different among all disease states except healthy, compared to cirrhosis.
Past work has found xylitol to be significantly increased in the blood of patients with
HCC compared to chronic liver disease with HBV or HCV infection [25]. Furthermore,
xylitol was found to be a potential urine biomarker in a cohort of liver cirrhosis and
HCC patients compared to healthy controls [26]. In a separate study, xylitol was found
to be significantly decreased in the urine of individuals who were obese (BMI > 95th
percentile) or who were diagnosed with NAFLD compared to individuals with a lower
BMI (BMI 25th–85th percentile) [27]. Interestingly, numerous other metabolites in plasma
(3-hydroxybutyric acid, fucose, glycerol-alpha-phosphate, heptanoic acid, isoleucine, malic
acid, palmitoleic acid, and phenylethylamine) distinguished NAFLD from late-stage liver
disease (Cirrhosis, HCC).

In the plasma of patients with cirrhosis, we identified pseudouridine and phenylethy-
lamine as metabolites whose metabolic abundances were significantly different from those
of all other disease groups. Additionally, we found valine, leucine, and isoleucine to be sig-
nificantly different in patients with cirrhosis when compared to at least two out of the other
three groups. Past work has described a decrease in circulating branched chain amino acids
(BCAA) (valine, leucine, and isoleucine) in patients diagnosed with liver cirrhosis [28,29]. In
other work, a decrease in BCAAs was found to be associated with mortality in liver disease
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patients [30]. All three BCAAs were significantly reduced in our cirrhosis cohort compared
to HCC or NAFLD. Of note, the BCAAs were positively correlated with one another in
our plasma samples. Typically, in patients with cirrhosis, a decrease in BCAAs correlated
with an increase in aromatic amino acids (AAA) (phenylalanine, tyrosine, and tryptophan)
known as the Fishers’ Ratio, a ratio which is associated with hepatic encephalopathy [31].
All three AAAs were measured in our untargeted metabolomics but did not pass QC (see
Methods) for analysis. Interestingly, we found the valine, leucine, and isoleucine biosynthe-
sis KEGG pathway to be over-represented in all cirrhosis disease comparisons (Cirrhosis
vs. Healthy, NAFLD vs. Cirrhosis, HCC, vs. Cirrhosis), while the degradation pathway of
these metabolites was enriched in the HCC vs. Cirrhosis comparison.

In this study, we found pseudouridine to be significantly increased in the plasma of
our liver cirrhosis patients compared to healthy, NAFLD, and HCC patients. Pseudouri-
dine is one of the most abundant RNA modifications which is carried out by a family
of pseudouridine synthetases (PUS). Recent work has found PUS1 to be upregulated in
various cancers including HCC, and may contribute to oncogenesis in HCC [32,33]. Hu
et al. found overexpression of PUS1 to increase cell proliferation and tumor formation in
cell lines and mouse models, respectively [34]. In their work, they proposed a mechanism
of oncogenesis whereby oncogenic mRNAs are pseudouridinylated by PUS1, resulting in
increased translation. In other work, pseudouridine has been found to be increased in the
serum or urine of patients with HCC and in the serum of patients with liver cirrhosis likely
to develop acute kidney injury [35–37].

We identified two metabolites, hypoxanthine and xylitol, whose metabolic abundances
were significantly different in HCC when compared to healthy individuals or those with
liver disease. Hypoxanthine is a metabolic intermediate in the purine catabolism pathway
mediated by xanthine oxidoreductase (XDH). XDH is highly expressed in the liver but
downregulated in HCC [37]. Low XDH levels are associated with poor prognosis in liver
cancer and are believed to contribute to HCC progression [38–40]. Dysregulation of purine
metabolism and decreased XDH activity is also associated with the progression of other
cancers such as glioblastoma, lung, breast, ovarian, and colorectal cancers [40–44]. Past
studies have found there to be elevated levels of hypoxanthine in the serum of HCC
patients compared to cirrhosis among those with a viral hepatitis etiology [45,46]. However,
other work has described serum hypoxanthine to be reduced in an HCC cohort compared
to healthy participants [47]. Additionally, a decrease in hypoxanthine serum levels was
observed in patients with liver cirrhosis when compared to healthy participants [45]. In
urine, hypoxanthine was found to be reduced in HCC participants compared to a healthy
control group [48]. The differences in hypoxanthine levels across studies may be attributed
to cohort differences, including variations in HCC etiology. Ultimately, this underscores
the necessity for further investigation into biomarkers for different HCC etiologies.

Addressing the complexities and progression of NAFLD, cirrhosis, and HCC requires
a multifaceted approach to tackle early detection through the discovery of novel biomarkers.
In this work, we identified multiple metabolites in plasma that are significantly associated
with HCC, cirrhosis, and NAFLD, and provide some molecular insight into the downstream
dysregulated pathways that may be affected. One limitation of our pilot study is the
sample size of our cohorts. However, even with a limited number of samples, our analyses
produced significant results due to large effect sizes, while limiting type I errors. Future
studies with larger sample sizes will be needed to validate these findings. Ultimately,
biomarker discovery in various stages and etiologies in the spectrum of liver disease will
provide novel insights into mechanism, detection, and disease progression, leading to
timely treatment and enhanced patient care.

4. Materials and Methods
4.1. Subject Recruitment

Saliva and blood samples were collected from a clinical cohort of 82 adult patients at
the Cleveland Clinic between 2015 and 2022. Samples of each collected biofluid for saliva
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and plasma were as follows: Healthy (9,9), NAFLD (14,14), Cirrhosis (10,10), and HCC
(22,34). Cirrhosis and HCC patients underwent liver transplantation or surgical resection
for HCC at the Cleveland Clinic. Cirrhosis and HCC pathologies were confirmed via liver
biopsy and histopathological assessment. Patients with NAFLD were recruited from the
hepatology clinic at the Cleveland Clinic. Our healthy liver population came from liver
transplant donors with no history of liver disease. The clinical characteristics of the study
subjects can be found in Tables 1 and 2. Hemoglobin, platelets, AST, ALT, ALP, bilirubin,
albumin, PT-INR, glucose, and creatine described in Tables 1 and 2 are routine values
obtained from a chart review of the electronic medical records (EMR). Lab values were
measured by the Cleveland Clinic Central Laboratory using standard clinical methodology.
All participants provided informed written consent, the study conformed to the ethical
guidelines of the 1975 Declaration of Helsinki, and it was approved by the Cleveland Clinic
IRB (IRB #10-347).

4.2. Biofluid Collection and Mass Spectrometry

Blood and saliva samples were collected from subjects during a scheduled visit with
their physician at the Cleveland Clinic. Saliva samples were collected from subjects using
a DNA Genotek OMNIgene ORAL OM-610 (Ottawa, ON, Canada) saliva collection kit
following a standard mouth rinse. Samples were subsequently frozen at −80 ◦C until
processing. Blood samples were collected in EDTA tubes followed by centrifugation at
3000 rpm at 4 ◦C for 20 min to isolate plasma. Plasma samples were aliquoted in cryovials
and stored at −80 ◦C until processing. Untargeted gas chromatography time of flight mass
spectrometry (GC-TOF MS) was performed on the biofluids at West Coast Metabolomics
(Davis, CA, USA) previously described in [20,21]. In brief, the analysis was performed
using a Leco Pegasus IV mass spectrometer (St. Joseph, MI, USA, LECO Corporation) with
unit mass resolution, operating at 17 spectra per second, scanning from 80 to 500 Da with
an ionization energy of −70 eV and a detector voltage of 1800 V. The transfer line was
maintained at 230 ◦C, while the ion source was set at 250 ◦C. The analytical GC column
was protected by a 10-m empty guard column, which was trimmed in 20 cm increments
whenever quality control (QC) samples of the reference mixture indicated contamination.
This chromatography method was optimized for high-quality retention and separation of
primary metabolite classes, including amino acids, hydroxyl acids, carbohydrates, sugar
acids, sterols, aromatics, nucleosides, and amines. An automatic liner exchange was
performed after every 10 injections to minimize sample carryover, particularly for highly
lipophilic compounds like free fatty acids. Metabolite relative abundances were calculated
using ChromaTOF software version 2.32 and the BinBase algorithm (rtx5).

4.3. Metabolomics Data Processing and QC

A total of 219 annotated metabolite abundances were measured for saliva and plasma
samples. Metabolites with <30% high quality spectra in a single biofluid were removed from
analysis (Supplementary Table S1). This left 110 metabolites for plasma and 111 metabolites
for saliva. For metabolites without high quality spectra, the quantification mass at the
specified retention index following subtraction of the local minimum noise was used. The
relative abundances of metabolites in both biofluids exhibited a right skew (Supplementary
Figures S1A and S2A). Therefore, they were log-transformed, scaled and, centered across
each biofluid cohort to produce normal distributions (Supplementary Figures S1B and S2B).
Due to the disparities in age, sex, BMI, and smoking status between groups, we aimed
to ensure these factors did not influence differences in metabolite abundance. Therefore,
linear regressions were performed to test for associations between each metabolite and age,
BMI, sex, or smoking status while adjusting for disease status. p-values were adjusted for
multiple hypothesis testing using a false discovery approach (FDR) and those with an FDR
p < 0.1 were considered significant [49]. All statistical analyses were performed using the
software R v.4.3.1 [50].
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4.4. Metabolite Associations with Disease Status

We first performed an ANOVA on each metabolite and disease status (Healthy, Cir-
rhosis, NAFLD, HCC). p-values were adjusted for multiple hypothesis testing using an
FDR approach [49]. An FDR p of <0.05 was considered significant. Metabolites signif-
icantly associated with disease status were tested pairwise using logistic regressions to
identify significant associations of each metabolite and disease group. An FDR p of <0.1
was considered significant.

4.5. Metabolite Correlations in Biofluids

Forty patients in our cohort had matched plasma and saliva samples. Pearson’s
Correlation was used to test for the correlation of the 65 metabolites measured in both
saliva and plasma biofluids.

For metabolite correlations in individual biofluids, we performed a Pearson’s Correla-
tion. When more than one test was performed, in the case of plasma metabolites, we adjusted
the p-values for multiple hypothesis testing using an FDR approach, as described above.

4.6. Metabolite Pathway Analysis

Pairwise logistic regressions were performed to test for associations with each combina-
tion of disease groups and all metabolites that passed QC (110 for plasma and 111 for saliva).
Metabolites that had an unadjusted p < 0.05 were used as the input for pathway enrichment
analyses using MetaboAnalyst [22]. We tested for over-representation of metabolites in
pathways contained in the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the
MetaboAnalyst webtool. FDR p < 0.1 were considered significantly enriched.

5. Conclusions

In summary, this pilot study focused on identifying novel, non-invasive metabolite
biomarkers for NAFLD, cirrhosis, and HCC within plasma and saliva. We identified
two salivary and 28 plasma metabolites that were significantly associated with at least
one disease state. In plasma, we identified at least one metabolite in NAFLD, cirrhosis,
and HCC that exhibited significant differences compared to other diagnoses, suggesting
their potential as markers for individual disease states. Although no pathways were
enriched in saliva comparisons, we identified nine pathways enriched for significant
plasma metabolites.

We expanded our analyses to identify significant correlations of metabolites between,
and within, plasma and saliva. We did not observe significant correlations between metabo-
lites in the two biofluids, suggesting each offer largely unique information. However,
we did observe significant correlations among metabolites within each separate biofluid
suggesting a potentially shared mechanism of regulation of these metabolites. Overall,
our work provides a detailed analysis of the altered metabolome at various stages of
liver disease while providing some context to altered pathways and relationships be-
tween metabolites.

6. Patents

U.S. Provisional Patent Application No. 63/186,47. Salivary Metabolites Are Non-
Invasive Biomarkers of HCC. Rotroff, D.M., Aucejo, F., and Hershberger, C. 2021.
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