Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Population
4.2. Phenotypic Characterization
4.3. Microarrays Analysis
4.4. Genotype Quality Control
4.5. Population Stratification
4.6. Genotype Imputation
4.7. Phomene-Wide Association Study (PheWAS)
4.8. Fine Mapping
4.9. PheWAS Analysis
4.10. Conditional Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramu, D.; Ramaswamy, S.; Rao, S.; Paul, S.F.D. The worldwide prevalence of latent autoimmune diabetes of adults among adult-onset diabetic individuals: A systematic review and meta-analysis. Endocrine 2023, 82, 28–41. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S20–S42. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, R.; Zou, H.; Xie, L.; Zhou, Z.; Xiao, Y. Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Front. Endocrinol. 2022, 13, 917169. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, V.; Ahmed, A.; Anjankar, A. A Review on Latent Autoimmune Diabetes in Adults. Cureus 2023, 15, e47915. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S. Lifestyle or Environmental Influences and Their Interaction With Genetic Susceptibility on the Risk of LADA. Front. Endocrinol. 2022, 13, 917850. [Google Scholar] [CrossRef]
- Yin, W.; Luo, S.; Xiao, Z.; Zhang, Z.; Liu, B.; Zhou, Z. Latent autoimmune diabetes in adults: A focus on β-cell protection and therapy. Front. Endocrinol. 2022, 13, 959011. [Google Scholar] [CrossRef]
- Buzzetti, R.; Tuomi, T.; Mauricio, D.; Pietropaolo, M.; Zhou, Z.; Pozzilli, P.; Leslie, R.D. Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement From an International Expert Panel. Diabetes 2020, 69, 2037. [Google Scholar] [CrossRef]
- Al-Zubairi, T.; Al-Habori, M.; Saif-Ali, R. Latent Autoimmune Diabetes in Adults (LADA) and its Metabolic Characteristics among Yemeni Type 2 Diabetes Mellitus Patients. Diabetes Metab. Syndr. Obes. 2021, 14, 4223–4232. [Google Scholar] [CrossRef]
- Hawa, M.I.; Kolb, H.; Schloot, N.; Beyan, H.; Paschou, S.A.; Buzzetti, R.; Mauricio, D.; De Leiva, A.; Yderstraede, K.; Beck-Neilsen, H.; et al. Adult-Onset Autoimmune Diabetes in Europe Is Prevalent With a Broad Clinical Phenotype. Diabetes Care 2013, 36, 908. [Google Scholar] [CrossRef]
- Maddaloni, E.; Lessan, N.; Al Tikriti, A.; Buzzetti, R.; Pozzilli, P.; Barakat, M.T. Latent Autoimmune Diabetes in Adults in the United Arab Emirates: Clinical Features and Factors Related to Insulin-Requirement. PLoS ONE 2015, 10, e0131837. [Google Scholar] [CrossRef]
- Qiu, J.; Xiao, Z.; Zhang, Z.; Luo, S.; Zhou, Z. Latent autoimmune diabetes in adults in China. Front. Immunol. 2022, 13, 977413. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xiang, Y.; Ji, L.; Jia, W.; Ning, G.; Huang, G.; Yang, L.; Lin, J.; Liu, Z.; Hagopian, W.A.; et al. Frequency, Immunogenetics, and Clinical Characteristics of Latent Autoimmune Diabetes in China (LADA China Study): A Nationwide, Multicenter, Clinic-Based Cross-Sectional Study. Diabetes 2013, 62, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, R.; Maddaloni, E.; Gaglia, J.; Leslie, R.D.; Wong, F.S.; Boehm, B.O. Adult-onset autoimmune diabetes. Nat. Rev. Dis. Primers 2022, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Cousminer, D.L.; Ahlqvist, E.; Mishra, R.; Andersen, M.K.; Chesi, A.; Hawa, M.I.; Davis, A.; Hodge, K.M.; Bradfield, J.P.; Zhou, K.; et al. First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care 2018, 41, 2396–2403. [Google Scholar] [CrossRef]
- Song, R.; Xie, L.; Ding, J.; Chen, Y.; Zou, H.; Pang, H.; Peng, Y.; Xia, Y.; Xie, Z.; Li, X.; et al. Association of gene polymorphism with different types of diabetes in Chinese individuals. J. Diabetes Investig. 2024, 15, 34–43. [Google Scholar] [CrossRef]
- Hjort, R.; Ahlqvist, E.; Andersson, T.; Alfredsson, L.; Carlsson, P.-O.; Grill, V.; Groop, L.; Martinell, M.; Sørgjerd, E.P.; Tuomi, T.; et al. Physical Activity, Genetic Susceptibility, and the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2020, 105, e4112–e4123. [Google Scholar] [CrossRef]
- Löfvenborg, J.E.; Ahlqvist, E.; Alfredsson, L.; Andersson, T.; Dorkhan, M.; Groop, L.; Tuomi, T.; Wolk, A.; Carlsson, S. Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes. Eur. J. Nutr. 2020, 59, 127–135. [Google Scholar] [CrossRef]
- Mikelonis, D.; Jorcyk, C.L.; Tawara, K.; Oxford, J.T. Stüve-Wiedemann syndrome: LIFR and associated cytokines in clinical course and etiology. Orphanet J. Rare Dis. 2014, 9, 34. [Google Scholar] [CrossRef]
- Bailey, J.L.; Hang, H.; Boudreau, A.; Elks, C.M. Oncostatin M Induces Lipolysis and Suppresses Insulin Response in 3T3-L1 Adipocytes. Int. J. Mol. Sci. 2022, 23, 4689. [Google Scholar] [CrossRef]
- Guo, T.; Gupta, A.; Yu, J.; Granados, J.Z.; Gandhi, A.Y.; Evers, B.M.; Iyengar, P.; Infante, R.E. LIFR-alpha-dependent adipocyte signaling in obesity limits adipose expansion contributing to fatty liver disease. iScience 2021, 24, 102227. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Ekstedt, M.; Wong, G.L.-H.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.P.; Zhao, C.C.; Chen, M.Y.; Lu, J.X.; Li, L.X.; Jia, W.P. [The relationship between non-alcoholic fatty liver disease and metabolic syndrome in patients with latent autoimmune diabetes in adults]. Zhonghua Yi Xue Za Zhi 2018, 98, 2398–2402. [Google Scholar] [CrossRef] [PubMed]
- Nolasco-Rosales, G.A.; Ramírez-González, D.; Rodríguez-Sánchez, E.; Ávila-Fernandez, Á.; Villar-Juarez, G.E.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Guzmán-Priego, C.G.; Genis-Mendoza, A.D.; Ble-Castillo, J.L.; et al. Identification and phenotypic characterization of patients with LADA in a population of southeast Mexico. Sci. Rep. 2023, 13, 7029. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.D.; Askland, K.D.; Barlassina, C.; Bellodi, L.; Bienvenu, O.J.; Black, D.; Bloch, M.; Brentani, H.; Burton, C.L.; Camarena, B.; et al. Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Mol. Psychiatry 2018, 23, 1181–1188. [Google Scholar] [CrossRef]
- Littleton, S.H.; Trang, K.B.; Volpe, C.M.; Cook, K.; DeBruyne, N.; Maguire, J.A.; Weidekamp, M.A.; Hodge, K.M.; Boehm, K.; Lu, S.; et al. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3′ UTR of FAIM2. Cell Genom. 2024, 4, 100556. [Google Scholar] [CrossRef]
- Sawicka, B.; Borysewicz-Sańczyk, H.; Wawrusiewicz-Kurylonek, N.; Aversa, T.; Corica, D.; Gościk, J.; Krętowski, A.; Waśniewska, M.; Bossowski, A. Analysis of Polymorphisms rs7093069-IL-2RA, rs7138803-FAIM2, and rs1748033-PADI4 in the Group of Adolescents With Autoimmune Thyroid Diseases. Front. Endocrinol. 2020, 11, 544658. [Google Scholar] [CrossRef]
- Cai, J.; Ye, Z.; Hu, Y.; Wang, Y.; Ye, L.; Gao, L.; Sun, Q.; Tong, S.; Sun, Z.; Yang, J.; et al. FAIM2 is a potential pan-cancer biomarker for prognosis and immune infiltration. Front. Oncol. 2022, 12, 998336. [Google Scholar] [CrossRef]
- Hurtado de Mendoza, T.; Liu, F.; Verma, I.M. Antiapoptotic Role for Lifeguard in T Cell Mediated Immune Response. PLoS ONE 2015, 10, e0142161. [Google Scholar] [CrossRef]
- Wang, L.-T.; Huang, C.-Y.; Lin, C.-H.; Cheng, B.-W.; Lo, F.-S.; Ting, W.-H.; Lee, Y.-J. Graves disease is more prevalent than Hashimoto disease in children and adolescents with type 1 diabetes. Front. Endocrinol. 2023, 13, 1083690. [Google Scholar] [CrossRef]
- Taniyama, M.; Kasuga, A.; Nagayama, C.; Ito, K. Occurrence of type 1 diabetes in graves’ disease patients who are positive for antiglutamic Acid decarboxylase antibodies: An 8-year followup study. J. Thyroid Res. 2010, 2011, 306487. [Google Scholar] [CrossRef] [PubMed]
- Costa-Urrutia, P.; Abud, C.; Franco-Trecu, V.; Colistro, V.; Rodríguez-Arellano, M.E.; Alvarez-Fariña, R.; Acuña Alonso, V.; Bertoni, B.; Granados, J. Effect of 15 BMI-Associated Polymorphisms, Reported for Europeans, across Ethnicities and Degrees of Amerindian Ancestry in Mexican Children. Int. J. Mol. Sci. 2020, 21, 374. [Google Scholar] [CrossRef] [PubMed]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Richardson, T.G.; Zhan, Y.; Carlsson, S. Childhood adiposity and novel subtypes of adult-onset diabetes: A Mendelian randomisation and genome-wide genetic correlation study. Diabetologia 2023, 66, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yu, J. Clinical features of childhood diabetes mellitus focusing on latent autoimmune diabetes. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 212–218. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Wiegand, S. Risk Factors and Implications of Childhood Obesity. Curr. Obes. Rep. 2018, 7, 254–259. [Google Scholar] [CrossRef]
- Martínez-Magaña, J.J.; Genis-Mendoza, A.D.; Villatoro Velázquez, J.A.; Camarena, B.; Martín del Campo Sanchez, R.; Fleiz Bautista, C.; Bustos Gamiño, M.; Reséndiz, E.; Aguilar, A.; Medina-Mora, M.E.; et al. The Identification of Admixture Patterns Could Refine Pharmacogenetic Counseling: Analysis of a Population-Based Sample in Mexico. Front. Pharmacol. 2020, 11, 324. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef]
- Sohail, M.; Palma-Martínez, M.J.; Chong, A.Y.; Quinto-Cortés, C.D.; Barberena-Jonas, C.; Medina-Muñoz, S.G.; Ragsdale, A.; Delgado-Sánchez, G.; Cruz-Hervert, L.P.; Ferreyra-Reyes, L.; et al. Mexican Biobank advances population and medical genomics of diverse ancestries. Nature 2023, 622, 775–783. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
Gene | Effect | rsID | Chr | Position | Alleles | MAF Cases | MAF Controls | R2 | β | SE | p |
---|---|---|---|---|---|---|---|---|---|---|---|
LIFR | Intron | rs1012760 | 5 | 38579223 | T/C | 0.42 | 0.18 | 0.96 | 1.06 | 0.23 | 8.12 × 10−6 |
LIFR | Intron | rs10040852 | 5 | 38580639 | A/G | 0.42 | 0.18 | - | 1.06 | 0.23 | 8.12 × 10−6 |
LIFR | Intron | rs6883795 | 5 | 38582906 | A/C | 0.42 | 0.18 | 0.96 | 1.06 | 0.23 | 8.74 × 10−6 |
LIFR | Intron | rs6862038 | 5 | 38596366 | A/G | 0.41 | 0.17 | 0.95 | 1.05 | 0.23 | 8.35 × 10−6 |
HDAC9 | Intron | rs17419156 | 7 | 18363323 | T/G | 0.45 | 0.33 | 0.79 | 1.15 | 0.24 | 1.11 × 10−6 |
- | Intergenic | rs11770918 | 7 | 68043584 | A/G | 0.25 | 0.07 | 0.9 | 1.44 | 0.30 | 2.62 × 10−6 |
- | Intergenic | rs73144105 | 7 | 68047584 | C/T | 0.25 | 0.07 | 0.9 | 1.44 | 0.30 | 2.62 × 10−6 |
TMEM260 | Downstream | rs17091924 | 14 | 56655475 | G/T | 0.45 | 0.27 | 0.87 | 1.02 | 0.22 | 5.65 × 10−6 |
rsID | Chr | Position | Alleles | MAF Cases | MAF GnomAD | R2 | β | SE | p |
---|---|---|---|---|---|---|---|---|---|
rs7316671 | 12 | 49846521 | G/A | 0.21 | 0.44 | 0.83 | −1.26 | 0.21 | 3.52 × 10−7 |
rs7316688 | 12 | 49846558 | G/C | 0.21 | 0.39 | 0.84 | −1.26 | 0.21 | 3.52 × 10−7 |
rs11169176 | 12 | 49847230 | G/A | 0.21 | 0.35 | 0.84 | −1.26 | 0.21 | 3.52 × 10−7 |
rs4898538 | 12 | 49849588 | G/A | 0.34 | 0.4 | 0.81 | −1.09 | 0.19 | 1.17 × 10−6 |
rs7299134 | 12 | 49849889 | A/G | 0.21 | 0.35 | 0.84 | −1.26 | 0.21 | 3.52 × 10−7 |
rs11169178 | 12 | 49850240 | C/T | 0.34 | 0.41 | 0.81 | −1.09 | 0.19 | 1.17 × 10−6 |
rs7303074 | 12 | 49850241 | G/A | 0.21 | 0.36 | 0.83 | −1.26 | 0.21 | 3.52 × 10−7 |
rs7302855 | 12 | 49850260 | C/T | 0.21 | 0.35 | 0.84 | −1.26 | 0.21 | 3.52 × 10−7 |
rs10875980 | 12 | 49850984 | A/T | 0.19 | 0.35 | 0.84 | −1.22 | 0.24 | 5.48 × 10−6 |
rs10875981 | 12 | 49851185 | G/C | 0.34 | 0.4 | 0.83 | −1.09 | 0.19 | 1.17 × 10−6 |
rs10875982 | 12 | 49851923 | A/G | 0.19 | 0.35 | 0.85 | −1.22 | 0.24 | 5.48 × 10−6 |
rs11169182 | 12 | 49854269 | C/T | 0.19 | 0.36 | 0.85 | −1.22 | 0.24 | 5.48 × 10−6 |
rs11169183 | 12 | 49854299 | T/C | 0.34 | 0.41 | 0.82 | −1.09 | 0.19 | 1.17 × 10−6 |
rs11169184 | 12 | 49854562 | T/A | 0.34 | 0.41 | 0.82 | −1.09 | 0.19 | 1.17 × 10−6 |
rs7953118 | 12 | 49854941 | T/C | 0.34 | 0.41 | 0.82 | −1.09 | 0.19 | 1.17 × 10−6 |
rs67906820 | 12 | 49855087 | TC/T | 0.2 | 0.36 | 0.84 | −1.22 | 0.21 | 4.93 × 10−7 |
rs7306760 | 12 | 49856886 | C/T | 0.34 | 0.43 | 0.82 | −1.09 | 0.19 | 1.17 × 10−6 |
rs7305229 | 12 | 49866481 | C/T | 0.22 | 0.36 | 0.83 | −1.27 | 0.18 | 1.84 × 10−8* |
Phenotype | rsID | Chr | Position | Alleles | MAF Cases | MAF GnomAD | R2 | β | SE | p |
---|---|---|---|---|---|---|---|---|---|---|
Hypertension onset | rs62060292 | 16 | 59074272 | G/A | 0.14 | 0.15 | 0.96 | −1.75 | 0.18 | 6.18 × 10−8 |
Diabetes onset | rs146135680 | 3 | 118172739 | C/G | 0.10 | 0.11 | 0.75 | −1.41 | 0.22 | 6.48 × 10−8 |
Diabetes onset | rs79720909 | 3 | 118168643 | C/T | 0.11 | 0.14 | 0.76 | −1.37 | 0.21 | 7.82 × 10−8 |
Height | rs12415892 | 10 | 104517955 | T/C | 0.26 | 0.35 | 0.96 | 0.99 | 0.15 | 9.30 × 10−8 |
Height | rs10709652 | 10 | 104518782 | GT/G | 0.26 | 0.41 | 0.95 | 0.99 | 0.15 | 9.30 × 10−8 |
Height | rs11192097 | 10 | 104519244 | C/G | 0.26 | 0.35 | 0.95 | 0.99 | 0.15 | 9.30 × 10−8 |
Height | rs10884013 | 10 | 104519545 | G/A | 0.26 | 0.35 | 0.95 | 0.99 | 0.15 | 9.30 × 10−8 |
Height | rs4918104 | 10 | 104519664 | G/A | 0.26 | 0.34 | 0.95 | 0.99 | 0.15 | 9.30 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco-Rosales, G.A.; Martínez-Magaña, J.J.; Juárez-Rojop, I.E.; Rodríguez-Sánchez, E.; Ruiz-Ramos, D.; Villatoro-Velázquez, J.A.; Bustos-Gamiño, M.; Medina-Mora, M.E.; Tovilla-Zárate, C.A.; Cruz-Castillo, J.D.; et al. Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels. Int. J. Mol. Sci. 2024, 25, 10154. https://doi.org/10.3390/ijms251810154
Nolasco-Rosales GA, Martínez-Magaña JJ, Juárez-Rojop IE, Rodríguez-Sánchez E, Ruiz-Ramos D, Villatoro-Velázquez JA, Bustos-Gamiño M, Medina-Mora ME, Tovilla-Zárate CA, Cruz-Castillo JD, et al. Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels. International Journal of Molecular Sciences. 2024; 25(18):10154. https://doi.org/10.3390/ijms251810154
Chicago/Turabian StyleNolasco-Rosales, Germán Alberto, José Jaime Martínez-Magaña, Isela Esther Juárez-Rojop, Ester Rodríguez-Sánchez, David Ruiz-Ramos, Jorge Ameth Villatoro-Velázquez, Marycarmen Bustos-Gamiño, Maria Elena Medina-Mora, Carlos Alfonso Tovilla-Zárate, Juan Daniel Cruz-Castillo, and et al. 2024. "Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels" International Journal of Molecular Sciences 25, no. 18: 10154. https://doi.org/10.3390/ijms251810154
APA StyleNolasco-Rosales, G. A., Martínez-Magaña, J. J., Juárez-Rojop, I. E., Rodríguez-Sánchez, E., Ruiz-Ramos, D., Villatoro-Velázquez, J. A., Bustos-Gamiño, M., Medina-Mora, M. E., Tovilla-Zárate, C. A., Cruz-Castillo, J. D., Nicolini, H., & Genis-Mendoza, A. D. (2024). Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels. International Journal of Molecular Sciences, 25(18), 10154. https://doi.org/10.3390/ijms251810154