Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes
Abstract
:1. Introduction
2. Results
2.1. Gangliosides Control the Dissolution of Synaptic Serotonin
2.2. Molecular Dynamics Simulations of Serotonin Behavior with GM1, GM3 and GT1b Gangliosides in a POPC/Cholesterol Environment
2.3. Molecular Dynamics Simulations of Serotonin Behavior with POPC or POPC/Cholesterol in the Liquid Disordered Phase (Ld) of the Membrane
2.4. The Initial Interactions between Serotonin and the Sugar Moiety of Gangliosides Initiate the Dissociation of a Serotonin Dimer
2.5. Serotonin Is a Surface-Active Compound, a Property That Gives Serotonergic Transmission Its Singularity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Langmuir Microtensiometry
4.3. Atomistic Molecular Modeling Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fantini, J.; Matveeva, M.; Lefebvre, M.; Chahinian, H. What Is life? Rethinking Biology in Light of Fundamental Parameters. Life 2024, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.H.; Wang, C.; Cruys-Bagger, N.; Velardez, G.F.; Madsen, J.J.; Westh, P. Binding of serotonin to lipid membranes. J. Am. Chem. Soc. 2013, 135, 2164–2171. [Google Scholar] [CrossRef]
- Postila, P.A.; Vattulainen, I.; Róg, T. Selective effect of cell membrane on synaptic neurotransmission. Sci. Rep. 2016, 6, 19345. [Google Scholar] [CrossRef]
- Fantini, J.; Yahi, N. Brain Lipids in Synaptic Function and Neurological Disease: Clues to Innovative Therapeutic Strategies for Brain Disorders; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Incontro, S.; Musella, M.L.; Sammari, M.; Di Scala, C.; Fantini, J.; Debanne, D. Lipids shape brain function through ion channel and receptor modulations: Physiological mechanisms and clinical perspectives. Physiol. Rev. 2024. [Google Scholar] [CrossRef] [PubMed]
- Davletov, B.; Montecucco, C. Lipid function at synapses. Curr. Opin. Neurobiol. 2010, 20, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, A.M.; Colino-Oliveira, M.; Assaife-Lopes, N.; Dias, R.B.; Ribeiro, J.A. Lipid rafts, synaptic transmission and plasticity: Impact in age-related neurodegenerative diseases. Neuropharmacology 2013, 64, 97–107. [Google Scholar] [CrossRef]
- Carta, M.; Lanore, F.; Rebola, N.; Szabo, Z.; Da Silva, S.V.; Lourenço, J.; Verraes, A.; Nadler, A.; Schultz, C.; Blanchet, C.; et al. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 2014, 81, 787–799. [Google Scholar] [CrossRef]
- Barrantes, F.J. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front. Cell Dev. Biol. 2023, 11, 1328875. [Google Scholar] [CrossRef]
- Barrantes, F.J. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol. Res. 2023, 190, 106729. [Google Scholar] [CrossRef]
- Sarkar, P.; Mozumder, S.; Bej, A.; Mukherjee, S.; Sengupta, J.; Chattopadhyay, A. Structure, dynamics and lipid interactions of serotonin receptors: Excitements and challenges. Biophys. Rev. 2020, 13, 101–122. [Google Scholar] [CrossRef]
- Borroni, M.V.; Vallés, A.S.; Barrantes, F.J. The lipid habitats of neurotransmitter receptors in brain. Biochim. Et Biophys. Acta 2016, 1858, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Ortells, M.; Cockcroft, V.; Lunt, G.; Marsh, D.; Barrantes, F. The nicotinic acetylcholine receptor and its lipid microenvironment. In Proceedings of the Membrane Proteins: Structures, Interactions and Models: Proceedings of the Twenty-Fifth Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, 18–21 May 1992; pp. 185–198. [Google Scholar]
- Szczurowska, E.; Szánti-Pintér, E.; Randáková, A.; Jakubík, J.; Kudova, E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int. J. Mol. Sci. 2022, 23, 13075. [Google Scholar] [CrossRef] [PubMed]
- Jafurulla, M.; Chattopadhyay, A. Membrane lipids in the function of serotonin and adrenergic receptors. Curr. Med. Chem. 2013, 20, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Chattopadhyay, A. Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin. ACS Chem. Neurosci. 2023, 14, 3855–3868. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jafurulla, M.; Tiwari, S.; Chattopadhyay, A. Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors. Adv. Exp. Med. Biol. 2018, 1112, 141–149. [Google Scholar] [CrossRef]
- Guo, Z. Ganglioside GM1 and the central nervous system. Int. J. Mol. Sci. 2023, 24, 9558. [Google Scholar] [CrossRef]
- Schnaar, R.L. The biology of gangliosides. Adv. Carbohydr. Chem. Biochem. 2019, 76, 113–148. [Google Scholar]
- Yates, A.J.; Rampersaud, A. Sphingolipids as receptor modulators: An overview. Ann. N. Y. Acad. Sci. 1998, 845, 57–71. [Google Scholar] [CrossRef]
- Viljetić, B.; Blažetić, S.; Labak, I.; Ivić, V.; Zjalić, M.; Heffer, M.; Balog, M. Lipid Rafts: The Maestros of Normal Brain Development. Biomolecules 2024, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Chahinian, H.; Yahi, N.; Fantini, J. Glutamate, Gangliosides, and the Synapse: Electrostatics at Work in the Brain. Int. J. Mol. Sci. 2024, 25, 8583. [Google Scholar] [CrossRef]
- Mesa-Herrera, F.; Taoro-González, L.; Valdés-Baizabal, C.; Diaz, M.; Marín, R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int. J. Mol. Sci. 2019, 20, 3810. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.S.B.; Færgeman, N.J. Sphingolipids: Membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017, 7, 170069. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.A.; Halverson-Tamboli, R.A.; Rasenick, M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 2007, 8, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Korade, Z.; Kenworthy, A.K. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008, 55, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Egawa, J.; Pearn, M.L.; Lemkuil, B.P.; Patel, P.M.; Head, B.P. Membrane lipid rafts and neurobiology: Age-related changes in membrane lipids and loss of neuronal function. J. Physiol. 2016, 594, 4565–4579. [Google Scholar] [CrossRef] [PubMed]
- Bruses, J.L.; Chauvet, N.; Rutishauser, U. Membrane lipid rafts are necessary for the maintenance of the α7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J. Neurosci. 2001, 21, 504–512. [Google Scholar] [CrossRef]
- Kalinichenko, L.S.; Kornhuber, J.; Sinning, S.; Haase, J.; Müller, C.P. Serotonin Signaling through Lipid Membranes. ACS Chem. Neurosci. 2024, 15, 1298–1320. [Google Scholar] [CrossRef]
- Li, B.; Dettmer, U. Interactions of alpha-synuclein with membranes in Parkinson’s disease: Mechanisms and therapeutic strategies. Neurobiol. Dis. 2024, 106646. [Google Scholar] [CrossRef]
- Badawy, A.A. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol. 2013, 27, 878–893. [Google Scholar] [CrossRef]
- Hensler, J.G. Chapter 15-Serotonin. In Basic Neurochemistry, 8th ed.; Brady, S.T., Siegel, G.J., Albers, R.W., Price, D.L., Eds.; Academic Press: New York, NY, USA, 2012; pp. 300–322. [Google Scholar]
- Chattopadhyay, A.; Rukmini, R.; Mukherjee, S. Photophysics of a neurotransmitter: Ionization and spectroscopic properties of serotonin. Biophys. J. 1996, 71, 1952–1960. [Google Scholar] [CrossRef]
- Robinson, M.; Turnbull, S.; Lee, B.Y.; Leonenko, Z. The effects of melatonin, serotonin, tryptophan and NAS on the biophysical properties of DPPC monolayers. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183363. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Balaji, J.; Madhu, P.K.; Maiti, S. Intermolecular association provides specific optical and NMR signatures for serotonin at intravesicular concentrations. Biophys. J. 2008, 94, 4145–4153. [Google Scholar] [CrossRef] [PubMed]
- Bunin, M.A.; Wightman, R.M. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 4854–4860. [Google Scholar] [CrossRef]
- Maggio, B. The surface behavior of glycosphingolipids in biomembranes: A new frontier of molecular ecology. Prog. Biophys. Mol. Biol. 1994, 62, 55–117. [Google Scholar] [CrossRef]
- Juhola, H.; Postila, P.A.; Rissanen, S.; Lolicato, F.; Vattulainen, I.; Róg, T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience 2018, 384, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Savtchenko, L.P.; Rusakov, D.A. The optimal height of the synaptic cleft. Proc. Natl. Acad. Sci. USA 2007, 104, 1823–1828. [Google Scholar] [CrossRef]
- Maggio, B.; Borioli, G.A.; Del Boca, M.; De Tullio, L.; Fanani, M.L.; Oliveira, R.G.; Rosetti, C.M.; Wilke, N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: Mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem. Biophys. 2008, 50, 79–109. [Google Scholar] [CrossRef]
- Woolley, D.W.; Gommi, B.W. Serotonin receptors, VII. Activities of various pure gangliosides as the receptors. Proc. Natl. Acad. Sci. USA 1965, 53, 959–963. [Google Scholar] [CrossRef]
- Fantini, J.; Barrantes, F.J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2009, 1788, 2345–2361. [Google Scholar] [CrossRef]
- Mohole, M.; Naglekar, A.; Sengupta, D.; Chattopadhyay, A. Probing the energy landscape of the lipid interactions of the Serotonin1A receptor. Biophys. Chem. 2024, 313, 107289. [Google Scholar] [CrossRef]
- Kalipatnapu, S.; Pucadyil, T.J.; Harikumar, K.G.; Chattopadhyay, A. Ligand Binding Characteristics of the Human Serotonin1 A Receptor Heterologously Expressed in CHO Cells. Biosci. Rep. 2004, 24, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Garmy, N.; Taïeb, N.; Yahi, N.; Fantini, J. Apical uptake and transepithelial transport of sphingosine monomers through intact human intestinal epithelial cells: Physicochemical and molecular modeling studies. Arch. Biochem. Biophys. 2005, 440, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Surendran, D.; Engberg, O.; Gupta, A.; Fanibunda, S.E.; Das, A.; Maity, B.K.; Dey, A.; Visvakarma, V.; Kallianpur, M.; et al. Altered Membrane Mechanics Provides a Receptor-Independent Pathway for Serotonin Action. Chemistry 2021, 27, 7533–7541. [Google Scholar] [CrossRef]
- Maggio, B. The molecular electrostatics of glycosphingolipids in oriented interfaces. In Charge and Field Effects in Biosystems—3; Springer: Berlin/Heidelberg, Germany, 1992; pp. 69–80. [Google Scholar]
- Ali, S.; Smaby, J.M.; Brockman, H.L.; Brown, R.E. Cholesterol’s interfacial interactions with galactosylceramides. Biochemistry 1994, 33, 2900–2906. [Google Scholar] [CrossRef]
- Fantini, J.; Garmy, N.; Mahfoud, R.; Yahi, N. Lipid rafts: Structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev. Mol. Med. 2002, 4, 1–22. [Google Scholar] [CrossRef]
- Engberg, O.; Bochicchio, A.; Brandner, A.F.; Gupta, A.; Dey, S.; Böckmann, R.A.; Maiti, S.; Huster, D. Serotonin alters the phase equilibrium of a ternary mixture of phospholipids and cholesterol. Front. Physiol. 2020, 11, 578868. [Google Scholar] [CrossRef]
- Bochicchio, A.; Brandner, A.F.; Engberg, O.; Huster, D.; Böckmann, R.A. Spontaneous Membrane Nanodomain Formation in the Absence or Presence of the Neurotransmitter Serotonin. Front. Cell Dev. Biol. 2020, 8, 601145. [Google Scholar] [CrossRef]
- Di Pasquale, E.; Chahinian, H.; Sanchez, P.; Fantini, J. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. PLoS ONE 2009, 4, e4989. [Google Scholar] [CrossRef] [PubMed]
- Di Scala, C.; Fantini, J.; Yahi, N.; Barrantes, F.J.; Chahinian, H. Anandamide revisited: How cholesterol and ceramides control receptor-dependent and receptor-independent signal transmission pathways of a lipid neurotransmitter. Biomolecules 2018, 8, 31. [Google Scholar] [CrossRef]
- Di Scala, C.; Mazzarino, M.; Yahi, N.; Varini, K.; Garmy, N.; Fantini, J.; Chahinian, H. Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data. Data Brief 2017, 14, 163–167. [Google Scholar] [CrossRef]
- Di Scala, C.; Fantini, J. Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins. Methods Mol. Biol. 2017, 1583, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Yahi, N.; Fantini, J. Deciphering the glycolipid code of Alzheimer’s and Parkinson’s amyloid proteins allowed the creation of a universal ganglioside-binding peptide. PLoS ONE 2014, 9, e104751. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef] [PubMed]
- Brezesinski, G.; Möhwald, H. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 2003, 100, 563–584. [Google Scholar] [CrossRef] [PubMed]
- Thakur, G.; Micic, M.; Leblanc, R.M. Surface chemistry of Alzheimer’s disease: A Langmuir monolayer approach. Colloids Surf. B Biointerfaces 2009, 74, 436–456. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.A.; Escobar, J.F.B.; Giordani, C.; Caseli, L. Exploring the physicochemical properties of the integration of Tristearoyl uridine in Langmuir monolayers: An approach to cell membrane modeling for prodrugs. Biophys. Chem. 2024, 310, 107256. [Google Scholar] [CrossRef]
- Nobre, T.M.; Pavinatto, F.J.; Caseli, L.; Barros-Timmons, A.; Dynarowicz-Łątka, P.; Oliveira, O.N., Jr. Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Film. 2015, 593, 158–188. [Google Scholar]
- Fantini, J. Fundamental Mechanisms in Membrane Receptology: Old Paradigms, New Concepts and Perspectives. Receptors 2024, 3, 107–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantini, J.; Azzaz, F.; Bennaï, R.; Yahi, N.; Chahinian, H. Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes. Int. J. Mol. Sci. 2024, 25, 10194. https://doi.org/10.3390/ijms251810194
Fantini J, Azzaz F, Bennaï R, Yahi N, Chahinian H. Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes. International Journal of Molecular Sciences. 2024; 25(18):10194. https://doi.org/10.3390/ijms251810194
Chicago/Turabian StyleFantini, Jacques, Fodil Azzaz, Ryad Bennaï, Nouara Yahi, and Henri Chahinian. 2024. "Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes" International Journal of Molecular Sciences 25, no. 18: 10194. https://doi.org/10.3390/ijms251810194
APA StyleFantini, J., Azzaz, F., Bennaï, R., Yahi, N., & Chahinian, H. (2024). Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes. International Journal of Molecular Sciences, 25(18), 10194. https://doi.org/10.3390/ijms251810194