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Abstract: Serotonin is distinct among synaptic neurotransmitters because it is amphipathic and
released from synaptic vesicles at concentrations superior to its water solubility limit (270 mM in
synaptic vesicles for a solubility limit of 110 mM). Hence, serotonin is mostly aggregated in the
synaptic cleft, due to extensive aromatic stacking. This important characteristic has received scant
attention, as most representations of the serotonergic synapse take as warranted that serotonin
molecules are present as monomers after synaptic vesicle exocytosis. Using a combination of in silico
and physicochemical approaches and a new experimental device mimicking synaptic conditions, we
show that serotonin aggregates are efficiently dissolved by gangliosides (especially GM1) present in
postsynaptic membranes. This initial interaction, driven by electrostatic forces, attracts serotonin from
insoluble aggregates and resolves micelles into monomers. Serotonin also interacts with cholesterol
via a set of CH-π and van der Waals interactions. Thus, gangliosides and cholesterol act together
as a functional serotonin-collecting funnel on brain cell membranes. Based on this unique mode of
interaction with postsynaptic membranes, we propose a new model of serotonergic transmission
that takes into account the post-exocytosis solubilizing effect of gangliosides and cholesterol on
serotonin aggregates.
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1. Introduction

In the classic schematic neurotransmission conception, neurotransmitters are consid-
ered as perfectly soluble compounds in the aqueous inter-neuronal space, referred to as the
synaptic space. This concept has prevailed because it is consistent with the required instan-
taneity of neurotransmission which is a discontinuous and iterative process. Hence, the
solubility of neurotransmitters in water has been generally overlooked [1]. However, this
parameter is critical as the behavior of neurotransmitters in water shows great variations
according to their chemical structures. Indeed, a simple octanol/water partition analysis il-
lustrates major differences among neurotransmitters [2]. Consequently, the kinetics of their
diffusion in the synaptic cleft over a distance of 20–40 nm must necessarily differ, which
in turn may impact the speed and the responsiveness of synaptic transmission. From this
point of view, it is worth mentioning the neurotransmitter receptors classification proposed
by Postila et al. (2016) [3] based on the behavior in water, highlighting the solubilization
properties previously emphasized by Fantini and Yahi [4]. Overall, this classification is in
agreement with the molecular view of the synapse developed by our group, considering
water solubility as a critical parameter of neurotransmission function [4]. These studies are
part of the broader framework of the role of membrane lipids in the regulation of synaptic
transmission and brain functions [5–12]. Numerous studies have identified cholesterol as a
major regulator of acetylcholine [13,14] and serotonin [11,15,16] receptors. Sphingolipids
and in particular gangliosides then appeared as important partners of neurotransmitter
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receptors [17–20]. It is now generally accepted that lipid rafts, in which cholesterol and
sphingolipids are concentrated, are signaling platforms playing a major role in synaptic
transmission and in neurological disorders [21–30].

Serotonin is biosynthesized from tryptophan [31], an amino acid with a large aromatic
structure which impairs its solubility in water. The metabolic pathway that transforms
tryptophan into serotonin consists in a decarboxylation and the addition of an OH polar
group [32]. At physiological pH, serotonin is positively charged [33], a property that,
associated with the presence of the OH group, slightly improves its solubility in water
compared to tryptophan (1.36 mg/mL for tryptophan vs. 2.5 mg/mL for serotonin) [34].
Nevertheless, the aromatic structure counterbalances the polar characteristic of the OH
and ethylamine groups by conferring self-aggregative properties on the molecule through
π-π stacking mechanisms which are particularly operative in synaptic vesicles [35] where
neuronal serotonin concentration of several hundred of mmoles per liter has been measured
(250–400 mM) [35]. It has been proposed that this aggregative state, which is in essence
biologically inactive, instantaneously disappears after serotonin dilution to 10 mM, a con-
centration similar to the estimated biologically active serotonin in the aqueous synaptic
space [36]. From simple electrostatic considerations, it could be reasonably argued that the
cationic amine group of serotonin is transiently attracted by the electronegative carboxylate
groups of gangliosides in postsynaptic membranes. The measurement of the bilayer electro-
static potential as a function of distance from the interface formed by ganglioside models as
GM1, GD3 or GD3 lactone, in accordance with Gouy–Chapmann and Poisson–Boltzmann
predictive theories, set limits beyond which the associated electric field has no influence on
cationic neurotransmitter mobility [37]. In this respect, according to Juhola et al. [38], the
attraction between cationic neurotransmitters and GM1 begins at a distance of 3.0–4.2 nm
of the membrane midplane. This potential behavior can be correlated with the detection of
a huge electric field at the synaptic space level. This local electric field arising around ionic
current sources localized in a ganglioside rich environment (lipid raft microdomains), could
reach 104–106 V/m [39,40] and consequently could improve neurotransmission efficiency
by increasing the mobility of cationic serotonin by electro-osmotic drag. This electrostatic
process could be accelerated by the dissolution of serotonin in the vicinity of postsynaptic
membranes, extracting active monomers from inactive aggregates. Retrospectively, it is not
surprising that gangliosides were the first receptors to be characterized for serotonin [41],
even if these anionic glycolipids were then rather considered as electrostatic attachment
sites for serotonin, optimizing serotonin concentration in the vicinity of postsynaptic recep-
tors [42]. This scenario would suppose the formation of a serotonin–ganglioside complex of
moderate affinity. The objective of the present study was to critically assess the role of raft
lipids (gangliosides and cholesterol) in the bioavailability of serotonin in model membranes
reflecting postsynaptic membrane microdomains. To this end, we used a combination of
physicochemical and in silico approaches.

2. Results
2.1. Gangliosides Control the Dissolution of Synaptic Serotonin

In a first series of experiments, we used Langmuir molecular monolayer technology to
study the behavior of supersaturated solutions of serotonin. Our experimental setup was
designed to record surface tension variation in real time with the potential to take snapshots
of serotonin aggregates during the recordings. For these experiments, we used non-HCl
serotonin, which has a limit of solubility in water similar to natural synaptic serotonin
(110 mM). Serotonin was prepared at a stock concentration of 140 mM, and 16 microliters
of this supersaturated solution were injected into a drop of water. Under these conditions,
an insoluble fraction was clearly observable at the bottom of the well at the initial time of
the experiment (Figure 1).

The serotonin introduced into the drop forms a deposit clearly visible to the naked
eye near the platinum probe, allowing the recordings of the microtensiometer. This device
makes it possible to visualize the evolution of the serotonin deposit and to correlate it with
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surface pressure measurements (Figure 2). In pure water, these serotonin aggregates did
not spontaneously disappear, and they remained almost unchanged after 1 h of incubation,
resulting in very little variation in surface pressure (Figure 2A,B) and in the area occupied
by insoluble serotonin (Figure 2C,D). The dissolution of the insoluble part of serotonin
was then studied in the presence of a monolayer of cholesterol which appeared to be
a good lipid attractor of serotonin molecules (Figure 2A,B). GM1 gangliosides spread
on the surface of the water drop were also very efficient at inducing the dissolution of
serotonin aggregates, as demonstrated by the progressive increase in the surface pressure
of the ganglioside monolayer, due to the binding of serotonin molecules extracted from
the aggregates (Figure 2A,B). This effect is accompanied by a clear decrease in the surface
area occupied by aggregated serotonin, as illustrated in the snapshots of Figure 2C and
the quantitative analyses of Figure 2D, with water being taken as a negative control.
Interestingly, a similar (although weaker, but statistically significant over water) increase in
surface pressure was observed with GM3 gangliosides, but not with GT1b gangliosides,
showing that the phenomenon was highly specific (Figure 2A,B). These results validate
the experimental system that we have developed to mimic the conditions of dissolution of
serotonin in the synaptic space.
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Figure 1. Experimental design. Non-HCl serotonin (140 mM) was injected into a 800 µL water drop.
A lipid monolayer can be spread at the surface of the drop (e.g., GM1 gangliosides). Surface pressure
measurements were recorded in real time with a platinum probe connected to a computer to assess
the dissolution of serotonin aggregates by surface pressure measurements. Reflections from the
laboratory windows are visible in the left part of the drop.

2.2. Molecular Dynamics Simulations of Serotonin Behavior with GM1, GM3 and GT1b
Gangliosides in a POPC/Cholesterol Environment

To understand how serotonin enters into an interaction with GM1, GM3 and GT1b
molecules at atomic resolution, we decided to run three different all-atom molecular
dynamics simulations in which three serotonins were placed in the vicinity of GM1, GM3
or GT1b inserted into a POPC/cholesterol membrane at a molecular ratio of 1:1. For
visual clarity, only the serotonin that directly interacts with ganglioside is shown. Figure 3
presents different snapshots corresponding to the simulation of serotonin with GM1.

The first image shows the initial configuration of the system. After only 1 ns, the
serotonin (depicted as purple spheres) enters into contact with the polar part of GM1
(depicted as orange spheres) via electrostatic interaction between the cationic NH3

+ group
of serotonin and the anionic COO− group of the sialic acid of GM1. Between 1 and 10 ns,
the serotonin molecule is gradually sent towards the surface of the POPC/cholesterol
membrane (POPC molecules are depicted as lines, while cholesterol molecules are depicted
as yellow spheres) where it is maintained until the end of the simulation at 25 ns. Figure 4
presents snapshots corresponding to the simulation of serotonin with GM3. At 2.5 ns, the
serotonin (depicted as purple spheres) enters into contact with the sugar molecules of GM3
(depicted as orange spheres).
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0.05 in one-way analysis of variance and Tukey’s honest significant difference). (C) Snapshots of 
serotonin aggregates (circled in yellow) injected under a monolayer of GM1 or in water, at t0 or after 
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Figure 2. Selective effects of gangliosides and cholesterol on the dissolution of serotonin aggregates.
The experimental design described in Figure 1 was used to measure the dissolution of serotonin
aggregates in water or in presence of various monolayers of raft lipids. (A) Surface pressure mea-
surements recorded in real time following the addition of serotonin. A representative curve is shown
for each condition. (B) Statistical analysis of surface increase 1 h after the addition of aggregated
serotonin in water under the indicated lipid (±SD, n = 3). All groups were statistically different
(p < 0.05 in one-way analysis of variance and Tukey’s honest significant difference). (C) Snapshots of
serotonin aggregates (circled in yellow) injected under a monolayer of GM1 or in water, at t0 or after
60 min of incubation (t60). (D) Mean areas of serotonin aggregates at t0 and t60 under a monolayer of
GM1 or in water (±SD, n = 3).
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Figure 3. Molecular dynamics simulation of a serotonin molecule interacting with GM1. Snapshots
were taken at 0, 1, 1.5, 10 and 25 ns. The serotonin is depicted as purple spheres (for visual clarity,
only the serotonin that interacts with GM1 is shown), GM1 as orange spheres, cholesterol as yellow
spheres and POPC molecules as lines colored by atom names.
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Figure 5. Molecular dynamics simulations of a serotonin molecule near GT1b. A total of 8 snapshots 
were taken for this figure representing the times 0, 3, 6, 9, 12.5, 15.5, 18.5 and 25 ns of the simulation. 
The serotonin is depicted as purple spheres (for visual clarity, only the serotonin that interacts with 
GT1b is shown), the GT1b molecules as orange spheres, POPC molecules as lines and cholesterol 
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durably with GT1b. 

Figure 4. Molecular dynamics simulations of a serotonin molecule interacting with GM3. Snapshots
were taken at 0, 2.5, 3.5, 12.5 and 25 ns. The serotonin is depicted as purple spheres (for visual clarity,
only the serotonin that interacts with GM3 is shown), GM3 as orange spheres, cholesterol as yellow
spheres and POPC molecules as lines colored by atom names.

Between 2.5 and 12.5 ns, the serotonin molecule is gradually sent towards the surface of
the POPC/cholesterol membrane (POPC molecules are depicted as lines, while cholesterols
are depicted as yellow spheres) where it is maintained until the end of the simulation
(25 ns). Finally, Figure 5 presents snapshots corresponding to the simulation of serotonin
with GT1b.
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Figure 5. Molecular dynamics simulations of a serotonin molecule near GT1b. A total of 8 snapshots
were taken for this figure representing the times 0, 3, 6, 9, 12.5, 15.5, 18.5 and 25 ns of the simulation.
The serotonin is depicted as purple spheres (for visual clarity, only the serotonin that interacts with
GT1b is shown), the GT1b molecules as orange spheres, POPC molecules as lines and cholesterol
molecules as yellow spheres. Throughout the simulation, the serotonin molecule fails to interact
durably with GT1b.
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Unlike the simulations involving GM1 or GM3, the serotonin fails to interact durably
with the sugar molecules of GT1b and the serotonin finally interacts with the surface of the
POPC/cholesterol membrane from 15.5 ns until the end of the simulation. Each of these
simulations shows that the intermolecular interactions between serotonin and the polar
moiety of gangliosides are not durable, and in each case, the serotonin ultimately interacts
with the surface of the membrane. Moreover, to gain more accuracy about the duration of
contacts between serotonin and the membrane surface, we plotted the insertion of serotonin
into the membrane surface over time. The plots in Figure 6 reveal that the insertion profile
of serotonin is similar in GM1 and GM3 systems, while it is clearly different for GT1b.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 17 
 

 

Unlike the simulations involving GM1 or GM3, the serotonin fails to interact durably 
with the sugar molecules of GT1b and the serotonin finally interacts with the surface of 
the POPC/cholesterol membrane from 15.5 ns until the end of the simulation. Each of these 
simulations shows that the intermolecular interactions between serotonin and the polar 
moiety of gangliosides are not durable, and in each case, the serotonin ultimately interacts 
with the surface of the membrane. Moreover, to gain more accuracy about the duration of 
contacts between serotonin and the membrane surface, we plotted the insertion of seroto-
nin into the membrane surface over time. The plots in Figure 6 reveal that the insertion 
profile of serotonin is similar in GM1 and GM3 systems, while it is clearly different for 
GT1b.  

 
Figure 6. Graphs that show the insertion of serotonin in GM1 system (left), GM3 system (middle) 
and GT1b system (right). The black line corresponds to the mass center of serotonin, the blue line 
corresponds to the average protrusion of POPC molecules and the red line corresponds to the aver-
age protrusion of cholesterol molecules.  

For GM1, as shown in Figure 6 (left plot), the insertion begins at 2 ns and lasts until 
the end of the trajectory. For GM3, the insertion begins at 3 ns and lasts until the end of 
the trajectory (Figure 6, middle plot). For GT1b, the insertion starts at 14 ns, and it is main-
tained until the end of the simulation (Figure 6, right plot). Altogether, our simulations 
are in good agreement with the experimental data by predicting that serotonin fails to 
interact in a stable manner to the sugar moiety of GT1b, while this molecule can bind the 
sugar moiety of GM1 or GM3. 

2.3. Molecular Dynamics Simulations of Serotonin Behavior with POPC or POPC/Cholesterol in 
the Liquid Disordered Phase (Ld) of the Membrane 

Our simulations of serotonin with gangliosides inserted into a POPC/cholesterol 
membrane showed that the serotonin always ultimately interacts with the surface of the 
membrane instead of adapting its conformation to interact durably with the polar moiety 
of ganglioside molecules. Based on these in silico observations, we wondered whether 
serotonin prefers to interact with POPC or cholesterol molecules. To answer this question, 
we performed two different simulations in which three serotonins are placed in the vicin-
ity of a POPC or a POPC/cholesterol membrane at a molecular ratio 1:1. For each simula-
tion, we plotted the “score” over time: a score of +1 is assigned when a serotonin molecule 
is interacting with the surface of the membrane. The plots are presented in Figure 7 (upper 
panel for POPC and lower panel for POPC/cholesterol).  

Figure 6. Graphs that show the insertion of serotonin in GM1 system (left), GM3 system (middle)
and GT1b system (right). The black line corresponds to the mass center of serotonin, the blue line
corresponds to the average protrusion of POPC molecules and the red line corresponds to the average
protrusion of cholesterol molecules.

For GM1, as shown in Figure 6 (left plot), the insertion begins at 2 ns and lasts until
the end of the trajectory. For GM3, the insertion begins at 3 ns and lasts until the end of the
trajectory (Figure 6, middle plot). For GT1b, the insertion starts at 14 ns, and it is maintained
until the end of the simulation (Figure 6, right plot). Altogether, our simulations are in
good agreement with the experimental data by predicting that serotonin fails to interact
in a stable manner to the sugar moiety of GT1b, while this molecule can bind the sugar
moiety of GM1 or GM3.

2.3. Molecular Dynamics Simulations of Serotonin Behavior with POPC or POPC/Cholesterol in
the Liquid Disordered Phase (Ld) of the Membrane

Our simulations of serotonin with gangliosides inserted into a POPC/cholesterol
membrane showed that the serotonin always ultimately interacts with the surface of the
membrane instead of adapting its conformation to interact durably with the polar moiety
of ganglioside molecules. Based on these in silico observations, we wondered whether
serotonin prefers to interact with POPC or cholesterol molecules. To answer this question,
we performed two different simulations in which three serotonins are placed in the vicinity
of a POPC or a POPC/cholesterol membrane at a molecular ratio 1:1. For each simulation,
we plotted the “score” over time: a score of +1 is assigned when a serotonin molecule is
interacting with the surface of the membrane. The plots are presented in Figure 7 (upper
panel for POPC and lower panel for POPC/cholesterol).

The analysis of the plots reveals that serotonin scored a total of 268 in the POPC
environment against a total of 537 in the POPC/cholesterol environment. These in silico
data suggest that the serotonin molecules interact more efficiently with the membrane
surface when it contains cholesterol. The scores of the systems involving GM1, GM3 and
GT1b are also plotted in Figure 8. The analysis of the graphs reveals that the serotonins
were more in contact with the surface of the membrane in the GM3 system, with a total
score of 885 (Figure 8, left plot), followed by the GM1 system, with a total score of 597
(Figure 8, middle plot), and finally the GT1b system, with a total score of 142 (Figure 8,
right plot). We noted that the total score in the GT1b system was even lower than the POPC
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system, indicating that GT1b is not a good candidate to attract serotonin molecules towards
the surface of the membrane.
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throughout the trajectory.

A representative example of intermolecular contacts between a serotonin molecule and
cholesterol is shown in Figure 9. At 8.9 ns, the serotonin molecule enters into contact with
cholesterol via a hydrogen bond between the OH group of serotonin and the OH group
of cholesterol. A bit later, at 13.1 ns, serotonin interacts with the apolar part of cholesterol
molecules via a set of CH-π and van der Waals interactions.

2.4. The Initial Interactions between Serotonin and the Sugar Moiety of Gangliosides Initiate the
Dissociation of a Serotonin Dimer

From a chemical perspective, the aromatic nature of the serotonin makes this molecule
capable of oligomerizing via π-stacking. An interesting question to ask is “if serotonin
molecules are released from the vesicles as large oligomers, which biomolecules could
separate them?” Lipid raft gangliosides are obvious candidates. Figures 10 and 11 present
snapshots extracted from the simulations of serotonin—GM1 and serotonin—GM3, respec-
tively (GT1b data are not presented since no interaction with serotonin occurred during



Int. J. Mol. Sci. 2024, 25, 10194 8 of 15

the simulations). In both cases, the images show that the serotonin dimer (one serotonin
colored in blue and the other colored in green) is dissociated by the intermolecular contacts
established with the sugar moiety of GM1 (Figure 10) or GM3 (Figure 11).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 17 
 

 

A representative example of intermolecular contacts between a serotonin molecule 
and cholesterol is shown in Figure 9. At 8.9 ns, the serotonin molecule enters into contact 
with cholesterol via a hydrogen bond between the OH group of serotonin and the OH 
group of cholesterol. A bit later, at 13.1 ns, serotonin interacts with the apolar part of cho-
lesterol molecules via a set of CH-π and van der Waals interactions. 

 
Figure 9. Representative example of the interactions between serotonin and cholesterol molecules. 
The snapshots were extracted from the POPC/cholesterol system presented in Figure 7. Serotonin is 
depicted as spheres colored according to atom name, cholesterol is depicted as yellow spheres, 
POPC molecules are depicted as lines colored according to atom names and the phosphorus atom 
of POPC is depicted as brown spheres. 

2.4. The Initial Interactions between Serotonin and the Sugar Moiety of Gangliosides Initiate the 
Dissociation of a Serotonin Dimer 

From a chemical perspective, the aromatic nature of the serotonin makes this mole-
cule capable of oligomerizing via π-stacking. An interesting question to ask is “if serotonin 
molecules are released from the vesicles as large oligomers, which biomolecules could 
separate them?” Lipid raft gangliosides are obvious candidates. Figures 10 and 11 present 
snapshots extracted from the simulations of serotonin—GM1 and serotonin—GM3, re-
spectively (GT1b data are not presented since no interaction with serotonin occurred dur-
ing the simulations). In both cases, the images show that the serotonin dimer (one seroto-
nin colored in blue and the other colored in green) is dissociated by the intermolecular 
contacts established with the sugar moiety of GM1 (Figure 10) or GM3 (Figure 11).  

 
Figure 10. The polar part of GM1 initiates the dissociation of a serotonin dimer. The first image 
shows that a dimer of serotonin (one serotonin depicted as spheres colored in blue while the second 
one is depicted as spheres colored in green) is going to enter into an interaction with the polar part 
of GM1 (depicted as orange spheres). Then, the evolution of intermolecular interactions between 

Figure 9. Representative example of the interactions between serotonin and cholesterol molecules.
The snapshots were extracted from the POPC/cholesterol system presented in Figure 7. Serotonin is
depicted as spheres colored according to atom name, cholesterol is depicted as yellow spheres, POPC
molecules are depicted as lines colored according to atom names and the phosphorus atom of POPC
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Figure 10. The polar part of GM1 initiates the dissociation of a serotonin dimer. The first image shows
that a dimer of serotonin (one serotonin depicted as spheres colored in blue while the second one
is depicted as spheres colored in green) is going to enter into an interaction with the polar part of
GM1 (depicted as orange spheres). Then, the evolution of intermolecular interactions between the
serotonin colored in green and the sugars of GM1 will cause the dissociation of the serotonin dimer.

The same observation has been made in a GM3 lipid raft environment. As shown in
Figure 12, the blue serotonin is attracted to the green serotonin, resulting in the formation
of a dimer. Then, the evolution of the intermolecular interactions in the GM3 lipid raft
leads to the dissociation of the serotonin dimer at 2 ns, as demonstrated by the exclusion of
the blue serotonin out of the polar moiety of the lipid raft at 2.5 ns.

Overall, these in silico data suggest that an isolated molecule of GM1 and GM3 can
dissociate a serotonin dimer. Moreover, using the GM3 as a model to build a lipid raft
structure, the GM3 lipid raft reproduces the same effect, which may suggest that this effect
is not lost even if gangliosides are included in a lipid raft structure.
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Figure 11. The polar part of GM3 initiates the dissociation of a serotonin dimer. The first image shows
that a dimer of serotonin (one serotonin depicted as blue spheres and the other one as green spheres)
is going to enter into an interaction with the polar part of GM3 (depicted as orange spheres). Then,
the evolution of intermolecular interactions between the green serotonin and the sugars of GM3 will
cause the dissociation of the serotonin dimer.
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Figure 12. Dissociation of a serotonin dimer by a GM3 lipid raft. Snapshots were taken at 0, 0.3, 1.35,
2 and 2.5 ns. The GM3 gangliosides composing the lipid raft are depicted as an orange surface, the
POPC molecules are depicted as lines colored according to atom names, the serotonin molecules are
depicted as green or blue spheres and cholesterol is depicted as spheres (to improve clarity, each
cholesterol is colored differently).

2.5. Serotonin Is a Surface-Active Compound, a Property That Gives Serotonergic Transmission
Its Singularity

Serotonin is an amphiphilic compound which confers on serotonergic transmission
unique characteristics reflecting both its polar characteristic associated with its water
solubility and its lipophilicity compatible with the intramembrane binding site in its
protein receptors such as 7-TM GPCR 5HT-1A [43,44]. Like many amphiphilic compounds,
serotonin has surface-active properties. In this study, we have determined its critical
micellar concentration (CMC) by measuring the increased surface tension of water [45] in
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response to successive additions of water-soluble serotonin. Surface tension decreases when
increasing the surfactant concentration up to the CMC, where the concentration dependence
is nearly constant above the CMC (Figure 13). Under these conditions, the CMC of serotonin
was estimated at 42 mM. Therefore, like many surface-active compounds, serotonin forms
micelles in aqueous solutions. A serotonin micelle is a particle made up of a self-assembly
of several molecules whose number depends on the serotonin concentration in water. A
supersaturated serotonin solution represents a mixture of serotonin in several physical
states, represented by monomeric serotonin, micellar serotonin and insoluble serotonin,
in equilibrium (Figure 13). From a chemical point of view, the aromatic part of serotonin
makes this neurotransmitter able to self-assemble via π-stacking. Our observations suggest
that gangliosides (especially GM1) and cholesterol constitute the driving force for the
dissolution of serotonin and its insertion into the postsynaptic membrane.
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Figure 13. CMC determination (left panel) and molecular models of serotonin in various aggregation
or monomeric forms (right panel). Serotonin micelles n2 and n4 are soluble and probably inactive in
contrast with serotonin monomers. Oxygen atoms are colored in red, carbon in grey, hydrogen in
white and nitrogen in blue. The red dash line indicates how the CMC is estimated (extrapolation of
serotonin concentration at curve break).

3. Discussion

The identification of membrane lipids as privileged targets of serotonin confers on
the membrane surface of postsynaptic neurons a functional serotonin storage capacity.
This property could constitute an alternative mechanism for clearing the volume of sero-
toninergic synapse independently of receptors/carriers and it might be integrated into a
global process of serotonergic neurotransmission [46]. In the present study, we developed
a new experimental system that mimics the conditions of dissolution of serotonin in the
synaptic space and allows real-time determinations of serotonin binding to lipids of the
postsynaptic membrane. For this, we used non-HCl serotonin whose solubility limit is close
to that of natural serotonin in the brain. We were able to follow the dissolution of serotonin
aggregates by taking snapshots of the measuring drop of a microtensiometer at different
times. This experimental system specifically designed for this study made it possible
to measure in real time the impact of gangliosides and cholesterol on the dissolution of
serotonin. We completed this analysis with molecular dynamics simulations taking into
account water molecules and ions. This approach allowed us to follow the initial steps of
serotonin interaction with gangliosides and cholesterol in their membrane environment. We
also estimated the interaction energies of serotonin–ganglioside and serotonin–cholesterol
complexes in these membrane systems.

We showed that cholesterol and monosialylated gangliosides (GM1 and GM3) are
able to extract and stabilize serotonin monomers from insoluble aggregates, whereas the
trisialylated GT1b cannot (Figure 2). The higher efficiency of cholesterol compared with
GM1 could be attributed to the respective molecular areas occupied by these lipids in
a monolayer at an initial surface pressure of 20 mN·m−1 (i.e., under the experimental
conditions of our study). Indeed, using molecular area estimations [47,48], we calculated
that at this initial pressure, cholesterol molecules are 25-fold more numerous than GM1.
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The energy of interaction of the complex between serotonin and a model system
with one ganglioside surrounded by two cholesterol molecules could be estimated at
−54 kJ·mol−1 for GM1, −40 kJ·mol−1 for GM3 and −30 kJ·mol−1 for GT1b. Choles-
terol alone was responsible for −32 kJ·mol−1. Moreover, the free energy value of choles-
terol/serotonin association in a raft environment model (POPC/cholesterol/GM1) repre-
senting the liquid ordered (Lo) phase, and the free energy value of cholesterol/serotonin in-
teraction in a membrane environment model representing the Ld phase (POPC/cholesterol)
were of a similar order of magnitude (−32 kJ·mol−1). Thus, these estimations indicate that
the affinity of serotonin is maximal for model membranes containing GM1, median for
GM3 and quasi-null for GT1b, in full agreement with microtensiometry data (Figure 2).
One may wonder why serotonin interacts favorably with GM1 and GM3 gangliosides but
not with GT1b. If only the surface electrostatic potential is considered, the three sialic
acids should confer a decisive advantage on GT1b over the other two monosyalylated gan-
gliosides. However, it is clear that the ganglioside–serotonin interaction is more complex
than a simple electrostatic attraction between an electronegative ganglioside and cationic
serotonin. If this were the case, GM1 and GM3 gangliosides would have the same attractive
effect on serotonin, which experimental data refute. Therefore, it seems that the glycan
part of the gangliosides as a whole determines the mode of interaction with serotonin. It
can be assumed that the ideal composition of this glycone part is achieved with GM1 (four
sugars + one sialic acid), but only partially with GM3 (two sugars + one sialic acid). In
the case of GT1b (four sugars + three sialic acids), the presence of three sialic acids must
strongly increase the hydration and conformational flexibility of the ganglioside. Under
our experimental conditions, this could limit any stable GT1b–serotonin interaction at the
lipid–water interface due to the amphiphilic nature of serotonin. Further experiments
would help to better understand these mechanisms.

In any case, it clearly appears that besides gangliosides GM1 and GM3, cholesterol
may improve the insertion of serotonin whatever its localization in the plasma membrane,
in the bulk membrane or in lipid rafts [49]. Thus, cholesterol can be considered as the lipid
mediating the membrane insertion of serotonin, whereas gangliosides may rather control
the initial electrostatic attraction of the neurotransmitter in lipid raft areas, as previously
hypothesized [4]. Nevertheless, the ability of serotonin to interact with several types of
membrane lipids [50,51] is probably due to its amphiphilic properties (Figure 13). In this
respect, serotonin seems to accentuate the hydrophobic mismatch between lipid chains
at the edge of vicinal phases, highlighting a serotonin-dependent alteration of the phase
equilibrium by an increase in line tension at the periphery of membrane domains [46,50,51].

Based on our combination of atomistic simulations and monolayer experiments, we
were able to distinguish three different physical states of serotonin in equilibrium: insoluble,
micellar and monomeric serotonin (Figure 13). The kinetics of surface pressure measure-
ments indicate that insoluble serotonin (Figure 1) does not dissolve instantaneously. The
driving force of this slow process is dependent on GM1 gangliosides, which show the
dissociating power of serotonin dimers (Figures 10–12), and then of cholesterol, which
maintains serotonin in the membrane (Figure 9).

The serotonin/cholesterol complex characterized in the present study would allow
one to optimize the permanent supply of serotonin to its receptor and/or transporter
binding sites. As previously demonstrated for anandamide [52–54], cholesterol could be
used as a membrane shuttle able to deliver serotonin to its protein targets by diffusion
in the apolar part of the plasma membrane. Based on the data of the present study, we
can hypothesize that gangliosides and cholesterol act together as a functional serotonin-
collecting funnel. Correspondingly, a diffusible pool of serotonin bound to cholesterol
might constitutively exist in serotonergic neuron membranes, allowing a timing offset
between exocytosis and stimulation of postsynaptic membranes. This model is clearly
distinct from the classic synaptic neurotransmission characterized by the switch on–off
frequency of receptor-dependent signal transmission consecutive to exocytosis of synaptic
vesicles. The ganglioside-dependent adsorption of serotonin monomers and the consecutive
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cholesterol-dependent membrane insertion of serotonin may constitute the driving force
controlling the balance between the different forms of serotonin in the synaptic space and
the complete dissolution of insoluble serotonin. This relatively slow process of synaptic
serotonin would contribute to its long-lasting effect on the nervous system.

4. Materials and Methods
4.1. Materials

Serotonin hydrochloride and non-HCl serotonin were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Lipids were purchased from Matreya. Ultrapure water was from
VWR (Radnor, PA, USA).

4.2. Langmuir Microtensiometry

Serotonin–lipid interactions were studied with the Langmuir film balance technique
using a Kibron Inc. (Helsinki, Finland) microtensiometer as previously described [55,56]. It
is well established that this monolayer device is representative of a membrane bilayer and
that it is one of the best experimental systems to measure lipid–protein interactions [57–59]
and drug–membrane interactions [60,61] under perfectly controlled conditions. In these
experiments, monolayers containing only the lipid of interest were analyzed to ensure
that interactions were exclusively due to the binding of serotonin to the lipid studied.
Monomolecular films of pure lipids were spread on pure water. After spreading of the
film, 2 min was allowed for solvent evaporation. Serotonin was injected in the subphase
(pH 7) with a P-100 Gilson pipetman (aggregated serotonin, kinetics experiments) or a 10 µL
Hamilton syringe (serotonin hydrochloride, CMC experiment), and the surface pressure
increases were continuously recorded as a function of time. The data were collected in
real time with the FilmWareX program (Kibron Inc., Helsinki, Finland) and analyzed with
one-way ANOVA and the Tukey’s test for post hoc. Snapshots of serotonin aggregates
in the microtensiometer drop were taken with a OnePlus Open smartphone and directly
imported into Microsoft PowerPoint without any image processing. These raw images are
shown in Figure 1. Preliminary experiments were performed with NaCl 150 mM subphases
instead of pure water, with similar results.

4.3. Atomistic Molecular Modeling Simulations

The charmm topology and parameters of the serotonin were obtained using the tool
“Ligand Designer” on Charmm-GUI (https://charmm-gui.org/ accessed on 30 May 2024).
The initial coordinates of GM1, GM3 and GT1b were obtained using the tool “Glycolipid
modeler” on Charmm-GUI. The POPC and POPC/Cholesterol membrane were obtained
using the tool “membrane builder” on Charmm-GUI. Each system was solubilized using
the tool “Add solvation box” and neutralized with Na+ and Cl− counter ions at a final
concentration of 0.15 mol/L using the tool “Add ions” in VMD. The systems were simulated
(including the minimization and equilibrated runs) using the software NAMD 2.14 for
Windows 10 coupled with the force field CHARMM36m (https://academiccharmm.org/
accessed 30 May 2024) at constant temperature (310 K) and constant pressure (1 atm). The
cutoff of the calculation of non-covalent interaction was set at 12 A and a PME algorithm
was used for the calculation of long-range electrostatic interaction in the periodic systems.

The energy of the interaction of serotonin–lipid complexes was determined with the
ligand inspector function of Molegro Molecular Viewer as previously described [56].

5. Conclusions

Our study reveals that gangliosides and cholesterol can exert a critical control on
serotonergic transmission at two distinct levels: (i) gangliosides, especially GM1, catalyzes
the extraction of serotonin monomers from insoluble aggregates present in the synaptic
cleft, and (ii) cholesterol traps serotonin in the outer leaflet of the postsynaptic membrane,
facilitating its transfer to serotonin receptors [4,42,62]. Moreover, raft lipids may exert
broader effects on the clearance of serotonin from the synaptic cleft by controlling the

https://charmm-gui.org/
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synaptic concentration of serotonin and its reabsorption by vicinal brain cells. Based on the
cholesterol-dependent insertion of serotonin in brain cell membranes, we propose a new
model of serotonergic transmission that takes into account the presence of a constitutive
pool of serotonin–cholesterol complexes that would allow long-lasting effects of serotonin
disconnected from synaptic vesicle exocytosis.
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