
Citation: Jezernik, G.; Glavač, D.;
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Abstract: Curated online interaction databases and gene ontology tools have streamlined the analysis
of highly complex gene/protein networks. However, understanding of disease pathogenesis has
gradually shifted from a protein-based core to complex interactive networks where non-coding RNA
(ncRNA) is thought to play an essential role. As current gene ontology is based predominantly on
protein-level information, there is a growing need to analyze networks with ncRNA. In this study, we
propose a gene ontology workflow integrating ncRNA using the NPInter V5.0 database. To validate
the proposed workflow, we analyzed our previously published curated biomarker datasets for hidden
disease susceptibility processes and pharmacogenomics. Our results show a novel involvement of
melanogenesis in psoriasis response to biological drugs in general. Hyperpigmentation has been
previously observed in psoriasis following treatment with currently indicated biological drugs, thus
calling attention to melanogenesis research as a response biomarker in psoriasis. Moreover, our
proposed workflow highlights the need to critically evaluate computed ncRNA interactions within
databases and a demand for gene ontology analysis of large miRNA blocks.

Keywords: gene ontology; non-coding RNA; disease pathogenesis

1. Introduction

The advent of stringently curated online databases of gene–gene and protein–protein
interactions has elevated gene network analysis from mere literature search to an objective
and systematic method. Most importantly, the Gene Ontology Consortium has developed
an evidence-based hierarchical system of hypernyms and hyponyms to characterize genes
or proteins through the biological processes, molecular functions and cellular components
that are related to the gene or protein [1]. Gene ontology (GO) tools play a crucial role in
analyzing large lists of genes or proteins by facilitating statistical evaluation to identify
over- and underrepresented biological processes. This capability is invaluable for swiftly
pinpointing key processes, thus expediting the identification of critical molecular pathways.
By leveraging such tools, researchers can conduct more targeted downstream reanalysis
or propose functional studies, focusing on the molecular pathways most likely to produce
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significant results. This approach enhances efficiency and accuracy in biological research,
ultimately advancing our understanding of complex biological systems. In addition, gene
ontology tools enable meta-analysis of existing biomarkers. The current landscape of
biomarker studies presents a very heterogeneous picture of predictive biomarkers with
low replications rates. Although this is predominantly due to population differences in
ethnic background, the phenotypes investigated usually converge to be very similar despite
different genetic components. As such, gene ontology tools can be used to collect published
biomarkers from different regional studies and form new hypotheses based on enriched
terms or interactor genes.

However, the understanding of disease pathogenesis has been gradually shifting away
from a purely Mendelian genetics and protein-based paradigm towards one where non-
protein processes with their underlying complex genetics play a much greater role. The aim
is to integrate these new layers of data as seamlessly as possible with other types of data [2].
Epigenomics (ex. DNA methylation), expression quantitative loci (eQTL) and non-coding
genomic variants affecting splicing have already been incorporated into more modern
models of disease pathogenesis. In the last decade, the role of non-coding RNA (ncRNA),
particularly miRNA and lncRNA, has further changed the protein-based core, leading to
hypotheses such as the competing endogenous RNA (ceRNA) hypothesis [3]. Although
evidence and opinions on the ceRNA hypothesis [4] differ, there is undeniably a growing
need for comprehensive analysis of miRNA and lncRNA function similar to or supporting
gene ontology tools. Due to the protein-based nature of GO, current GO methods cannot
accommodate this demand. There have been many attempts at functional annotation
of miRNA, such as the miRBase database [5] and the miRNA annotations published
by the UCL Institute of Cardiovascular Science [6]. To our best knowledge, protocols
incorporating lncRNA and other types of non-coding RNA have been few and good
practices for taking advantage of gene-ncRNA and ncRNA-ncRNA interaction databases
are still in development. Moreover, taking advantage of ncRNA interaction databases using
previously published DNA, RNA and protein biomarkers may aid in forming hypotheses
and study designs for targeted biomarker studies and also functional studies.

To achieve this objective, we will reanalyze datasets that we previously curated for
the identification of hidden disease susceptibility processes and pharmacogenomics re-
sponse markers to biological drugs. Our focus will be on identifying significant regulatory
loops within the mRNA-miRNA-lncRNA axis, supported by experimental evidence. By
leveraging these datasets, we aim to establish examples for future analyses of mRNA-
miRNA-lncRNA networks. Furthermore, we aim to use this method to discover or replicate
miRNA and lncRNA biomarkers in association with disease pathogenesis and drug re-
sponse. These analyses will be conducted in conjunction with gene ontology tools to
provide comprehensive insights into the functional relevance of identified regulatory loops.

2. Results
2.1. Proposed Filtering Protocol

For mRNA-miRNA-lncRNA axis generation from a curated list of mRNA and/or
protein biomarkers (also known as genes of interest), our proposed protocol suggests
first filtering and extracting only one type of ncRNA within the NPInter V5.0 dataset.
Next, another type of ncRNA is filtered and extracted so all newly selected biomarkers
have at least one interaction with a gene of interest and an interacting miRNA. This
approach reduces dataset size and prunes biomarkers with only one interactor, retaining
only elements desired for later mRNA-miRNA-lncRNA regulatory loops. These principles
similarly apply to network generation from a curated list of ncRNA.

2.2. Filtered mRNA-miRNA–Protein Network

The pediatric IBD and IBD-like genetic marker dataset has produced a mRNA-miRNA–
protein network with a significant miRNA block which does not interact with any genes of
interest but is regulated by NEAT1 and MALAT1 (Figure 1). Out of 84 genes of interest,
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only 7 are involved in the resulting network. The filtering threshold for this dataset remains
at the default value of 1.
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Figure 1. The mRNA-miRNA-lncRNA network of pediatric IBD and IBD-like gene dataset. Magenta
nodes represent mRNA, green nodes represent miRNA and orange nodes represent lncRNA. Wavy
lines connect mRNA and miRNA, dashed lines connect miRNA and lncRNA while backwards slash
lines connect mRNA and lncRNA.

To produce a processable dataset, stricter filtering with a threshold of 4 was performed
for the adult complex IBD dataset (Figure 2). Similar to the pediatric IBD dataset, a
major miRNA block that does not interact with any genes of interest has been produced.
Interestingly, the miRNA block is governed by NEAT1 and MALAT1 but also XIST. Out of
164 included genes of interest, only 3 were retained following stringent filtering.
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The filtering threshold for the rheumatoid arthritis pharmacogenomics dataset has
been set to 4 (Figure 3). Following filtering, 11 of the initial 390 biomarkers of interest were
retained. Again, NEAT1 and MALAT1 are governing a large miRNA block.
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Figure 3. The mRNA-miRNA-lncRNA network of rheumatoid arthritis pharmagenomics dataset.
Magenta nodes represent mRNA, green nodes represent miRNA and orange nodes represent lncRNA.
Dashed lines connect miRNA and lncRNA while backwards slash lines connect mRNA and lncRNA.

The filtering threshold for the psoriasis pharmacogenomics dataset remains the default
1 (Figure 4). After pruning of single interactors, 6 of the original 64 genes of interest were
retained. The resulting mRNA-miRNA-lncRNA network has only 17 codes and is easily
legible with distinguishable levels for each biomarker type. In the existing literature,
RP11-473M20.16 has been mentioned in few articles [7,8] and has not yet been associated
with psoriasis. Meanwhile, NEAT1 has been shown to be lowly regulated in psoriasis
(Figure 5a) [9]. If MAP3K1-2 and AKAP13-AS1 are not down-regulated, this leads to
mRNA-miRNA-lncRNA network simplification and a distinct expression profile (Figure 5b).
The figure shows that after accounting for known up- and down-regulation expression
patterns in psoriasis, only at the endpoint TNFAIP3, SHOC2 and HTR2A expression is
retained (Figure 5c).

The ALS mRNA dataset was filtered with a threshold set at 3 (Figure 6). Compared
to other datasets, 20 out of 38 genes of interests were retained, which is proportionally
the highest (52.6%). NEAT1 and MALAT1 are present and produce a major miRNA block.
However, in the ALS mRNA dataset, the miRNA block has direct interactions with genes
of interest. Moreover, the miRNA block also interacts with eight other lncRNAs (TSIX,
XIST, LINC00910, LINC00324, ERGIC3, KIFAP3, NUTM2A-AS1 and KCNQ1OT1) besides
NEAT1 and MALAT1.
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Magenta nodes represent mRNA, green nodes represent miRNA, orange nodes represent lncRNA
and gray nodes represent inactive or lowly expressed RNA. Wavy lines connect mRNA and miRNA,
dashed lines connect miRNA and lncRNA, backwards slash lines connect mRNA and lncRNA while
thin dotted lines represent inactive connections [9].
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Figure 6. The mRNA-miRNA-lncRNA network of the ALS gene dataset. Magenta nodes represent
mRNA, green nodes represent miRNA and orange nodes represent lncRNA. Wavy lines connect
mRNA and miRNA, dashed lines connect miRNA and lncRNA while backwards slash lines connect
mRNA and lncRNA.

The large miRNA block that forms whenever the lncRNAs NEAT1 and MALAT1 are
present warranted further investigation into whether it represents an underlying common-
ality between the analyzed disease or pharmacogenomics biomarker or if it is background
noise that arises from ncRNA analysis with a sufficient amount of ncRNA input. To this
end, we extracted all miRNA names that appear in these miRNA blocks for all presented
figures and searched for all mRNAs and proteins that interact with an lncRNA that in turn
interacts with at least two miRNA markers from the NEAT1-MALAT1 miRNA blocks. This
search would present us with genes affected by lncRNA that are governed by at least two
miRNAs from the NEAT1-MALAT1 miRNA block. The pruned network is presented in
Figure 7. Analyzed miRNAs and their interactors are summarized as lists in Table 1.

2.3. Gene Ontology Analysis

Following network pruning, genetic markers retained after mRNA-miRNA-lncRNA
network generation were expanded with their interactors on the gene–gene and protein–
protein level using the BioGRID database (version 4.4.230).

The pediatric IBD and IBD-like gene dataset revealed statistically significant enrich-
ment of GO terms negative regulation of myeloid leukocyte differentiation (p = 1.85 × 10−5)
and positive regulation of fibroblast proliferation (p = 4.11 × 10−5). The rheumatoid arthri-
tis pharmacogenomics dataset also revealed the GO term negative regulation of myeloid
leukocyte differentiation (p = 1.37 × 10−5) to be significantly enriched. The ALS mRNA
dataset revealed the GO terms granulocyte chemotaxis (p = 1.48 × 10−4) and macrophage
chemotaxis (p = 1.83 × 10−4) as well as several terms related to p53. Full gene ontology
results are contained in Supplementary Table S2.

The extended adult complex IBD and psoriasis pharmacogenomics datasets proved
too small for enrichment analysis, requiring manual evaluation of relevance to our study.
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Gene ontology analysis of proteins and mRNA involved with miRNA from the NEAT1-
MALAT1 block revealed only one significantly enriched GO term, mRNA cleavage and
polyadenylation specificity factor complex (p = 8.32 × 10−9).

Table 1. NEAT1-MALAT1 block miRNA and interactors.

miRNA

hsa-mir-744-3p, hsa-miR-340-5p, hsa-miR-323a-3p, hsa-miR-208b-3p, hsa-miR-208a-3p,
hsa-miR-138-2-3p, hsa-miR-1251, hsa-mir-98, hsa-miR-9-5p, hsa-mir-93-3p, hsa-miR-892c-3p,
hsa-miR-877-3p, hsa-miR-7-2-3p, hsa-miR-708-3p, hsa-miR-6893-3p, hsa-miR-6884-5p,
hsa-miR-6835-3p, hsa-miR-668-3p, hsa-miR-665, hsa-miR-655-3p, hsa-miR-6504-3p,
hsa-miR-6088, hsa-miR-590-3p, hsa-miR-5688, hsa-miR-5590-3p, hsa-miR-543,
hsa-miR-542-3p, hsa-miR-526b-3p, hsa-miR-520f, hsa-miR-520e, hsa-miR-520d-5p,
hsa-miR-520c-3p, hsa-miR-520b, hsa-miR-520a-5p, hsa-miR-519d, hsa-miR-5195-3p,
hsa-miR-506-3p, hsa-miR-502-5p, hsa-miR-501-3p, hsa-miR-495-3p, hsa-mir-494-3p,
hsa-miR-493-5p, hsa-miR-491-3p, hsa-miR-485-3p, hsa-miR-4770, hsa-miR-4735-5p,
hsa-miR-4676-3p, hsa-miR-455-3p, hsa-miR-452-3p, hsa-miR-4500, hsa-miR-449b-3p,
hsa-miR-449a, hsa-miR-4458, hsa-miR-4429, hsa-miR-4319, hsa-miR-4306, hsa-miR-429,
hsa-miR-4295, hsa-miR-4262, hsa-miR-425-5p, hsa-miR-424-5p, hsa-miR-423-5p,
hsa-miR-422a, hsa-mir-421, hsa-miR-410-3p, hsa-miR-409-5p, hsa-miR-384, hsa-miR-382-5p,
hsa-miR-381-3p, hsa-miR-379-3p, hsa-miR-378c, hsa-miR-378b, hsa-miR-378a-5p,
hsa-miR-377-3p, hsa-miR-376c-3p, hsa-miR-376b-3p, hsa-miR-376a-3p, hsa-miR-374c-5p,
hsa-miR-374b-3p, hsa-mir-374a-3p, hsa-miR-373-3p, hsa-miR-372, hsa-miR-371a-3p,
hsa-miR-370, hsa-miR-369-3p, hsa-miR-3681-3p, hsa-mir-367-3p, hsa-miR-365a-3p,
hsa-miR-363-5p, hsa-miR-362-5p, hsa-mir-34c-5p, hsa-mir-34a-3p, hsa-miR-33b-3p,
hsa-miR-33a-3p, hsa-miR-338-3p, hsa-miR-335-3p, hsa-mir-331-3p, hsa-miR-329-3p,
hsa-miR-328, hsa-miR-326, hsa-mir-32, hsa-mir-324-3p, hsa-miR-320d, hsa-miR-320c,
hsa-miR-320b, hsa-mir-320a, hsa-miR-3139, hsa-miR-3129-5p, hsa-miR-3118,
hsa-miR-30b-3p, hsa-miR-3064-3p, hsa-miR-302e, hsa-mir-302d-3p, hsa-mir-302b-3p,
hsa-mir-302a-3p, hsa-miR-301b, hsa-mir-301a-3p, hsa-miR-300, hsa-miR-29a-5p,
hsa-miR-299-3p, hsa-miR-296-3p, hsa-miR-23c, hsa-mir-23b-3p, hsa-miR-23a-3p,
hsa-miR-224-5p, hsa-miR-22-3p, hsa-mir-223-3p, hsa-mir-222, hsa-miR-221-3p,
hsa-miR-218-1-3p, hsa-miR-217, hsa-mir-216b, hsa-mir-216a-3p, hsa-miR-212-5p,
hsa-mir-206, hsa-miR-205-5p, hsa-miR-202-3p, hsa-mir-200c-3p, hsa-miR-200b-5p,
hsa-miR-200a-5p, hsa-mir-19a/19b, hsa-miR-199b-5p, hsa-miR-199a-5p, hsa-miR-195-3p,
hsa-mir-193b-3p, hsa-mir-193a-3p/193b, hsa-miR-18b-5p, hsa-miR-18a-3p, hsa-mir-186-3p,
hsa-miR-185-3p, hsa-miR-182-3p, hsa-mir-181d, hsa-mir-181c, hsa-mir-181b-3p,
hsa-mir-181a/181b/18, hsa-miR-16-1-3p, hsa-miR-155-3p, hsa-miR-154-3p, hsa-mir-150,
hsa-miR-149-3p, hsa-mir-148b, hsa-mir-148a, hsa-miR-146b-5p, hsa-miR-146a-3p,
hsa-miR-144-3p, hsa-miR-143-3p, hsa-mir-142-3p, hsa-miR-141-3p, hsa-miR-139-3p,
hsa-miR-136-3p, hsa-miR-135b-5p, hsa-miR-135a2, hsa-miR-134-5p, hsa-miR-133b,
hsa-miR-132-3p, hsa-mir-130a-3p, hsa-miR-129-2-3p, hsa-miR-129-5p, hsa-mir-128,
hsa-miR-125b-5p, hsa-mir-125a-3p, hsa-let-7i-5p, hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-7e-3p,
hsa-let-7d-3p, hsa-let-7c, hsa-let-7b-5p, hsa-let-7a-2, hsa-miR-1306-3p, hsa-miR-1271-3p,
hsa-miR-1224-3p, hsa-miR-532-3p, hsa-miR-499a-3p, hsa-miR-490-3p, hsa-miR-188-3p,
hsa-mir-19b-1-5p, hsa-miR-582-3p, hsa-miR-92b-3p, hsa-miR-497-3p, hsa-mir-20b-3p,
hsa-miR-330-3p, hsa-mir-106b-3p, hsa-miR-145-3p, hsa-miR-15b-5p, hsa-mir-1,
hsa-miR-30d-3p, hsa-mir-30c-1, hsa-miR-106a-3p, hsa-miR-96-5p, hsa-mir-92a-1-5p,
hsa-mir-30a/30b/30c/, hsa-mir-20a/106b, hsa-mir-17/20b/93/51, hsa-miR-4644,
hsa-miR-670, hsa-miR-613, hsa-miR-544a

Interacting lncRNA

AC009133.12, EPB41L4A-AS1, GAS5, H1FX-AS1, JPX, LENG8-AS1, LINC00324, OIP5-AS1,
PCBP1-AS1, RP11-473I1.9, SLC25A5-AS1, SMAD5-AS1, SNHG1, SNHG10, SNHG11,
SNHG3, SNHG5, SNHG6, SNHG7, SNHG9, XIST, SNHG16, SNHG15, DHRS4-AS1, ZFAS1,
HOXB-AS1, ZNF503-AS2, MAPKAPK5-AS1, LINC00662, NDUFB2-AS1, ADPGK-AS1,
SNHG17, IQCH-AS1, PROSER2-AS1, HOXA-AS2, LINC00240, LINC00910, LIMD1-AS1,
TMPO-AS1, AC092159.2, LINC00511, STARD4-AS1, CIRBP-AS1, TINCR, CRNDE, SNHG11,
SNORD109A

Interacting mRNA or proteins DDX3X, DNMT1, CDK6, CPSF7, CPSF6, CSTF2, RBM6, UPF1
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3. Discussion

Extending our existing dataset with ncRNA data has shown interesting new results,
but also highlighted limitations and future considerations for the development of algo-
rithms and software integrating ncRNA databases with gene ontology.

The most significant results have been obtained with the psoriasis drug response
database. Based on absence in the literature and little supporting data in the lncRNA
database (NPInter v5.0 http://bigdata.ibp.ac.cn/npinter5/, accessed 14 February 2024),
we pruned the RP11-473M20.16 lncRNA in the resulting network. NEAT1 is through to
have a role in skin inflammation processes [10] and epidermal differentiation [11], but it
is also reported to be lowly regulated. In our psoriasis hypothesis, we assume NEAT1 to
be down-regulated while MAP3K1-2 and AKAP13-AS1 are normally expressed. Moving
from the lncRNA level to the miRNA level (see Figure 5), this leads to both hsa-miR-485-3p
and hsa-miR-371a-3p lacking lncRNA-based inhibition from NEAT1 while the remaining
five miRNAs are inhibited by either MAP3K1-2 or AKAP13-AS1. Finally, at the mRNA
level, TNFAIP3, SHOC2 and HTR2A are assumed to be affected by miRNA while MAP3K14,
ERAP1 and SPEN are thought to be uninhibited.

TNFAIP3 is a known pathogenic gene in psoriasis [12] and low TNFAIP3 expression
in psoriatic skin is known to correlate with disease severity [13]. Deleterious mutations in
SHOC2 are known to cause Noonan syndrome [14], which is characterized by lentigines, a
benign hyperplasia of melanocytes. HTR2A is more commonly investigated in association
with SSRI response; however, it was also shown that HTR2A has a role in melanogenesis in
melanoma cells and zebrafish [15]. MAP3K14 is an NF-κB-inducing kinase and NF-κB has

http://bigdata.ibp.ac.cn/npinter5/
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been long known to have a key role in inflammatory processes in psoriasis [16]. ERAP1 has
been shown to regulate anti-melanocyte antibody production in psoriasis [17]. Finally, little
is known about the role of SPEN (Msx2-interacting protein) in psoriasis. However, SPEN
interacts with MSX2, which has been previously highlighted with melanoma [18,19]. In
summary, the six genes highlighted in the psoriasis network are involved in skin inflamma-
tion but curiously also in melanogenesis or other melanocyte processes. Our hypothesis
is consistent with clinical observations of hyperpigmentation (lentigines) following adal-
imumab [20] and ustekinumab [21,22] treatment. We suggest that restoration of normal
skin function leads to temporary hyperpigmentation following resolution of pathogenic
psoriasis skin processes.

Melanogenesis in psoriasis has been investigated in the context of pathogenesis, but
no biomarkers have directly linked it to psoriasis response to biological drugs. Our findings
suggest that changes in melanogenesis are rooted in miRNA-lncRNA regulatory shifts and
should be further investigated in the context of pharmacogenomics and drug response.
Restoration of melanogenesis or targeting processes that inhibit melanin production also
appear as a potentially valid therapeutic target. Since restoration of melanogenesis in
psoriasis lesions also appears to be consistent with response to drug treatment, the melano-
genesis mRNA-miRNA-lncRNA network may be a promising new area for drug response
biomarker discovery. We suggest further functional testing of melanogenesis in psoriasis
lesions to investigate the predictive merit of melanogenesis-related mRNA, miRNA and
lncRNA in predicting response to biological drugs. In particular, we suggest experimen-
tal validation of miRNAs hsa-miR-485-3p and hsa-miR-371a-3p and lncRNAs MAP3K14,
ERAP1 and SPEN in skin lesions of psoriasis patients treated with biological drugs. This
may lead to the development of functional testing, which may prove more reliable than a
panel of RNA biomarkers in determining responders and non-responders before the initia-
tion of treatment with biological drugs, thus ensuring higher endpoint clinical remission
rates, lower incidence of biological drug side effects and a reduced burden of health funds.

Closer investigation of genes that remain in the mRNA-miRNA-lncRNA network may
reveal more interesting leads. SLC9A3 is retained within both the pediatric monogenic and
the adult complex IBD list of biomarkers. SLC9A3 encodes solute carrier family 9 member
A3 and mutations within the gene are causal for the congenital secretory sodium diarrhea 8,
which may later manifest as IBD in children and young adults [23]. In complex adult IBD,
SLC9A3 is the candidate gene for the risk loci led by the SNP rs11739663 [24]. However,
rs11739663 is intergenic and is not located within any known regulatory site of SLC9A3, thus
presenting no direct causal relationship, unlike the causal variants for the pediatric IBD-like
congenital secretory sodium diarrhea 8. Since impaired sodium transport has been long
known to play a role in IBD pathogenesis [25], this finding might further elucidate how the
intergenic variant in complex adult IBD causes pathogenesis. Rather than having a direct
impact on mRNA expression, it may act via miRNA- and lncRNA-driven dysregulation
of SLC9A3 mRNA. If this is true, then NEAT1, MALAT1 as well as the miRNA block that
is governed by both lncRNAs may be relevant to sodium transport impairment in adult
complex IBD.

It has been shown that KLC2, which encodes kinesin light chain 2, is a cellular target of
GSK3β and is thus capable of regulating synaptic plasticity, predominantly via trafficking of
alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors [26]. GSK3β
inhibitors have been successfully applied in the treatment of neurodegeneration and central
nerve system (CNS)-related disorders [27]. Although lithium, the first discovered GSK3β
inhibitor, has shown early promise in ALS by delaying disease progression [28], later
clinical trials have not been able to replicate this effect. Lithium use in ALS has insignificant
effects [29] and its efficacy may be highly dependent on the genetic background of indi-
vidual patients [30]. Nevertheless, GSK3β has been long known to be up-regulated in the
brain and spinal cord of ALS patients [31,32] and contribute to pathogenesis, specifically
by affecting neuronal metabolic integrity [33]. We speculate that in addition to aberrant
action of GSK3β on KLC2, NEAT1 and MALAT1 lncRNAs and the miRNA block governed
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by them may cause dysregulation of KLC2 in the brain and spinal cord, possibly leading to
deleterious chances synaptic plasticity.

Fused in sarcoma (FUS) is a DNA/RNA binding protein involved in RNA metabolism
and DNA repair. To this end, it is not surprising that FUS has a very high number of
links to several lncRNAs and miRNAs within the ALS mRNA-miRNA-lncRNA network,
as presented in Figure 6. FUS mutations are causal for highly aggressive variants of
ALS named FUS-ALS [34]. We propose that in addition to missense and indel variants
leading to FUS-ALS, deleterious changes in the miRNA and lncRNA landscape may lead
to dysfunction of FUS and subsequent ALS pathology even with a healthy variant of the
FUS gene.

Unfortunately, it is exceedingly difficult to construct similar hypotheses for other
datasets. The main difficulty is the NEAT1/MALAT1 miRNA block, which is both crucial
to network construction and also a major hurdle to clarifying results. Analysis of the
NEAT1-MALAT1 block has only revealed one significant GO term. The term polyadeny-
lation specificity factor complex is significant due to the presence of the genes CPSF6,
CPSF7 and CSTF2 in the analyzed list of proteins and mRNAs that are associated with
the NEAT1-MALAT1 miRNA block. CSTF2 is cleavage stimulation factor subunit 2 while
CPSF6 and CPSF7 are cleavage and polyadenylation specificity factor subunit 6 and 7,
respectively. All three genes are involved in a complex with multiple subunits that stim-
ulates a nonspecific polymerase with ordinarily low activity in order to elongate RNAs
that bear a poly(A) signal by binding to the conventional AAUAAA hexamer and U-rich
upstream sequence regions on the pre-mRNA. These three genes have been implicated in
different cancer-related traits, such as breast cancer vulnerability [35], lung adenocarcinoma
proliferation, apoptosis and tumorigenicity [36,37] and pancreatic ductal adenocarcinoma
subtypes [38]. However, to our best knowledge, they have not yet been associated with
either pediatric or adult inflammatory bowel disease, pharmacogenomic markers for bio-
logical drugs or ALS. We hypothesize that the NEAT1/MALAT1 miRNA block likely has a
role in all presented datasets, but it is unlikely to be a key regulatory block in all of them.
NEAT1 has been implicated in IBD intestinal inflammation by mediating TNFRSF1B [39]
and exosome-mediated polarization of macrophages, thereby modulating the intestinal
epithelial barrier [40]. Meanwhile, MALAT1 has been linked to the ulcerative colitis clinical
subtype of IBD [41]. Similarly, both NEAT1 and MALAT1 have been suggested as clinical
outcome biomarkers in rheumatoid arthritis [42]. Nevertheless, within the context of the
mRNA-miRNA-lncRNA analysis presented in this article, we believe it is more likely
background noise in the context of ncRNA datasets. For future research, we suggest an
investigation to identify abundant and very common miRNAs and lncRNAs which often
appear as background to compensate for the NEAT1/MALAT1 miRNA block and similar
regulatory hotspots, such as XIST identified in the adult complex IBD loci dataset. For
future algorithms, some weighting system based on expression profiles is also required to
compensate for varying expression in different tissues and diseases. Alternatively, datasets
need to be further curated and trimmed down to a size similar to our psoriasis pharmacoge-
nomics dataset, either using gene ontology to filter genes covered by significantly enriched
GO terms or through additional levels of evidence (ex. transcriptomic or proteomic data).

Another limitation of our study stems from its in silico design. We encourage future
developments of this proposed work to include experimental data to promptly validate
significant ncRNA. Future developments of the proposed workflow may also include
algorithms to further narrow down the ncRNA network by checking whether an RNA
biomarker is up- or down-regulated. In addition, ncRNA network analysis would benefit
from analysis with high computational power and advanced algorithms that are able to take
advantage of computed interaction strength or likelihood. Furthermore, the NPInter V5.0
database is to our best knowledge one of the most extensive ncRNA-ncRNA interaction
databases, but it still contains a lot of high-confidence, inferred interactions that have yet to
be experimentally validated.
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Gene ontology results, even with extended gene lists using BioGRID, are sparce. The
GO term negative regulation of myeloid leukocyte differentiation is present in both the
pediatric IBD and IBD-like gene dataset and also rheumatoid arthritis pharmacogenomics.
In the context of pediatric IBD, it refers to our previous findings of immunodeficiency,
where the immune system is unable to initiate an appropriate response through leukocyte
differentiation. In the context of rheumatoid arthritis response to biological drugs, it is
instead associated with aberrant differentiation in non-responders or restoration thereof in
responders to biological drugs.

Our study highlights that ncRNA databases can be used to further elucidate new
processes in biomarker datasets and produce working hypotheses for targeted studies
downstream. Although the emerging field faces obstacles such as appropriately dealing
with miRNA and lncRNA with abundant interactions and a lack of functional annotation
integration, properly developed protocols or small curated datasets are already able to
overcome these shortcomings. By overcoming these challenges, we can unlock new insights
into disease mechanisms, identify potential therapeutic targets, and ultimately improve
patient care.

4. Materials and Methods
4.1. Interaction Databases

To date, the most comprehensive ncRNA database is NPInter V5.0 [43], which contains
a wealth of experimental confirmed interactions for several kinds of ncRNAs, including
lncRNA, circRNA, miRNA, snoRNA, snRNA and RNA-DNA interactions. We used the
offline version of the NPInter V5.0 Experimental Validated Interactions file, accessed on
14 February 2024.

We limited our scope of search to associated miRNA and lncRNA while broadening
the definition of genetic biomarkers as both mRNA and proteins. Moreover, we limited the
scope of our dataset to all experimental validated interactions. Filtering was performed in
R 4.1.3. using default R commands. Furthermore, we defined a filtering threshold to reduce
datasets to processable sizes. If the number of occurrences for any unique biomarker is
below the threshold, it is expunged (at threshold 3, unique markers that occur three times
or more are retained).

In this study, we used the BioGRID database [44] to obtain gene–gene and protein–
protein interactions for gene network interactor analysis in GO tools. Data were collected
using the R package biogridr [45].

4.2. Biomarker Data

In this study, we included sets of genetic data which were already included in our
previous publications. Thus, we are able to comment on the significance and relevance of
the results within the frame of existing peer-reviewed works. Dataset names and summaries
are listed in Table 2. Full datasets are contained in Table S1.

Table 2. Included dataset characteristics.

Name Type Biomarker Type (Source) Number of Markers Citation

Pediatric IBD and IBD-like genes Genetics DNA (PBMC) 84 [46]

Adult complex IBD loci Genetics DNA (PBMC) 164 [46]

Rheumatoid arthritis Pharmacogenomics DNA and RNA (PBMC)
Proteins (PBMC, blood serum) 390 [47]

Psoriasis Pharmacogenomics DNA (PBMC) 64 [48]

Amyotrophic lateral sclerosis mRNA-miRNA-
lncRNA network RNA (spinal cord tissue) 38 [49]
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To test and demonstrate the new methodology on purely genetic/genomic data,
we included a dataset containing causal genes for pediatric monogenic IBD and IBD-like
syndromes and also the control dataset from the same publication containing adult complex
IBD genetic risk loci [46].

Similarly, for pharmacogenomic data, we included two previously analyzed datasets.
The first dataset contains lists of DNA, RNA and protein response biomarkers for anti-TNF
therapy in rheumatoid arthritis [47]. The second dataset contains lists with DNA, RNA and
protein biomarkers in psoriasis for all biological drugs indicated in psoriasis [48].

Finally, we included data from a study comparing potential overlap between known
amyotrophic lateral sclerosis (ALS) genes with evolutionary-equivalent neuroregeneration
genes identified in young Monodelphis domestica. The dataset is based on an existing curated
mRNA-miRNA-lncRNA cluster [49].

4.3. Gene Ontology

Gene network curating and image generation and gene ontology analysis were per-
formed using the software package CytoScape (v3.8.2., CytoScape Team) [50] with the
integrated application ClueGO (v2.5.8, Laboratory of Integrative Cancer Immunology
(Team 15), Paris, France) [51]. Gene sets, referred to as clusters within the ClueGO applica-
tion, were constructed from genes retained after ncRNA network creation and subsequent
connection number thresholding. The gene ontology analysis of mRNA-miRNA-lncRNA
was defined as the results from retained genes corresponding to the mRNA in the axis. Sta-
tistical significance is set as p < 0.05 following integrated Bonferroni step-down correction
in the ClueGO software package. ClueGO analysis was performed using the following
parameters and selected options:

Ontology/pathways selected:

• Biological Process (7 February 2024);
• Cellular Component (7 February 2024);
• Molecular Function (7 February 2024).

Evidence selected: only All_Experimental.

5. Conclusions

Introducing gene ontology analysis to the world of ncRNA will be required in the
future as disease pathogenesis models move further away from protein-based hypotheses
to ncRNA-based interactive networks of dysregulation. We present a proposed workflow
to take advantage of existing databases and showcase a positive example of our method
with melanogenesis as predictive biological process in psoriasis pharmacogenomics or
as basis for the psoriasis endotype in relation to drug response. We also highlighted the
uncertain significance of NEAT1 and MALAT1 as well as the block of miRNA they are
associated with. As such, we encourage further development of ncRNA-integrated gene
ontology analysis of mRNA-miRNA-lncRNA networks.
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