~ International Journal of
Molecular Sciences

Review

NMDARs in Alzheimer’s Disease: Between Synaptic and
Extrasynaptic Membranes

Sergio Escamilla 1'>3*, Javier Saez-Valero

check for
updates

Citation: Escamilla, S.; Sdez-Valero, J.;
Cuchillo-Ibdfiez, I. NMDARSs in
Alzheimer’s Disease: Between
Synaptic and Extrasynaptic
Membranes. Int. J. Mol. Sci. 2024, 25,
10220. https://doi.org/10.3390/
ijms251810220

Academic Editor: Alberto

Pérez-Mediavilla

Received: 2 September 2024
Revised: 16 September 2024
Accepted: 19 September 2024
Published: 23 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2,3 1,2,3,%

and Inmaculada Cuchillo-Ibaiez

Instituto de Neurociencias, Universidad Miguel Herndndez-Consejo Superior de Investigaciones
Cientificas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain; j.saez@umh.es

Centro de Investigacion Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED),
03550 Sant Joan d’Alacant, Spain

3 Instituto de Investigacion Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain

*  Correspondence: sescamilla@umbh.es (S.E.); icuchillo@umbh.es (I.C.-L.)

Abstract: N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in
synaptic communication and plasticity. The activation of synaptic NMDARSs initiates plasticity and
stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death
underlying a potential mechanism of neurodegeneration occurring in Alzheimer’s disease (AD).
The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter
contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review
the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell
membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding
the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models
and in the brains of AD patients will also be reviewed.

Keywords: NMDAR; GluN2B; GluN2A; GluN1; excitotoxicity; extrasynaptic NMDAR; Alzheimer’s
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1. Structure, Function, and Subcellular Localization of NMDARs

N-methyl-D-aspartate receptors (NMDARs) are glutamate-binding calcium-gating
channels involved in learning and memory processes [1-3]. NMDARs form tetrameric
complexes assembled with two compulsory GluN1 subunits and two homomeric or het-
eromeric GluN2 (2A-2D) or GluN3 (3A-3B) subunits [4-6]. The four GluN2 subunits are
major determinants of the heterogeneity of NMDAR function [4]. NMDARs are present
in the whole central nervous system (CNS), with the highest densities in cortical and
hippocampal structures [7,8]. The expression of NMDAR subunits, especially GluN2B,
varies across different brain areas [9]. NMDAR density follows a gradient matching the
cortical hierarchy, with neurons involved in more complex functions expressing more
NMDARSs [10]. The function of native NMDARSs depends on their channel properties, abun-
dance, and subcellular distribution between synaptic and extrasynaptic membranes [5,11].
This distribution defines their chemical micro-environment, its activation mode (tonic vs.
phasic), and its interaction with different intracellular signaling molecules [12].

To fulfill their biological roles, most NMDARs are located at synaptic membranes,
within the postsynaptic density (PSD) in neurons, being defined as synaptic NMDARs
(SynNMDARs) [12]; however, NMDARs can also be located outside the synapses at a
lower density than SynNMDARs [13], thus being defined as extrasynaptic NMDARs
(ExsynNMDARSs). This criterion usually includes those NMDARs in the perisynaptic space,
such as the dendritic spine neck and places further from synapses in the dendritic shaft,
the soma, or the axon [11-14]. Relying on morphological criteria, receptors are considered
extrasynaptic when located at 100 nm or more from the PSD [12].
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SynNMDARs and ExsynNMDARs display distinct roles in signaling pathways and
gene regulation. SynNMDARs are important for LTP and prosurvival signaling [15]. Their
activation produces phosphorylation and activation of the extracellular signal-regulated
kinase (ERK) [16], phosphorylation of cAMP response element-binding protein (CREB) and
neuroprotective effects [17]. On the other hand, the activation of ExsynNMDARs triggers
the opposite mechanisms, as de novo long-term depression (LTD) [18,19], ERK dephospho-
rylation and inactivation, and shutting off of the CREB pathway. Pathological activation of
ExsynNMDARs drives neuronal death through a process called excitotoxicity [17]. This
process acts through mechanisms such as synapto-nuclear communication [20,21] and
inversion of mitochondrial potential [22-24] and results in altered calcium influx [22,25,26].

In the adult human and mouse cortex, the most abundant subunits, along with GluN1,
are GluN2A, GluN2B [4,27], and GIuN3A, GluN3A being expressed more during the
post-natal period [6,28]. GIuN2A and GluN2B have different kinetics and biochemical
properties [29,30] and different protein partners [31]. GluN2B is thought to be more mobile
across membrane localizations than GluN2A [32]. Still, both GIuN2A and GIuN2B are
present in synaptic and extrasynaptic membranes [13,33-35], with a complex and dynamic
interplay between these two subcellular localizations. Furthermore, the presence of the
GluN2A subunit increases NMDAR stability at synapses [15,22,32]. The consensus is
that GIluN2A and GIluN2B are mainly synaptic [34], while GluN3A is mainly associated
with the perisynaptic site of the PSD [28,36]. Remarkably, extrasynaptic GluN2A and
GluN2B are related to excitotoxicity [35,37-39]. Therefore, changes in the distribution of
NMDAR subunits can affect synaptic stability and play a role in various neurodegenerative
diseases [40].

2. How to Distinguish SynNMDARs and ExsynNMDARs

Approaches to analyzing the synaptic/extrasynaptic distribution of NMDARs are
based on imaging analysis, electrophysiological studies using pharmacologic tools, and
biochemical fractionation. Imaging tools such as electron micrographs and confocal or
high-resolution microscopy identify SynNMDARs when they colocalize with a protein
present in the PSD, typically PSD95 [41,42], or with the presynaptic proteins synap-
tophysin or synapsin 1 [43,44]. Specific pharmacological drugs distinguish synaptic
and extrasynaptic NMDARs based on their capacity to block preferentially one over
the other. For instance, MK-801 blocks SynNMDARs preferentially [17,45], while me-
mantine blocks ExsynNMDARs preferentially [46,47]. Other drugs act on specific sub-
units, such as ifenprodil, that block GluN2B preferentially [44,48], and this is useful in
electrophysiological characterization.

Biochemical fractionation protocols can isolate SynNMDARs and ExsynNMDARs
based on the differential solubility of the plasma membranes where they are located. The
PSD-containing membranes are very dense and contain a meshwork of proteins linking
synaptic receptors to signaling molecules and the cytoskeleton [49]. Consequently, these
membranes are insoluble in solutions with low detergent concentrations and generate a
pellet after centrifugation, mainly composed of the PSD, and thus, it is considered the
synaptic fraction. Conversely, those plasmatic membranes not attached to the PSD are
highly soluble in detergent solutions and remain in the supernatant after centrifugation,
representing the extrasynaptic fraction [50,51]. Different biochemical fractionation protocols
exist for PSD isolation [52-55], mainly designed and tested for fresh mice brains.

The Conception of ExsynNMDARs

SynNMDARs are primarily found in the postsynaptic membranes of glutamatergic
excitatory neurons. However, they have also been identified in inhibitory GABAergic
interneurons in mice [56-60]. In contrast, the term “ExsynNMDARs” is ambiguous and
not well established. Typically, ExsynNMDARSs refer to neuronal NMDARs located in the
plasma membrane outside the PSD, dendritic shaft, and soma. This category may also
encompass presynaptic NMDARs, which have distinct synaptic transmission and plasticity
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functions, although their function is less explored [14,59,61]. This raises concerns about
grouping specific NMDARs located within and outside of synapses under the blanket term
of ExsynNMDARs (Figure 1).
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Figure 1. Classification of neuronal NMDARSs as synaptic or extrasynaptic according to the technique
of choice. Schematic illustration of a glutamatergic synapse, including the pre (blue)- and postsynaptic
(orange) terminals. Different populations of NMDARs are represented: (1) presynaptic, (2) those
located in the PSD, and (3) extrasynaptic. Synaptic NMDARs include those in the PSD and the
presynaptic ones when the technique of choice is confocal microscopy, especially when the synaptic
marker is a presynaptic protein, such as synaptophysin and syntaxin 1. However, when the technique
is biochemical fractionation, presynaptic NMDARs will reside in the extrasynaptic fraction, and the
synaptic fraction will be composed mainly of the PSD. In addition, electron microscopy allows us to
distinguish pre- from postsynaptic terminals and, thus, presynaptic NMDARs and those in the PSD.
Created in BioRender.com.

Opverall, neuronal ExsynNMDARs may have specific functions that differ from synap-
tic NMDARs. ExsynNMDARs may be in extrasynaptic membranes because they are in
transit, either being stored temporarily or actively moving to synapses from exocytosis
sites or synapses to sites of endocytosis [62,63]. However, they could reside permanently
in extrasynaptic membranes organized in supramolecular structures like their synaptic
counterparts. Most of these extrasynaptic sites are points of contact with adjacent processes,
including glia, axons, synaptic terminals, and dendrites [13,64].

Furthermore, it is important to note that ExsynNMDARs may also refer to non-neuronal
NMDARSs, expressed by astrocytes [65-67], microglia [68-70], oligodendrocytes [71], and
endothelial cells [72,73].

In immunofluorescence studies, “synaptic NMDARs” refer to the population of NM-
DARSs in the PSD that typically colocalizes with PSD95 [41,74,75]. However, other post-
synaptic markers such as Homer [28,76-79] or Shank [77] are also used. Another typical
criterion for defining SynNMDARSs is the colocalization with a presynaptic marker, usually
synaptophysin [43,44], which would include presynaptic NMDARs as SynNMDARs. To
standardize the protocol for measuring synaptic and extrasynaptic NMDARs, the best
approach to identify SynNMDARs would likely be to use a combination of pre- and post-
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synaptic markers [34,80], since both pre- and postsynaptic terminals are needed to build
a synapse.

It is not always clear whether ExsynNMDAR:s are free or part of protein complexes.
Some candidates associated with neuronal ExsynNMDARs are protein phosphatase 1
(PP1) [74], adhesion proteins such as cadherin and catenin [13], the C-terminus of GIPC (G
a-interacting protein) [81], or membrane-associated guanylate kinases (MAGUKS) [11] such
as SAP102 [62,82] or SAP97 [83]. These proteins may not be exclusively confined to a single
membrane compartment (synaptic or extrasynaptic), making it challenging to distinguish
between synaptic and extrasynaptic NMDARs [13,82,83]. In this line, PSD95, essentially
postsynaptic, was found by immunofluorescence and electron-microscopy immunogold
images in extrasynaptic membranes in clusters containing NMDARs [13]. This suggests that
neuronal NMDARs attached to PSD95 could not be considered exclusively as SynNMDAR:s,
and some overestimation of this population could occur when using imaging techniques.

When immunofluorescence is the technique of choice, the type of biological sample
determines the necessary precautions to prevent mixing NMDARs from different cell types.
In pure neuronal cultures, neuronal ExsynNMDARs will be those that do not colocalize
with synaptic markers since there are no other cell types. However, in cultures containing
non-neuronal cells (e.g., mixed neuronal and astrocytic cultures), brain tissue slices, or
brain organoids, ExsynNMDARs will correspond to different populations. NMDARs that
do not colocalize with synaptic markers but do with neuron-specific cytoskeletal markers,
such as class III beta-tubulin (TUJ1) or MAP2, will correspond to neuronal ExsynNMDARSs,
whereas NMDARs that colocalize with markers, such as GFAP or S100( (astrocytes) or ibal
(microglia), will correspond to non-neuronal ExsynNMDARs (astrocytic and microglial
NMDAREs, respectively) (Figure 2). When biochemical fractionation is the technique of
choice and a piece of brain is the starting material, the extrasynaptic fraction will con-
tain NMDARs from different cell types besides neurons, such as astrocytes, microglia,
oligodendrocytes, and endothelial cells [84].
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Figure 2. Classification of NMDARSs as synaptic or extrasynaptic according to the technique of choice
and cell type. The schematic table contains columns for the technique of choice, the criterion to define
an NMDAR as synaptic, and which NMDAR populations will be considered as SynNMDARs or
ExsynNMDARs attending to subcellular localization or cell type origin. Created in BioRender.com.

Finally, specific blockers such as MK-801 and memantine are used to discriminate
the activity of neuronal SynNMDARs and ExsynNMDARSs, but these drugs also block
ExsynNMDARs from astrocytes [65,85,86] and microglia [68,69,86,87], highlighting the
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need for precise characterization of the ExsynNMDAR populations. Electron-microscopy
images can discriminate between presynaptic and postsynaptic NMDARs. This technique
has shown the presence of presynaptic NMDARs at rat cortical presynaptic terminals,
where immunostaining was sparse and substantially less intense than postsynaptic stain-
ing [61]. Cellular fractionation is another tool for isolating presynaptic from postsynaptic
NMDARs [84].

When the sample includes different cell types, such as those in brain slices, cerebral
organoids, and in vitro co-cultures, it is important to consider that NMDARs are expressed
not only by neurons but also by astrocytes, microglia, oligodendrocytes, and endothelial
cells. Depending on the technique of choice, the NMDARSs considered synaptic or extrasy-
naptic will differ. Biochemical fractionation will isolate the PSD. Thus, SynNMDARs will be
those in the PSD, and the ExsynNMDARs will be the rest. Electron microscopy allows the
identification of the PSD. Thus, it will be able to consider the NMDARs in the PSD, the presy-
naptic and the extrasynaptic NMDARs independently. Immunofluorescence-microscopy
criteria rely on the colocalization of NMDARs with either synaptic or extrasynaptic proteins.
The most used postsynaptic marker is PSD95, which is considered to reside exclusively in
the PSD (even though it has been argued that PSD95 could also be present in extrasynaptic
membranes [13]). However, the pre- and postsynaptic terminals are so close to each other
that they will colocalize, meaning that immunostaining from presynaptic NMDARs and
those NMDARSs in the PSD will be mixed, being both populations will be considered as
SynNMDARs. When the choice is a presynaptic marker (usually synaptophysin or syn-
taxin1), the result will be similar, since NMDARs will colocalize with those in the PSD and
presynaptic NMDARSs.

3. NMDAR Distribution in Alzheimer’s Disease

It is assumed that an imbalance between SynNMDAR and ExsynNMDAR activation
could be part of the etiology of neurodegenerative diseases such as AD [36,88-90], where
the homeostasis of glutamate is dysregulated [91-93]. However, there is relatively little
information about alterations in the distribution of NMDARs in synaptic and extrasynaptic
membranes in the brains of individuals with AD. One of the few drugs used in AD therapy,
memantine, is an open-channel blocker of ExsynNMDARs [46,47,94,95]. Memantine is
currently used in combination with acetylcholinesterase inhibitors [96], and despite the
clinical effects being controversial still [97], the data in preclinical studies suggest that it
has a positive impact on improving AD brain neuropathology [98].

Chronic activation of ExsynNMDARs could be a contributing effector of AD [36,99-101].
In vitro and in vivo studies suggest an excessive release of glutamate from astrocytes in
AD activates ExsynNMDARs in neurons [102]. Moreover, the activation of ExsynNM-
DARs increases the production of the 3-amyloid peptide (Af) [103] and increases the
expression [41,104,105] and phosphorylation [102] of tau, the main hallmarks of AD. In
this context, it has been reported that pharmacological inhibition of GluN2B ameliorates
tau pathology [104-106]. On the contrary, stimulation of SynNMDARSs increases the non-
amyloidogenic processing of APP by a-secretase, thus decreasing the release of Ap [107].

AD is usually modeled in vitro and in vivo using transgenic mice over-expressing
human APP or by adding A3 peptides [41,43,108], but tau pathology can also be mod-
eled [109,110]. Tau is a cytoskeleton protein mainly present in the axon but also in the
dendritic compartment [111]. Several studies show a relation between tau and NMDARs
through the stabilization of NMDARs at the PSD [112] and, more specifically, regulating
ExsynNMDAR lateral diffusion. However, the possible alteration in the NMDAR distri-
bution in tau models of AD has not been fully explored. We will independently review
the impact of these two pathological mechanisms on the distribution of SynNMDARs
and ExsynNMDARs.
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3.1. Distribution of SynNMDARs and ExsynNMDARs in Animal Models of AD
3.1.1. Distribution of SynNMDARs and ExsynNMDARs in Tauopathy Mice Models

Levels of ExsynNMDAR subunits have been analyzed in the AD mice model express-
ing P301S, a human mutant tau that leads to the widespread neurofibrillary tangles of
phospho-tau, resembling the neurofibrillary tangles found in the brains of patients with
AD. In these mice, the subcellular localization of GIuN1 has been analyzed using electron
micrographs of the hippocampus [113]. In this study, synaptic GluN1 in excitatory synapses
and interneuron dendrites was significantly reduced in P301S mice, while extrasynaptic
GluN1 increased in interneuron dendrites, with respect to wild-type mice. This differential
distribution of synaptic versus extrasynaptic NMDARs supports the notion that the pro-
gressive accumulation of phospho-tau is associated with changes in NMDAR distribution
since these alterations are observed at 10 months old when pathology is present, but not at
3 months old. In agreement, our recent analysis of NMDAR subunit distribution in this AD
model, using a subcellular fractionation protocol, also resulted in lower levels of synaptic
GluN1 and GIluN2B and also lower levels of extrasynaptic GIuN3A, with respect to those
in wild-type mice [84].

In another model of tauopathy, the rTg4510 mouse, which also expresses P301L human
tau associated with FTDP-17 [114], the authors of a study reported that human tau and
mutant P301L tau are enriched in dendritic spines of 1Tg4510 compared to control mice. In
parallel, the synaptic expression of GluN1 and GluN2/3 was lower in rTgP301L mice.

These studies with tau mice models indicate that tau phosphorylation can play a role
in NMDAR distribution, probably through tau mislocalization to dendritic spines, rich
in F-actin [115], and lead to an impaired intracellular sorting and trafficking of synaptic
proteins [116], including NMDARSs.

Accordingly, it has been hypothesized that tau hyperphosphorylation could lead to
increased levels of NMDARSs in the extrasynaptic membranes. In a recent study, researchers
reached these conclusions by using crmp1 KO mice [117]. CRMP1 is a protein that regulates
F-actin depolymerization and is associated with synaptic plasticity mechanisms [118,119].
To identify NMDAR distribution, they used a fractionation protocol with PSD95 as a
synaptic marker. They found in the crmpl KO mice increased ExsynNMDAR subunit levels,
accompanied by increased levels of phosphorylated tau, and claimed that CRPM1 and tau
malfunction could lead to F-actin depolymerization in the dendritic spine and concomitant
increase in ExsynNMDARSs.

The effect of tau on NMDAR distribution was also tested in tau-KO mice [120]. The
authors of a study analyzed, by immunohistochemistry, the association of GluN2B-Y1336
phosphorylation (phosphorylation that has been associated mainly with extrasynaptic
localization [121]) with extrasynaptic GluN2B subunits. They observed that the absence of
tau leads to a decrease in functional ExsynNMDARs in the hippocampus and proposed that
tau is involved in NMDAR trafficking through actin depolymerization in the spine [122] as
a possible mechanism that regulates NMDAR lateral diffusion.

In the same line of evidence, in mice primary hippocampal neurons treated with
tau derived from the brains of patients with AD, GIuN2B was translocated from the
synapse to extrasynaptic membranes, identified by imaging colocalization with PSD95 or
by biochemical fractionation [41]. Authors pointed out that, in these cultures, tau derived
from AD was able to increase Casein Kinase 2 (CK2), which phosphorylates GIluN2B in
serine 1480, detaching this subunit from PSD95. This enhances the probability of GluN2B
of leaving the synapse by either lateral diffusion or by endocytosis [75,80]. Interestingly,
the levels of CK2 are increased in the hippocampus of patients with AD [123] but not in
other tauopathies.

Together, these data indicate that the tauopathy that develops in the brains of individ-
uals with AD could promote the translocation of NMDAR subunits from the synaptic to
the extrasynaptic membranes.
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3.1.2. Distribution of SynNMDARs and ExsynNMDARs in A3-Treated Cultures and
Mice Models

Ap is related to spine loss by reducing SynNMDAR levels [124]. A pioneering study
in cultured cortical neurons showed that A3 enhances the activity of the phosphatase
STEP61, which dephosphorylates GIuN2B at Tyr1472, inducing its endocytosis through
clathrin adaptor proteins [43], while extrasynaptic and total NMDARs levels remained
unchanged. In agreement, in mice hippocampal slices, a combination of current blockage by
MK-801, biochemical fractionation, and confocal colocalization with synapsin determined
that prolonged exposure to soluble Af3 oligomers (hours), but not brief exposure (minutes),
decreases synaptic GIluN2B while extrasynaptic GluN2B remains unaffected [44].

Most of the in vitro studies that evaluate AR effects on NMDAR levels in murine
hippocampal or cortical cultures do not discriminate between SynNMDARs and ExsynN-
MDARs and, instead, evaluate NMDAR total levels or the surface expression of NMDAR
subunits. These studies describe that A reduces the surface expression of GluN1 and
GluN2B [48,53,125,126], although the total levels do not change, and causes a reduction
in the number of GluN2A-positive dendritic spines [127]. Similarly, in rat entorhinal cor-
tex slices, 3 h of exposure to A3 decreases GluN2B and GluN2A total protein levels and
GluN2B mRNA levels, but no changes were observed in GluN1 [128].

The discrepancy between the results obtained regarding NMDAR subunit levels
when reported as being associated with membranes and those of the total levels could
be explained by the population of NMDARs residing in intracellular pools. In cerebellar
granule cells, the majority of unassembled GluN1 subunits are located in the endoplasmic
reticulum [129]. This could mask possible reductions in GluN1 in synaptic and extrasy-
naptic membranes precisely when levels are measured in total cell extracts without any
fractionation protocol to distinguish them or in immunofluorescence assays in permeabi-
lization conditions.

Other studies have also evaluated NMDAR levels in the brain of the APP/PS1 AD mice
model [109,110], which develops amyloid plaques and shows AD-like cognitive impairment.
Reduced levels of GIluN2B alone or with GluN1 have been observed in these models in
the synaptic fraction obtained by biochemical fractionation of the hippocampus [53,126].
Indeed, when a fractionation protocol is employed to isolate synaptic and extrasynaptic
membranes, low levels of synaptic GluN2B and high levels of extrasynaptic GluN2B have
been described in the hippocampus of these AD mice [52]. In our recent study, we observed
low levels of GluN1 in synaptic and extrasynaptic membranes in the cortices of APP/PS1
mice [84], which are likely affecting all NMDARs and, therefore, contributing to the synaptic
failure described in this model [130] driven by A.

3.2. NMDAR Subunit Levels in the Brain of Individuals with AD

Firstly, it is essential to note that the methodological approaches to studying the
NMDARs in the human post-mortem brain are hindered by preanalytical confounding
factors, such as freeze/thaw cycles [131] and the post-mortem intervals (PMI) of the
samples. It is well established that NMDAR subunits are vulnerable to PMI-associated
degradation in different degrees. Indeed, the GluN1 subunit protein is unaffected by post-
mortem delays up to 18 h, while GluN2A and GluN2B subunit proteins show significant
degradation with shortened PMI [132,133].

Currently, brain banks aim to reduce PMI to just a few hours. However, overall
rRNA and mRNA stability are maintained for up to 60 h post-mortem [131,134], without
apparent correlation with pH changes due to tissue acidification [34], although specific
mRNAs may be selectively degraded [35]. Synaptosomes isolated from frozen human
brain retain respiratory activity and the ability to release neurotransmitters and appear to
be morphologically indistinguishable from those from fresh tissues, even with a PMI of
24 h [135]. On the other hand, dephosphorylation may occur on some proteins in less than
1 min, which is a significant problem even in animal experiments [36].
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Ideally, the effect of PMI should be individually addressed for each assay condition,
but this may not be practical in many experiments. To address degradations, protocols
for estimating NMDAR degradation have been proposed [133,136] to allow researchers
to discard brain samples with high synaptic degradation [132]. For example, the HUman
Synapse Proteome Integrity Ratio or “HUSPIR index” aims to evaluate the integrity and
preservation of the post-mortem samples prior to analyses, and to obtain this, this in-
dex measures the ratio of two proteolytic fragments of GIuN2B in synaptic fractions by
immunoblots [136].

Studies of NMDAR expression in human samples are few in comparison with those in
mice models. In the human cortex, the evaluation of NMDAR levels has been approached
by transcriptional techniques and by measuring total protein levels from brain extracts
without the capacity to distinguish SynNMDARs from ExsynNMDARs. Techniques that
allow us to distinguish them, such as subcellular fractionation, are quite scarce.

3.2.1. Regional NMDAR Transcript Levels in the Brain of Individuals with AD

Studies that have evaluated NMDAR subunit expression using RT-qPCR report re-
duced mRNA levels of GluN1, GluN2A, and GluN2B in the hippocampus, temporal cortex,
entorhinal cortex, and cingulate cortex from individuals with AD and report no alterations
in less vulnerable regions, such as the occipital cortex or cerebellum [132,137-139]. Novel
transcriptomic technologies, such as single-cell transcriptomics, have focused the analy-
sis on the expression of GRIN1, the gene that codifies the compulsory NMDAR subunit
GluN1. GRIN1 is downregulated in the temporal cortex of individuals with AD [134,140].
In the prefrontal cortex, GRIN1 expression is modulated through AD progression, being
upregulated at the beginning of the disease, but is eventually downregulated with respect
to controls [141]. Other studies do not find any change in the expression of GRINT in the
frontal or prefrontal cortex [134,142] nor when GRIN1 was assessed in astrocytes [143].
Transcriptomic expressions of other NMDAR subunits, GRIN2A, GRIN2B, and GRIN3A,
are downregulated in the temporal cortex of individuals with AD [140].

3.2.2. Total Protein Levels of NMDAR Subunits in the Brain of Patients with AD

The expression of NMDAR subunits at the protein level measured by immunoblots
closely follows the expression at the transcript level. Accordingly, levels of GluN1, GIuN2B,
and GluN2A are reduced in extracts from AD-susceptible regions such as the hippocampus,
entorhinal cortex, frontal cortex, or cingulate cortex from individuals with AD with respect
to controls [132,133,138,144], but no changes are reported in less susceptible regions, such
as the occipital cortex or the caudate [144]. However, some studies have found increased
levels of GluN2A in the hippocampus at moderate stages of AD [132], and increased
GluN2B levels in the prefrontal cortex at the earliest stages of the disease [145]. The
employment of quantitative in vitro autoradiography with the specific NMDAR antagonist
[PH]MK-801 [146], which allows the quantification of global levels of NMDARs, also shows
lower levels of the receptor in the hippocampus and entorhinal cortex but not in the basal
ganglia in individuals with AD.

In summary, most of the previous reports concluded that total protein and transcript
levels of NMDAR subunits decrease in susceptible brain areas in AD. Interestingly, high
levels of GluN1 and GluN2A were recently described [147] using confocal microscopy in
the astrocytes of the hippocampus of individuals with AD (Braak stage IV-VI) but not
in neurons.

This result highlights that the levels of NMDARs could change in the AD brain in
different compartments of neurons and other cell types. In this regard, little is known
about what functions NMDARs perform in non-neuronal cells (reviewed here for astro-
cytes [67,148], oligodendrocytes [149,150], microglia [70,151], and non-neuronal cells in
general [152], respectively). Overall, this suggests that changes in the levels of NMDARs
from different populations are likely contributing to different manifestations associated
with AD progression.
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3.2.3. NMDAR Subunits Protein Levels in Synaptic and Extrasynaptic Membranes

Studies performed in animal models and primary cell cultures led to the idea that
GluN2A populates mainly the synaptic membranes, while GIuN2B is mostly extrasynap-
tic [5,32,37,153]. Thus, the activation of GluN2A would lead to LTP and prosurvival signal-
ing, while GluN2B would be responsible for LTD and excitotoxicity [154]. However, this
oversimplified model was rapidly challenged by two main experimental outcomes. First,
both GluN2A and GluN2B subunits populate synaptic and extrasynaptic membranes [34].
And second, both subunits participate in excitotoxicity [35,155].

Overall, these results may vary due to differences in experimental conditions. The
use of different neurodevelopmental stages and the absence of pharmacological tools to
definitively distinguish NMDAR subtypes may account for the conflicting outcomes [88].
The “age” of cultured neurons is another critical factor. After one week of culture, around
90% of NMDARSs are in the extrasynaptic membranes, while this number reduces to 50% or
less after two weeks in vitro [11]. These conflicting results strengthen the need for studies
performed on the human brain.

In this regard, subcellular fractionation methods permit the isolation, purification,
and/or enrichment of specific cellular compartments from complex tissue samples [156-160]
that allow unique insights, resulting in them being more informative than the assessment
of total protein levels. In a recent study, we optimized the fractionation protocol of post-
mortem human brain cortex [84], allowing us to describe for the first time the distribution
of the main four NMDAR subunits—GIlulN2B, GluN2A, GluN1, and GluN3A—between
synaptic and extrasynaptic membranes in the human frontal cortex. An analysis of the total
levels of NMDAR subunits on crude membrane fractions from AD cortex displayed, in
good agreement with previous studies, decreased levels of GluN1, GIuN2B, and GluN2A,
with unchanged GIluN3A levels, with respect to controls. Our analysis of the synaptic mem-
branes demonstrated that GluN2B and GluN2A levels were lower in AD than in controls.
More interestingly, when we quantified the extrasynaptic membrane levels of GluN2B and
GluN1, these were higher in AD, and GluN2A showed a similar trend. Remarkably, we
found two different glycoforms of GluN2B and GIuN2A in the extrasynaptic membrane
that turned out to be increased in an AD brain. Our study uncovered the NMDAR distri-
bution in an AD cortex, showing a reduction in NMDARs in synaptic membranes and an
increase in extrasynaptic membranes. The shift to extrasynaptic membranes of GluN2B,
GIluN2A, and GluNT1 reported could explain the exacerbated NMDAR-related excitotoxicity
observed in AD (Figure 3).

Several studies suggest that SynNMDARs are lower in the AD brain while Exsyn-
NMDARs are increased. Possible explanations for the decrease in SynNMDARs include
endocytosis and posterior degradation or lateral diffusion. The increase in ExsynNMDARs
can be explained by the translocation of NMDARs from the PSD to extrasynaptic mem-
branes, impaired delivery of NMDARs to the PSD, and increased expression of NMDARs
by non-neuronal cell types, such as astrocytes. Created in BioRender.com.
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Figure 3. Model of altered levels of NMDARs in the AD brain.

4. Conclusions

The distribution of synaptic versus extrasynaptic NMDARs has emerged as an im-
portant parameter that contributes to neuronal dysfunction in neurodegenerative diseases
such as AD [11,88]. Protein hallmarks of AD pathology, tau, and beta-amyloid peptide
contribute to the imbalance by promoting SynNMDAR endocytosis [43,44] and increasing
ExsynNMDARSs [52]. Overall, studies in AD mice models and in the human brain from indi-
viduals with AD indicate that SynNMDAR levels are reduced while ExsynNMDAR levels
increase with respect to controls (Tables 1 and 2). Whereas the activation of SynNMDARs
is neuroprotective [17,22], the activation of ExsynNMDARs has neurotoxic effects linked to
neuronal death. Consequently, any alteration in the number and density of NMDARs could
contribute to the synaptic and memory deficits that are associated with AD. Consequently,
distinguishing synaptic from extrasynaptic NMDAREs is particularly important for defining
therapeutic approaches.

ExsynNMDARs include a broader population of receptors than those included in
the term SynNMDAR. Proper criteria are necessary to characterize ExsynNMDARs since
neuronal and non-neuronal cells express ExsynNMDARs, and an imprecise identifica-
tion can arise if it is assumed that most of the ExsynNMDARs are exclusively neuronal.
Subcellular fractionation protocols allow us to isolate NMDARs from the PSD (synaptic
fraction) from those outside the PSD (extrasynaptic fraction). While the NMDARs in the
synaptic fraction are well defined, the NMDAR:s in the extrasynaptic fraction are a mix
of presynaptic, neuronal extrasynaptic, and non-neuronal. However, no further assess-
ments are usually performed to gain insight in this regard. Furthermore, a technique as
common as immunofluorescence in neuronal cultures can identify “synaptic NMDARs”
without discriminating those located in the post- and presynaptic membranes unless higher-
resolution techniques are utilized [158], such as 3D reconstructions of isolated spines [61].
Therefore, a correct identification of ExsynNMDARSs is necessary since their role is not yet
fully understood.
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Table 1. Summary of studies assessing synaptic and extrasynaptic NMDAR subunit protein and mRNA levels in human models. N/A: non-applicable.
mRNA Levels
. Levels with Respect to Control
Reference Year Technique Brain Area Sample Size (AD Braak Cell Typ_e .
Stage) GRIN1 GRIN2A GRIN2B (When Specified)
Temporal and o
[139] 2001 qPCR cingulate cortex 10 (no Braak specified) Down N/A N/A
Hippocampus,
[138] 2004 qPCR anterior Clngulate 10 (no Braak specified) Down Down Down
gyrus, and superior
temporal cortex
[132] 2004 qPCR Hippocampus 10 (I-I0); 10 (II-TVY); Down No change Down
10 (V-VI)
[137] 2002 qPCR Hippocampus 10 (no Braak specified) Down Down
. 14 (I-1I); 14 (III-1V);
[142] 2010 Microarray Prefrontal cortex 14 (V=VI) Down
. . Up at early stages
[141] 2019 snRNAseq Prefrontal cortex 104 11;)’(3:(]111)1 V), but down at late Down No change Excitatory neurons
stages
[140] 2024 RNAseq Sup erlg;:jgnporal 10 (V-VI) No change No change No change
Up Up Endothelial cells
[134] 2020 RNAseq Prefrontal cortex 12 (IV-VI) -
Down Down Oligodendrocytes
Total Protein Levels
. Levels with Respect to Control
Reference Year Technique Brain Area Sample Size (AD Braak Cell Typ_e .(When
Stage) GluN1 GIuN2A GluN2B Specified)
Hippocampus,
[138] 2004 WB anterior cmgula?e 10 (no Braak specified) Down Down
gyrus, and superior
temporal cortex
[132] 2004 WB Hippocampus Down Up (in early stage) Down
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Table 1. Cont.

Quantitative . General NMDAR  General NMDAR  General NMDAR
[146] 2013 autoradiography Hippocampus 23 (IV-VI) reduction reduction reduction
Entorhinal cx 6 (III-VI) No change Down Down
Hippocampus Down No change Down
144 2001
[144] WB Caudate No change No change No change
Occipital cortex No change No change No change
Quantitative General and
[147] 2021 confocal Hippocampus 8 (IV-VI) Up Up specifically in
microscopy astrocytes
Hippocampus Down No change Down
[133] 2000 WB Frontal cx 6 (no Braak specified) Down Down Down
Entorhinal cx No change No change No change
Table 2. Summary of studies assessing synaptic and extrasynaptic NMDAR subunit protein and mRNA levels in mice AD models. An asterisk means an additional
explanation in the ‘Other findings’ column.
Tauopathy Mice Models
NMDARs Levels Respect to WT or Control
Ref Yo Technique Criterion SynNMDAR Criterion MCOdletl [Cell ’ Total Ob ti Other
ererence ear ulture ota servations . .
ExsynNMDAR Findings
y Treatment SynNMDAR  ExsynNMDAR NMDAR &
tau KO lacks
[120] 2019 Microscopy Y1472-GluN3B Y1336-GluN3B tau KO mice No change No change No change Hippocampus ExsynNM-
DAR currents
[112] 2010 Biochemical Solubility in SDS Solubility in pH 8 tau KO mice Down Up No change Hippocampus
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Table 2. Cont.
(Self-developed
semi-automatic
software) Dendritic Non-specific
spines were considered background * In excitator
as such if (1) they labeling was neurons Yoo Specifically
emerged from a measured on E-face Te P301S decrease é in interneuron
[113] 2023 SDS-FRL dendritic shaft or structures i No change * Up ** dendrites of
. mice SynNMDARs
(2) they opposed an surrounding the the stratum
. but unaltered .
axon terminal measured P-faces ExsvnGluN1 oriens
recognized by the (specific staining y
presence of synaptic surrounding spines)
vesicles on their
cross-fractured portions
Neuron.s Mouse
Colocalization with treated with cultured
[41] 2022 Microscopy The rest tau from AD Down Up Down .
PSD95 . hippocampal
brain tau for
neurons
7 days
Amyloidosis Mice Models
c NMDARs Level Respect to WT or Control Oth
. L riterion Treatment/ ther
Technique  Criterion Syn NMDAR i . 1.
Reference Year q y ExsynNMDAR Model SynNMDAR  ExsynNMDAR Total Observations Findings
NMDAR
Detect
reduced
GluN1 in
Cultured Suggests surface levels
- L o0 but no
o . - cortical redistribution .
. Colocalization with No colocalization changes in
Microscopy - . . neurons Down GluN1 to
[43] 2005 synapsin with synapsin . . total levels.
treated with extrasynaptic
AB1h membranes Suggests
redistribution
to
extrasynaptic

membranes.
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Table 2. Cont.

Biotinylation

No change

Reduced
surface
expression of
GIluN2B and
GluN1, no
change in total
levels

Triton insoluble

Mice slices

. . . . treated with Down
Biochemical  Triton soluble fraction fraction AB -> GluN2B No change
[44] 2011 fractionation
. . .. Cultured
. Colocalization with No colocalization . Down
Microscopy : . . hippocampal No change
synapsin with synapsin neurons + AB GluN2B
. . . . . . .. APP/PS1 Down
[52] 2023 Biochemical Triton insolubility Triton solubility mouse GluN2B Up GluN2B
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In the clinic, NMDARs are currently the targets of numerous programs for finding
new drugs for AD or other diseases of the CNS [161,162]. The correct discrimination among
all the types of NMDARSs present in the brain will benefit the research for specific drugs, to
help cure these diseases.
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