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Abstract: Repurposing utilizes existing drugs with known safety profiles and discovers new uses by
combining experimental and computational approaches. The integration of computational methods
has greatly advanced drug repurposing, offering a rational approach and reducing the risk of failure
in these efforts. Recognizing the potential for drug repurposing, we employed our Iterative Stochastic
Elimination (ISE) algorithm to screen known drugs from the DrugBank database. Repurposing in our
hands is based on computer models of the actions of ligands: the ISE algorithm is a machine learning
tool that creates ligand-based models by distinguishing between the physicochemical properties of
known drugs and those of decoys. The models are large sets of “filters” made out, each, of molecular
properties. We screen and score external sets of molecules (in our case- the DrugBank molecules)
by our agonism and antagonism models based on published data (i.e., IC50, Ki, or EC50) and pick
the top-scoring molecules as candidates for experiments. Such agonist and antagonist models
for six G-protein coupled receptors (GPCRs) families facilitated the identification of repurposing
opportunities. Our screening revealed 5982 new potential molecular actions (agonists, antagonists),
which suggest repurposing candidates for the cannabinoid 2 (CB2), histamine (H1, H3, and H4),
and dopamine 3 (D3) receptors, which may be useful to treat conditions such as neuroinflammation,
obesity, allergic dermatitis, and drug abuse. These sets of best candidates should now be examined
by experimentalists: based on previous such experiments, there is a very high chance of discovering
novel highly bioactive molecules.

Keywords: repurposing; GPCRs; ISE; machine learning; drug discovery; cannabinoid 2 receptors;
histamine receptors; dopamine receptors

1. Introduction

Drugs typically interact with around six different biological targets, based on an anal-
ysis of 4767 interactions involving 802 drugs and 480 targets from various databases [1].
The G protein-coupled receptor (GPCR) network, with only 22% of all targets tested, was
found to have 2646 (56% of all interactions) between 396 drugs (~50%) and 106 targets [1].
That result indicates the importance of repurposing among the GPCRs. Furthermore, a
study focusing on FDA-approved drugs (2689 different targets interacting with 2186 FDA-
approved) revealed an extensive drug-target network with a huge component containing
4376 interactions, involving targets primarily related to metabolism, cardiovascular dis-
eases, and cancer, among others [2]. Illicit drugs demonstrate a similar pattern, targeting
an average of 6.6 human genes each. These drugs primarily fall into four categories: de-
pressants, stimulants, analgesics, and steroids [3]. These findings highlight the complex
and multifaceted nature of drug action, often involving multiple targets, a phenomenon
known as polypharmacology.

Polypharmacology analysis could identify potential drug repurposing (or reposition-
ing) [4,5], offering significant benefits to the pharmaceutical industry by circumventing
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the costly and lengthy pharmacokinetic and toxicological profiling tests. Repurposing can
shorten the drug development timeline from 10–17 years to just 3–12 years [6]. Additionally,
the cost of bringing a repurposed drug to market is estimated to be around USD 300 million,
compared to approximately USD 2–3 billion for bringing a new chemical entity to the
therapeutics market [6].

Drugs withdrawn from the market due to severe adverse effects or lack of efficacy can
be repurposed for other therapeutic indications. Most were discovered serendipitously,
such as Miltefosine, Sildenafil, and Thalidomide [4–6]. In a recent review, Corbett et al. [7]
described compounds collected from various studies exploring their potential repositioning
to treat Alzheimer’s disease (AD). Remarkably, these compounds originated from different
pathologies and therapeutic applications, such as type 2 diabetes mellitus, hypertension,
and antibiotics. Repurposing can also provide a means to develop treatments for neglected
diseases that might not otherwise be profitable for pharmaceutical companies [8].

Computational methods can prioritize the drug discovery process more efficiently
(faster and reducing costs), thus substantially impacting drug development despite the
inherent complexity of the underlying polypharmacology. Current computational meth-
ods for drug discovery and repurposing encompass a variety of approaches, including
disease-centric, target-centric, and drug-centric strategies, with virtual screening (VS) being
the most used in silico tool to search for repurposing opportunities so far [9]. In silico
methods enable to set relationships between different types of data to create new informa-
tion and knowledge that enhances pattern recognition and predictive capabilities through
machine learning tools like deep neural networks [10,11]. Additionally, such algorithms
have been highlighted in drug repurposing for diseases like COVID-19, emphasizing the
re-evaluation of existing drugs and the biological and computational interpretation of
AI-guided repurposing [12]. The Computational Analysis of Novel Drug Opportunities
(CANDO) [13] platform used docking and drug-protein interaction analysis on a proteomic
scale to predict potential molecular interactions that could lead to novel pharmacotherapeu-
tics [14]. DrugRep [15] performs receptor-based (by identifying possible binding pockets)
and ligand-similarity-based virtual screening to find new targets for existing drugs.

Van Noort et al. [16] used drug-induced gene-expression profile similarity to retrieve
novel candidate drugs for colorectal cancer. Through computational analysis, they identi-
fied three compounds: citalopram (antidepressant), troglitazone (antidiabetic), and enil-
conazole (fungicide), as potential treatments. Experimental validations for the anticancer
activities of all three compounds using in vitro tests and subcutaneous tumor models in
mice confirmed their efficacy in inhibiting tumor growth, proliferation, and migration.
Notably, citalopram demonstrated significant anti-tumor activity in a preclinical model,
reducing tumor size and metastasis [16].

Hongbo et al. used docking and gene expression data mining to identify potential
drug candidates for AD [17]. By docking 1553 FDA-approved drugs onto seven major AD
drug targets, 211 approved drugs showed high binding free energies for all seven targets.
Then, gene expression profiles for 74 drugs (those with corresponding gene expression
profiles) were used to verify the docking results. Seven representative repositioned drugs
were tested for their protective effects on Aβ25–35 aggregation cytotoxicity. The results
identified risperidone, droperidol, glimepiride, and glipizide as potential multi-target
candidates for the treatment of AD.

A study [18] that compares the performance of different web services based on chemi-
cal similarity assessment (ChemProt, SuperPred, SEA, SwissTargetPrediction, and TargetH-
unter) and machine learning methods (ChemProt and PASS) to predict original and new
therapeutic indications found that machine learning-based methods generally outperform
chemical similarity-based methods, especially for predicting novel repurposed indications.

Here, we use our GPCR models for agonism or antagonism (AGANT) [19] as a
screening platform to propose new repurposing opportunities for known drugs from the
DrugBank database [20]. We focus on a subset of receptors: cannabinoid 2 (CB2), histamine
(H1, H3, and H4), and dopamine 3 (D3) receptors, suggesting potential repurposing
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candidates for various conditions like neuroinflammation, obesity, and allergic dermatitis.
The AGANT models for 31 GPCRs were built using the “Iterative stochastic Elimination”
(ISE) algorithm [21,22].

ISE offers solutions to extremely complex combinatorial problems [22]. In the case of
drug discovery or repurposing, it produces models of many “filters”, each filter being a
“solution” to the problem of distinguishing between known active molecules (e.g., IC50,
Ki, Kd, Ka, EC50) and inactive molecules, or between highly active molecules and weakly
active ones—always on a single protein target. ISE requires variables, variable values, and
a scoring method for all possible combinations of variable values. The ISE process begins
by randomly sampling combinations of variables (we use only physicochemical properties
of ligands, thereby avoiding structural similarity and increasing diversity) and evaluating
their ability to distinguish between the “positives” (with known experimental data) and
the “negatives” (no data). Statistical criteria are used (see Section 3) to determine which
variables or variable values contribute consistently to bad filters that cannot distinguish
between the two sets. Those variables are rejected, thus reducing the number of possible
combinations. Identifying and eliminating consistently poor-performing values, ISE pro-
gressively narrows the search space in a few iterations, which comprise, each, a random
construction of filters, screening of the whole learning set through each filter, and subse-
quent decisions on eliminating variables or variable values. This iterative process continues
until a manageable number of combinations remain, allowing for a final exhaustive search
of all remaining combinations and ranking the solutions by their efficiency. Each model is
thus a set of filters (“solutions”) that differ in their efficiency and are scored (Section 3).

The model may subsequently score any molecule based on its ability to pass through
the set of filters. Each filter score is added if a molecule passes it or is deducted if not. The
total for each molecule makes it possible to compare it to other molecules. A higher score
indicates a higher probability of the molecule being an agonist or antagonist. This scoring
system aids in prioritizing molecules for further experimental evaluation. Large compound
libraries can be efficiently filtered by setting a suitable score threshold, yielding a smaller,
enriched set for subsequent analysis.

In many cases, screening through the ISE models is enough to produce a set of
candidates for experimental testing. However, as these models are only based on properties,
not on structural components, molecules of different sizes and flexibilities may have similar
properties. We use docking after ligand-based modeling only to examine the chance of a
molecule binding to a target and not to consider agonism or antagonism. Docking may
be performed if the protein target structure is known—we use it to eliminate molecules
that do not “fit” to the target despite their favorable score from our ligand-based modeling.
Thus, the ISE ligand-based method is prioritized over the structure-based docking method.

2. Results and Discussion
2.1. Iterative Stochastic Elimination (ISE) Agonist/Antagonist Models

Based on our recent work [19], models for agonism and antagonism were built for
31 receptors from six families: Dopamine (D1–D5), 5-Hydroxytryptamine (5-HT), Mus-
carinic (M1–M5), Histamine (H1–H4), Opioid (Mu, Delta, and Kappa), and the cannabinoid
(CB1 and CB2) receptors. The activity models were assessed using five-cross-validation
and multiple metrics, including Matthews Correlation Coefficient (MCC) [23], Area Under
the ROC Curve (AUC), True Positive Rate (TPR), and True Negative Rate (TNR) (Table
S1, see also methods Section 3.1). The mean MCC for the agonist models ranges between
0.68–0.99 with an average of 0.84; for the antagonist models, it ranges between 0.55–0.95 and
an average of 0.81 [19]. The AUC for agonist models ranges between 0.57–0.99. For the
antagonist models, AUC ranges between 0.85–0.99 [19]. The TNR (specificity) is high for all
models (>0.9), and the TPR or sensitivity is high for almost all models (53 models have a
value above 0.5) (Table S1).

When evaluating our models, we acknowledge that imbalanced data, where molecules
with AGANT data (positives) are significantly less than non-AGANT, can skew the inter-
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pretation of confusion matrix values. As seen in Table S1, our models achieve very high
specificity (>0.94), but sensitivity varies across receptors. Reducing sensitivity might lead
to missed opportunities, but we typically retain sufficient molecules for further in vitro
testing. Thus, we utilize the MCC metric. MCC considers all confusion matrix components
(see methods Section 3.1) and provides a more robust evaluation, especially for imbalanced
learning sets like ours (1:100 positive-to-negative ratio) [24–26]. All our models have MCC
values exceeding 0.5. Additionally, we consider AUC, which measures overall model
performance across various classification thresholds. Most models in Table S1 have AUC
values exceeding 0.8, reflecting efficient performance.

2.2. DrugBank Screening Results
2.2.1. Drug-GPCR-Activity Matrix

The 7130 drugs of the DrugBank database were screened through the 59 AGANT
models (except for three receptors: D5/5-HT1E/5-HT5A agonism due to lack of data).
We compared our predictions to reported/ known AGANT. The 1212 reported activi-
ties between 361 drugs and 31 GPCRs were derived from three databases (DrugBank
v. 5.1.9 [20], ChEMBL27 [27] and TTD [28]). The ISE models correctly predicted 56% of these
1212 AGANT and suggested a large number, 21,987, of new AGANT actions (molecules
with any positive score, Table 1) [19]. To suggest new candidates, we choose a cutoff score
with the highest true positives/false positives (TP/FP) rate (methods Section 3.1), meaning
a higher chance to find true candidates and fewer false ones. We are interested in new
unreported molecular actions, such as molecules that got a high score in our AGANT
models but were not reported as AGANT.

Table 1. The number of successful activities predicted by the ISE models and the new predicted
activities in different cutoff scores obtained by DrugBank molecules.

Cutoff Score Number of Successful
Activity Predictions

Number of New
Activities

% of Successful
Predictions

>0 684 21,987 56%
≥0.1 648 19,052 53%
≥0.2 605 16,230 50%
≥0.3 555 13,882 46%
≥0.4 516 11,687 43%
≥0.5 466 9660 38%
≥0.6 419 7661 35%
≥0.7 375 5982 31%
≥0.8 307 4407 25%
≥0.9 164 1517 14%

2.2.2. Drug-GPCR-Interaction Matrix

A drug that acts as an agonist or antagonist on a specific GPCR is interacting/connected
to this receptor. The Drug-GPCRs-interaction matrix assigns “1” if there is a connection
and assigns “0” if the drug has no action on that receptor (for both reported and predicted
AGANT). The Drug-GPCRs-interaction matrix consists of 1165 reported connections be-
tween 361 drugs and the 31 GPCRs (reflecting the chance of binding to the receptor, as both
agonists and antagonists must bind to affect the target). The success rate of predictions
in this case (Table 2—out of 1165 reported interactions) is higher than that of AGANT
predictions (out of the reported 1212). The receptors vary in performance (Table S2); the D2
model has 95% success above an index of zero, while the D1 model has only 16%.

The minimum of three interactions (for 5-HT5A and histamine 4 (H4) receptor) raised
to 100 interactions with the dopamine 2 (D2) receptor (Figure 1A). The 361 drugs have
a range of 1–20 interactions and an average of 3.2 interactions per drug (Figure 1B). The
majority (188 out of 361 drugs) have just one interaction with the selected GPCRs. Based on
our previous experience in prediction analysis, we apply for all models a high score cutoff of
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0.7 in order for the molecules to be further processed: 5120 new/unknown interactions were
found, involving 1283 drugs interacting with the 31 GPCRs (Figure 1C). The correlation
between the number of reported interactions and new predicted interactions per receptor is
0.43. We will focus on four predicted actions for further analysis: CB2R agonists (82 drugs),
H3R antagonists (109 drugs), H1R/H4R antagonists (two drugs), and D3R antagonists
(36 drugs). The structures for the four sets are provided in Figure S1.

Table 2. The number of successful interactions/connections predicted by the ISE models and the new
predicted interactions in different cutoff scores obtained by DrugBank molecules.

Cutoff Score Number of Successful
Interaction Predictions

Number of New
Interactions

% of Successful
Predictions

>0 805 17,595 69%
≥0.1 771 15,414 66%
≥0.2 724 13,246 62%
≥0.3 671 11,391 58%
≥0.4 626 9695 54%
≥0.5 571 8137 49%
≥0.6 515 6486 44%
≥0.7 459 5120 39%
≥0.8 381 3870 33%
≥0.9 202 1330 17%
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low, Histamine (H1–4)—pink, Muscarinic (M1–5)—gray and Opioid (Delta, Kappa, and Mu)—orange. 
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Figure 1. (A) Reported interactions for six GPCR families: 5-Hydroxytryptamine (serotonin,
5-HT)—blue, Cannabinoids—green, Dopamine (D1–5)—yellow, Histamine (H1–4)—pink, Muscarinic
(M1–5)—gray and Opioid (Delta, Kappa, and Mu)—orange. (B) The number of reported interactions
per drug. (C) Predicted interactions above a score of 0.7. 5120 interactions involving 1283 drugs
interacting with the 31 GPCRs: 5-Hydroxytryptamine (serotonin, 5-HT)—blue, Cannabinoids—green,
Dopamine (D1–5)—yellow, Histamine (H1–4)—pink, Muscarinic (M1–5)—gray and Opioid (Delta,
Kappa, and Mu)—orange.

2.3. Tanimoto Similarity

The sets with the reported data used to build each model are diverse, as well as
the predicted drugs for each receptor (Table 3). Comparing the reported compounds to
the predicted drugs for each receptor yields low average Tanimoto values (Table 3 and
Figure S2).

Table 3. Average Tanimoto similarity values for the different receptors. The Tanimoto values were
measured in three sets for each receptor: Predicted drugs vs. known AGANT (P-A), predicted drugs
vs. predicted drugs (P-P), and known AGANT vs. known AGANT (A-A).

Receptor
Number of Known

Actives Used to
Build the Model

Number of
Predicted

Drugs

Average
Tanimoto

P-A

Average
Tanimoto

P-P

Average
Tanimoto

A-A

CB2R 275 82 0.13 0.15 0.18
H3R 474 109 0.13 0.16 0.20
H1R 95 2 0.14 0.17 0.21
H4R 169 2 0.14 0.17 0.19
D3R 269 36 0.13 0.14 0.23

P—Predicted drugs; A—AGANT compounds. CB2R—Cannabinoid 2 receptor; H3R—Histamine 3 receptor;
H1R—Histamine 1 receptor; H4R—Histamine 4 receptor; D3R—Dopamine 3 receptor

2.4. Docking Results

Docking (a structure-based method) is used by us only following the screening using
our ISE ligand-based method. The main purpose of docking in our hands is to eliminate
molecules that have the correct physicochemical characteristics but do not fit the relevant
binding sites well enough. To validate our docking method, we begin with re-docking,
i.e., using a known crystal structure of a protein-ligand complex and docking the ligand
using a computational method to compare it with the experiment. We shall use that
docking method only if the docking finds a ligand position close to the experimental one,
usually by measuring the Root Mean Square Distance (RMSD) between the docked and the
experimental positions. We require that RMSD should be less than 3.0 Å.
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The redocking results of the native ligands for each structure are listed in Table 4. All
ligands fit well in the binding pocket with high docking scores (Figure S3A–D). The following
paragraphs describe the redocking results in order to compare docking with experiment:

Table 4. Redocking results of the native ligands in each structure. The presented results are the
docking score, the buried surface area (BSA, Å3), and the number of hydrogen bonds and contacts
for the best-docked pose. The last column presents the RMSD values for the docked vs. the crystal
structure pose.

Receptor Ligand Docking Score
(Kcal/mol)

BSA
(Å3)

Number of
H-Bonds

Number of
Contacts

RMSD
(Å)

CB2R LEI-102
CB2R agonist −8.2 1061 1 514 2.6

H3R PF-03654746
H3R antagonist −12.8 844 3 600 2.8

H1R Doxepin (E isomer)
(H1R antagonist) −12 731 1 379 2.5

D3R
Eticlopride
(D2R/D3R
antagonist)

−7.9 815 1 319 3.8

CB2R—Cannabinoid 2 receptor; H3R—Histamine 3 receptor; H1R—Histamine 1 receptor; D3R—Dopamine
3 receptor; H-Bonds—Hydrogen bonds; RMSD—Root Mean Square Deviation.

LEI-102 redocked to the CB2R with a docking score of −8.2 Kcal/mol. The H-bond
with T1143.33 (Ballesteros–Weinstein numbering in superscript [29]) was retrieved, as well
as the hydrophobic interactions with residues: F872.57, S902.60, F942.64, F1063.25, K1093.28,
I1103.29, F183ECL2, P184ECL2, I186ECL2, Y1905.39, L1915.40, W1945.43, M2656.55, F2817.35, and
S2857.39 (Figure S4A).

The H3R antagonist (PF-03654746) has a high docking score of −12.8 Kcal/mol and
two hydrogen bonds with D1143.32 and Y912.61, which are shown to be essential for PF-
03654746 activity [30]. Mutations in F193ECL2, Y3746.51, and E3957.36 can entirely abolish the
PF-03654746 inhibition [30], and these interactions were retrieved in the docking process
(Figure S4B).

For the third set (H1R/H4R antagonists), only H1R structure is available [31]. Doxepin,
a first-generation antihistamine drug, interacts with highly conserved key residues W4286.48

(pi-pi stacking) and D1073.32 (salt bridge). D1073.32 has been shown to be essential for
binding H1R antagonists and agonists in mutational studies [31]. Interactions with K1915.39

and/or K179ECL2 are part of the anion-binding region. Doxepin interacts only with K1915.39,
in addition to other hydrophobic and polar residues (Figure S4C).

Eticlopride, the D3R antagonist, retrieved all 18 interactions reported in the X-ray
structure [32], including the salt bridge with D1103.32 and interactions with the hydrophobic
cavity formed by F3456.51 and F3466.52 in helix VI; V1895.39, S1925.42, and S1935.43 in helix V;
V1113.33 in helix III, as well as I183ECL2 (Figure S4D). It got a higher RMSD value than the
other redocked ligands. As shown in Figure S3D, the ethyl-pyrrolidine ring has a different
orientation than the crystal structure ligand.

The docking results of the predicted drugs for each receptor are detailed in Tables S3–S6.
In Table 5, the ranges of scores are listed for each receptor. Most of the drugs in CB2R
were docked to the agonist binding site with high docking scores. However, only 49 of
the predicted H3R drugs (out of 109) have a high docking score of less than −8 Kcal/mol
compared to other H3R antagonists [30]. Of the two predicted drugs that interact with the
H1R/H4R, only one got a high score of −10.5 Kcal/mol in the H1R structure. Seven of the
last set of predicted D3 antagonists got a higher docking score than the native antagonist
eticlopride (−7.9 Kcal/mol).
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Table 5. Docking results of the predicted drugs in each structure. The presented results are the
number of predicted drugs in each set, the number of successfully docked ones and their docking
score, the buried surface area (BSA), and the number of hydrogen bonds and contacts. The results
presented are for the best-docked pose in each set.

Receptor
Number of
Predicted

Drugs

Number of
Docked
Drugs

Docking
Score

(Kcal/mol)
BSA (Å3)

Number of
H-Bonds

Number of
Contacts

CB2R 82 81 −4.3–−12 652–1054 0–2 215–457
H3R 109 90 9.1–−11.9 627–1099 1–5 516–869

H1R 2 2 −2.1–
−10.5 780–1082 1 307–559

D3R 36 36 −2.2–−9.7 799–1381 0–4 284–480
CB2R—Cannabinoid receptor; H3R—Histamine 3 receptor; H1R—Histamine 1 receptor; D3R—Dopamine 3
receptor; H-Bonds—Hydrogen bonds.

2.5. Repurposing Opportunities

To find repurposing opportunities, we search the 5982 new AGANT (above a score
of 0.7). Here, we show a few examples of selected targets related to autoimmune and
inflammation disorders, obesity, and central nervous system disorders (CNS). By picking
drugs with high ISE scores for the desired AGANT and low scores (usually < 0) for “anti-
targets” (targets/actions that are important to avoid).

2.5.1. Cannabinoid 2 Receptor (CB2R)

The CB2R agonists hold promise as a new class of therapeutics for indications as
diverse as pain, neuroinflammation, Alzheimer’s disease (AD), immune suppression, osteo-
porosis, cancer, several CNS disorders, including drug addiction and anxiety, liver disease,
and more [33]. These potential indications are supported by strong preliminary data from
multiple investigators using diverse preclinical models. CB2 agonists modulate central neu-
roinflammatory conditions, modify opioid-induced tolerance and reward-seeking behavior,
and modulate peripheral neuroinflammation [34], avoiding the adverse psychotropic effects
accompanying CB1R.

Eighty-two drugs from different indications were predicted to be agonists at the CB2R
(score ≥ 0.7). If we also require those agonists to be devoid of anti-targets, CB1R, and
CB2R antagonism (scores < 0), we have 61 drugs, 32 of which are approved drugs (see
Table S3). The set of 82 drugs is diverse and has a low similarity to the known agonists
(average Tanimoto = 0.13, Table 3). All except one drug (Alectinib, ISE score = 0.82) docked
to the CB2R structure, with docking scores ranging from −4.3 to −12 Kcal/mol (Table S3).
The majority (60 drugs) have a docking score of ≤−8 Kcal/mol, compared to the agonist
LEI-102 (from the PDB structure- 8GUT [35]), which has a docking score of −8.2 Kcal/mol.

Amiodarone (DB01118) is an antiarrhythmic drug with the highest docking score of
−12 Kcal/mol (ISE score = 0.74, Figure 2A). Ipratropium bromide (DB00332, ISE score = 0.83),
an anticholinergic drug used in the control of symptoms related to bronchospasm in
chronic obstructive pulmonary disease (COPD), also has a higher docking score than the
native ligand with −10.5 Kcal/mol (Table S3). Both are found by docking to interact with
key residues at the CB2R pocket, such as F872.57, F912.61, F942.64, H952.65, F1173.36, and
V2616.51 [35,36]. Ipratropium bromide also makes an H-bond with T1143.33 (Figure 2B).
Interestingly, some local anesthetics, such as Ropivacaine, Dyclonine, and Bupivacaine,
got high scores as CB2 agonists, but their scores were not in the range of <−8 Kcal/mol
in docking.
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2.5.2. Histamine 3 Receptor (H3R)

Due to its widespread distribution and its ability to affect multiple neurotransmitter
systems (including histamine, dopamine, serotonin, acetylcholine, and norepinephrine),
the modulation of H3R activity has been proposed for a broad range of indications such
as AD, attention deficit hyperactivity disorder (ADHD), sleep disorders, pain, and obe-
sity [37]. Several preclinical studies showed that H3R antagonists reduced food intake, body
weight, and blood glucose levels in obese animals [38]. Two H3R antagonists, SCH-497079
(NCT00642993, NCT00673465) and HPP-404 (NCT01540864), were evaluated in clinical
trials for treating obesity and diabetes. However, these molecules were not developed
further due to low efficacy [39]. Looking for potential H3R antagonists (with no agonism)
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among the screened drugs, we found 109 candidates (Table S4). Approximately 40% of
them docked with a high docking score (less than −8 Kcal/mol).

Alizapride (DB01425), a D2 antagonist used in treating nausea and vomiting, including
that which may occur postoperatively, has a high ISE score of 0.9 and docking score of
−8.8 Kcal/mol. The docked alizapride has hydrogen bonds with D1143.32 (also a salt
bridge) and E3957.36 and interacts with the hydrophobic pocket constituted by Y1153.33,
Y3746.51, F3987.39, and W4027.43 (Table S4, Figure 3A). Eprazinone (DB08990), a mucolytic
agent, has a higher docking score (−11.6 Kcal/mol) with similar interactions as alizapride
and PF-03654746 (native ligand, Figure 3B). Another example is Sumatriptan (DB00669, a
serotonin receptor agonist), used to treat migraines and cluster headaches (ISE score = 0.9,
docking score = −11.6 Kcal/mol). Sumatriptan docked to the H3R structure and forms
hydrogen bonds with Y912.61, D1143.32, and Y1153.33 (Figure 3C).
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2.5.3. Histamine 1 and 4 Receptors (H1R, H4R)

The H4R mediates lung function and inflammation in animal asthma models and me-
diates pruritic responses [40]. Antihistamines that target the H1R are effective in reducing
acute pruritus but are ineffective in pruritus experienced by patients with atopic dermatitis.
Antagonists of the H4R reduce pruritus in several conditions. The anti-pruritic effect of
H4R antagonists has recently been shown in human clinical studies, validating the pre-
clinical findings in animal models. A selective H4R antagonist inhibits histamine-induced
pruritus in health volunteers and reduces pruritus in patients with atopic dermatitis [40].
The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis
via anti-pruritic and anti-inflammatory effects in mice models [41]. It may provide superior
relief of signs and symptoms of allergic conjunctivitis compared to traditional allergy
therapies [42].

Looking for H1/H4 antagonists yields only two drugs (Table S5). Both drugs are
diverse compared to the known antagonists of H1 and H4 receptors (Table 3). Fluspir-
ilene (DB04842, H1 antagonist score = 0.92, H4 antagonist score = 0.84) is an approved
antipsychotic agent used in the treatment of schizophrenia through D2/5-HT2A antago-
nism. Fluspirilene overlaps with the doxepin pose in the H1R binding pocket and has a salt
bridge with D1073.32 and a hydrogen bond with Y4316.51 (Figure 4A). The fluorobenzene
rings form pi-pi stacking with Y1083.33, W4286.48, F4326.52, and F4356.55. In addition, it
interacts with the anion-binding residues K179ECL2 and K1915.39 (Figure 4A). However, it
got a very low docking score (−2.1 Kcal/mol, Table S5), which could be because of the
extended binding site towards the extracellular loop 2 (ECL2). DB07330, an experimental
drug, was explored for its potential as a poly (ADP-ribose) polymerase inhibitor for cancer
treatment [43]. DB07330 belongs to the benzimidazole compounds and has a high docking
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score of −10.5 Kcal/mol. The docked pose retrieved the key interactions with the H1R
(Figure 4B).
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2.5.4. Dopamine 3 Receptor (D3R)

D3Rs are a primary focus in the design and development of therapeutics for dopamine-
related disorders. Based on sequence homology, they belong to the D2-like receptors
(D2, D3, and D4). D3R is less abundant than the D2 subtype and has different tissue
localization, such as nucleus accumbens, thalamus, hippocampus, and cortex, which is
considered important for psychotic symptoms [44]. There is strong evidence that D3
receptor antagonists could be effective antipsychotic agents and could also be involved in
behavioral sensitization, with potential efficacy in the treatment of drug abuse—tobacco,
opioid, and psychostimulant use disorders [44,45].

The peculiar distribution and low brain abundance of D3 receptors make them a
valuable target for developing drugs devoid of motor side effects classically caused by D2
antagonists. However, the close homology with the D2 receptor subtype makes developing
D3-selective antagonists challenging. We found 36 molecules that have the potential to act
as D3 antagonists (Table S6). If we also consider the D2 antagonist as anti-target (requiring
a score < 0), only 12 molecules are left, but some may have D2 agonism, although few have
low scores, like Sildenafil and Halofantrine. So, if we exclude these molecules, only one
drug is left: Vardenafil (DB00862), a phosphodiesterase 5 inhibitor used to treat erectile
dysfunction. However, vardenafil got a low docking score (−4.9 Kcal/mol) to D3R, despite
it formed an H-bond with D1103.32 and E902.64 and hydrophobic contacts like the native
antagonist (eticlopride, see results Section 2.4. for the detailed residues [32]) (Figure 5A).
Halofantrine (DB01218) is an antimalarial drug that has a high D3 antagonist score, a low
score at the D2 agonist model, but a better docking score than vardenafil (0.89, 0.15, and
−6.8, respectively, Table S6). It was docked into the D3R pocket and formed a salt bridge
with D1103.32 and hydrophobic interactions with V1113.33, I183ECL2, F3456.51, and F3466.52

(Figure 5B). Both predicted drugs are larger than the native ligand.
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3. Materials and Methods
3.1. Iterative Stochastic Elimination (ISE) Models for Selected GPCRs

Models were constructed using the “Iterative Stochastic Elimination” (ISE) algo-
rithm [21,22], which is primarily used to build classification models of molecular bioactivity.
These models are used for screening databases to identify novel and diverse bioactive
candidates [46,47].

ISE is a ligand-based method; the learning set comprises reported molecules from the
ChEMBL database, agonists with EC50 values, or antagonists with IC50 or Ki values at the
different human GPCRs (values less than 100 µM) [27]. Duplicates (with the same ChEMBL
ID) and drugs from the DrugBank database were excluded.

The decoys were selected from the ZINC druglike database [48]. The decoys (with a
ratio of 1:100 or 1:1000 to the known molecules from ChEMBL) are selected based on the
applicability domain of the known molecules [49]. The learning set was prepared, and 2D
descriptors were calculated using MOE software (v. 2011.10) [50]. Based on the calculated
descriptors, we removed mutagenic and reactive molecules from the learning sets (indicated
by the presence or absence of potentially toxic and reactive groups, respectively).

The ISE algorithm generates a large number of filters, each representing a combination
of molecular property ranges, which best distinguish between two classes: agonist vs.
non-agonist or antagonist vs. non-antagonist.

The MCC [23] is a metric used to evaluate the quality of binary classifications. It is
particularly advantageous for datasets with a significant class imbalance, as it is not biased
towards the majority class. The MCC considers all four components of the confusion matrix:
True Positives (TP)—correctly predicted positive instances, True Negatives (TN)—correctly
predicted negative instances, False Positives (FP)—incorrectly predicted positive instances,
False Negatives (FN)—incorrectly predicted negative instances. MCC values range from
−1 to 1, producing high scores only if the model performs well in all four categories of the
confusion matrix.

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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The AUC is another performance measurement for classification problems at different
classification thresholds. The ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR).

TPR(Sensitivity) =
True Positives
Total Positives

=
TP

TP + FN

TNR(Specificity) =
True Negatives
Total Negatives

=
TN

TN + FP

Screening any set of molecules through ISE models allows ranking them by their
ability to pass through the model. A molecule is assigned a positive weight if it satisfies all
filter criteria and a negative weight otherwise. The final score is calculated as the average
of these weights across all filters. The F-score, a metric combining precision and recall,
evaluates the model’s accuracy in predicting active compounds.

Score =
∑n

i=1 δpositiveFpositive(i) − δnegativeFnegative(i)

n

The final scores are between −1 and +1. A higher score indicates a greater likelihood of
experimental successful discovery for a molecule. We determine a suitable index threshold
based on enrichment factor and true positive/false positive rates to filter large compound
libraries efficiently.

3.2. Drugs Database

We downloaded the DrugBank database )DB) (July 2016, version 4.5) [20], which
contains 7130 drug entries. Using MOE software (v.2011.10) [50], we apply “Molecular
Database Wash” [51] and 2D descriptors calculation for virtual screening (VS) of the
DrugBank DB through our models.

3.3. Drug-Protein Matrices

The total reported actions (agonist and antagonist) between the drugs and the 31 GPCRs
used in this study are 1212 of 361 drugs [19]. The data was collected from: (1) DrugBank
version 5.1.9, access date: Jan/2022; (2) ChEMBL27 (access date: November 2020) [27];
(3) Therapeutic Target Database (TTD, access date: November 2020) [28].

Drug-target adjacency matrices were created for the reported and predicted AGANT
by ISE models. Denoting the target receptor set as T = {t1, t2, . . ., tm} and the drug set
as D = {d1, d2, . . ., dn}, the drug-target (DT) binary interactions can be described as a bi-
partite DT graph G(D, T, E), where E = {eij: di ∈ D, tj ∈ T}. A link is drawn between di
and tj only if the drug di has any action with the target tj. The DT bipartite network can
be presented by an n × m adjacency matrix {aij}, where aij = 1 when di and tj interact;
otherwise, aij = 0. Based on the reported AGANT, there are 1165 reported Drug-GPCR inter-
actions/connections between 361 drugs (out of the 7130 DrugBank DB) and 31 GPCRs [19].

3.4. Tanimoto Fingerprint Similarity

The ECFP4 fingerprint was used to compute fingerprint similarity between the differ-
ent molecule sets by the rdkit.DataStructs.FingerprintSimilarity module (RDKit toolkit v.
‘2024.03.5’ [52]), with Python 3.9.13.

3.5. Docking
3.5.1. Structures Selection

The selected structures for each receptor were downloaded from the PDB [53] and
are listed in Table 6. The overall structures of the four complexes of CB2R that were
published recently [35], were comparable (CB2R-LEI-102-Gi-scFv16, CB2R-APD371-Gi-
scFv16, CB2R-HU308-Gi-scFv16, and CB2R-CP55,940-Gi-scFv16, complex, at 2.9, 3.0, 3.0,
and 2.9 Å, respectively), with RMSD of the Cα atoms of the receptors around 0.35 Å [35].
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The ligand binding interfaces of the four CB2R and Gi complexes were similar to each
other and to those of the previous AM12033-CB2R-Gi or WIN55212-2-CB2R-Gi complex
structures [35]. We chose the complex 8GUT with the LEI-102—agonist.

For H3R and H1R, only one structure is available with antagonist binding, 7F61 [30]
and 3RZE [31], respectively. H4R has no resolved structure yet. The H1R structure contains
a mixture of E and Z isomers, and we continue with the E isomer in the docking studies.
For D3R, the only structure with an antagonist is 3PBL [32]. We chose chain A to perform
the docking.
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3.5.2. Ligand and Protein Preparation

Molecule sets and redocked ligands were prepared for the docking using Schrödinger’s
LigPrep tool (Schrödinger release 2021–3 [54]). The process includes energy-minimization
using the OPLS4 force field, generating possible states at pH 7.0 ± 0.2 by Epik, generating
tautomers and desalt.

The four GPCR structures were optimized and prepared using the ‘Protein Preparation’
wizard in Maestro Schrödinger [55] with the following options: cap termini, fill missing
side chains, generate het states in pH 7.4 ± 2, the metal ionization state was corrected, and
we deleted all water molecules if there were any. Hydrogens were added and minimized
with an OPLS4 force field. In the H1R structure, we deleted the phosphate ions as well,
even though it affects the binding of some ligands and the stability of H1R [31]. We also
kept isomer E for the grid generation and docking. We kept chain A for the D3R (3PBL [32])
to perform the docking.

3.5.3. Grid Generation and Molecular Docking

The grid box was defined around the ligand binding site in each selected structure,
using Glide’s ‘Receptor Grid Generation’ tool (Schrödinger release 2021–3 [56]). Glide’s
extra precession (XP) docking with flexible ligand sampling was performed.

4. Conclusions

GPCRs are the family of proteins most frequently targeted by approved drugs. Apply-
ing an existing drug to a new indication promises rapid clinical impact at a lower cost than
de novo drug development. Of the approved GPCR-targeted drugs, 33% have more than
one indication, and the overall average is 1.5 indications per drug [57]. Drug repurposing
presents a promising strategy for optimizing the therapeutic potential of existing medicines,
quickly identifying effective treatments, and effectively addressing challenging diseases.
Computational methods play a crucial role in accelerating the drug repurposing process
and potentially revolutionizing the field of drug discovery.

We looked for unknown/new AGANT to suggest repurposing opportunities involv-
ing the six selected GPCR families. The intricate network of drug-target interactions
underscores the complexity and potential of polypharmacology in drug discovery and
repurposing. Our models cover a specific group of receptors and are not a systemic
screening platform.

The screening results identified numerous new actions, which we confirmed by dock-
ing for CB2, H1/3/4, and D3 receptors, potentially addressing unmet medical needs in
neuroinflammation, obesity, allergic dermatitis, and CNS disorders. It is important to
remember that docking has no implication on the action at a receptor but only on the
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chance of binding, which can result in agonism or antagonism, aka AGANT. However,
high-scored molecules will not always be optimal for repurposing as some factors need
to be considered, like the route of administration, the primary indication, and the safety
profile. For example, tetracaine (DB09085) is predicted to be an H3R antagonist. How-
ever, it will not be a choice as it is used as a local anesthetic in the eyes and skin during
medical procedures. Amiodarone (DB01118), an antiarrhythmic drug, will not be used
for neuroinflammation. Moreover, a new indication may have underlying mechanisms
that the repurposed drug does not address effectively. Finding the optimal dosage and
administration route for the new indication may be challenging, potentially leading to
insufficient drug exposure at the target site.

Future work should focus on experimental validation of these computational predic-
tions and further exploration of repurposing opportunities to expedite the development
of effective treatments for various diseases. Integrating computational methods into the
drug discovery pipeline holds promise for enhancing drug development efficiency and
expanding therapeutic options.
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