Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus
Abstract
:1. Introduction
2. Results
2.1. Adropin Level and Expression of GPR19 Receptor in the Pancreas of Normal and Diabetic Rats
2.2. Adropin Treatment Enhanced Glucose Tolerance in Diabetic Rats
2.3. Distribution of Adropin in Pancreatic Endocrine Cells and Its Effect on Pancreatic Peptide Secretion
2.3.1. Pancreatic β-Cell Expression of Adropin and Its Effect on Insulin Secretion
2.3.2. Pancreatic α-Cell Expression of Adropin and Its Effect on Glucagon Secretion
2.3.3. Pancreatic PP-Cell Expression of Adropin and Its Effect on Pancreatic Polypeptide Secretion
2.3.4. Pancreatic D-Cell Expression of Adropin
2.4. Distribution of Adropin in the Cytoplasmic Granules of β- and α-Cells
2.5. Peptide Hormone Analysis
2.6. Insulin and Glucagon Secretion from Pancreatic Tissue Fragments and INS-1 832/3 Rat Insulinoma Cell Line
3. Discussion
3.1. Adropin and GPR19 Are Expressed in Pancreas of Normal and Diabetic Rats
3.2. Adropin Enhanced Glucose Tolerance in Diabetic Rats, but Did Not Change Body Weight and Fasting Blood Glucose
3.3. Adropin Distribution in Pancreatic Islet Cells and Its Effect on Peptide Secretion
3.4. Immunoelectron Microscopy Study of Adropin in Pancreatic Islet Cells
3.5. Effect of Adropin Treatment on Some Peptide Hormones’ Secretion in Normal and Diabetic Rats
3.6. Insulin and Glucagon Secretion from Pancreatic Tissue Fragments and INS-1 832/3 Rat Insulinoma Cell Line Treated with Adropin
4. Materials and Methods
4.1. Animals and Experiment Design
4.2. Blood and Tissue Collection
4.3. Histological Analysis
4.3.1. Immunofluorescence Staining of Paraffin Sections
4.3.2. Immunoelectron Microscopy
4.4. Adropin Levels’ Determination by Enzyme-Linked Immunosorbent Assay (ELISA)
4.5. Hormone Peptide Analysis
4.6. Stimulation of Insulin and Glucagon Secretion from Cell Line and/or Pancreatic Tissue Fragments of Normal and Diabetic Rats Treated with Adropin
4.7. Western Blotting
4.8. Quantification of Images
4.9. Statistical Analysis
5. Conclusions
6. Limitations of the Study and Future Contexts
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S. Type 1 Diabetes: New Perspectives on Disease Pathogenesis and Treatment. Lancet 2001, 358, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.S.; Manzano, A.; Olivar, L.C.; Nava, M.; Salazar, J.; D’marco, L.; Ortiz, R.; Chacín, M.; Guerrero-Wyss, M.; Cabrera de Bravo, M.; et al. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int. J. Mol. Sci. 2021, 22, 9504. [Google Scholar] [CrossRef]
- Quesada, I.; Tudurí, E.; Ripoll, C.; Nadal, Á. Physiology of the Pancreatic α-Cell and Glucagon Secretion: Role in Glucose Homeostasis and Diabetes. J. Endocrinol. 2008, 199, 5–19. [Google Scholar] [CrossRef]
- Ellingsgaard, H.; Ehses, J.A.; Hammar, E.B.; Van Lommel, L.; Quintens, R.; Martens, G.; Kerr-Conte, J.; Pattou, F.; Berney, T.; Pipeleers, D.; et al. Interleukin-6 Regulates Pancreatic Alpha-Cell Mass Expansion. Proc. Natl. Acad. Sci. USA 2008, 105, 13163–13168. [Google Scholar] [CrossRef]
- Liu, Z.; Kim, W.; Chen, Z.; Shin, Y.K.; Carlson, O.D.; Fiori, J.L.; Xin, L.; Napora, J.K.; Short, R.; Odetunde, J.O.; et al. Insulin and Glucagon Regulate Pancreatic α-Cell Proliferation. PLoS ONE 2011, 6, e16096. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 Diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Fineman, M.S.; Cirincione, B.B.; Maggs, D.; Diamant, M. GLP-1 Based Therapies: Differential Effects on Fasting and Postprandial Glucose. Diabetes Obes. Metab. 2012, 14, 675–688. [Google Scholar] [CrossRef]
- Kumar, K.G.; Trevaskis, J.L.; Lam, D.D.; Sutton, G.M.; Koza, R.A.; Chouljenko, V.N.; Kousoulas, K.G.; Rogers, P.M.; Kesterson, R.A.; Thearle, M.; et al. Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism. Cell Metab. 2008, 8, 468–481. [Google Scholar] [CrossRef]
- Stein, L.M.; Yosten, G.L.C.; Samson, W.K. Adropin Acts in Brain to Inhibit Water Drinking: Potential Interaction with the Orphan G Protein-Coupled Receptor, GPR19. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 310, R476–R480. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.; Wang, Y.; Lee, J.T.H.; Huang, Z.; Wu, D.; Xu, A.; Lam, K.S.L. Adropin Is a Brain Membrane-Bound Protein Regulating Physical Activity via the NB-3/Notch Signaling Pathway in Mice. J. Biol. Chem. 2014, 289, 25976–25986. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Kuloglu, T.; Aydin, S.; Eren, M.N.; Yilmaz, M.; Kalayci, M.; Sahin, I.; Kocaman, N.; Citil, C.; Kendir, Y. Expression of Adropin in Rat Brain, Cerebellum, Kidneys, Heart, Liver, and Pancreas in Streptozotocin-Induced Diabetes. Mol. Cell. Biochem. 2013, 380, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S. Three New Players in Energy Regulation: Preptin, Adropin and Irisin. Peptides 2014, 56, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Lovren, F.; Pan, Y.; Quan, A.; Singh, K.K.; Shukla, P.C.; Gupta, M.; Al-Omran, M.; Teoh, H.; Verma, S. Adropin Is a Novel Regulator of Endothelial Function. Circulation 2010, 122 (Suppl. S1), 185–192. [Google Scholar] [CrossRef]
- Kuloglu, T.; Aydin, S. Immunohistochemical Expressions of Adropin and Inducible Nitric Oxide Synthase in Renal Tissues of Rats with Streptozotocin-Induced Experimental Diabetes. Biotech. Histochem. 2014, 89, 104–110. [Google Scholar] [CrossRef]
- Jasaszwili, M.; Billert, M.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Adropin as A Fat-Burning Hormone with Multiple Functions—Review of a Decade of Research. Molecules 2020, 25, 549. [Google Scholar] [CrossRef]
- Zang, H.; Jiang, F.; Cheng, X.; Xu, H.; Hu, X. Serum Adropin Levels Are Decreased in Chinese Type 2 Diabetic Patients and Negatively Correlated with Body Mass Index. Endocr. J. 2018, 65, 685–691. [Google Scholar] [CrossRef]
- Polkowska, A.; Pasierowska, I.E.; Pasławska, M.; Pawluczuk, E.; Bossowski, A. Assessment of Serum Concentrations of Adropin, Afamin, and Neudesin in Children with Type 1 Diabetes. BioMed Res. Int. 2019, 2019, 128410. [Google Scholar] [CrossRef]
- Li, S.; Sun, J.; Hu, W.; Liu, Y.; Lin, D.; Duan, H.; Liu, F. The Association of Serum and Vitreous Adropin Concentrations with Diabetic Retinopathy. Ann. Clin. Biochem. 2019, 56, 253–258. [Google Scholar] [CrossRef]
- Hosseini, A.; Shanaki, M.; Emamgholipour, S.; Nakhjavani, M.; Razi, F.; Golmohammadi, T. Elevated Serum Levels of Adropin in Patients with Type 2 Diabetes Mellitus and Its Association with Insulin Resistance. J. Biol. Today’s World 2016, 5, 44–49. [Google Scholar] [CrossRef]
- Ganesh Kumar, K.; Zhang, J.; Gao, S.; Rossi, J.; McGuinness, O.P.; Halem, H.H.; Culler, M.D.; Mynatt, R.L.; Butler, A.A. Adropin Deficiency Is Associated with Increased Adiposity and Insulin Resistance. Obesity 2012, 20, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Thapa, D.; Xie, B.; Manning, J.R.; Zhang, M.; Stoner, M.W.; Huckestein, B.R.; Edmunds, L.R.; Zhang, X.; Dedousis, N.L.; O’Doherty, R.M.; et al. Adropin Reduces Blood Glucose Levels in Mice by Limiting Hepatic Glucose Production. Physiol. Rep. 2019, 7, e14043. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Shen, T.; Yang, W.; Chen, Q.; Zhang, P.; You, Y.; Sun, X.; Xu, H.; Tang, Y.; et al. Adropin Regulates Hepatic Glucose Production via PP2A/AMPK Pathway in Insulin-Resistant Hepatocytes. FASEB J. 2020, 34, 10056–10072. [Google Scholar] [CrossRef]
- Altamimi, T.R.; Gao, S.; Karwi, Q.G.; Fukushima, A.; Rawat, S.; Wagg, C.S.; Zhang, L.; Lopaschuk, G.D. Adropin Regulates Cardiac Energy Metabolism and Improves Cardiac Function and Efficiency. Metabolism 2019, 98, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; McMillan, R.P.; Zhu, Q.; Lopaschuk, G.D.; Hulver, M.W.; Butler, A.A. Therapeutic Effects of Adropin on Glucose Tolerance and Substrate Utilization in Diet-Induced Obese Mice with Insulin Resistance. Mol. Metab. 2015, 4, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Billert, M.; Jasaszwili, M.; Strowski, M.; Nowak, K.W.; Skrzypski, M. Adropin Suppresses Insulin Expression and Secretion in INS-1E Cells and Rat Pancreatic Islets. J. Physiol. Pharmacol. 2020, 71, 99–104. [Google Scholar] [CrossRef]
- Rossiter, J.L.; Yosten, G.L.C.; Kolar, G.R. GPR183 and GPR19 Activation Improves Pancreatic Alpha Cell-Induced Glucose Homeostasis. FASEB J. 2020, 34 (Suppl. S1), 1. [Google Scholar] [CrossRef]
- Hoffmeister-Ullerich, S.A.H.; Süsens, U.; Schaller, H.C. The Orphan G-Protein-Coupled Receptor GPR19 Is Expressed Predominantly in Neuronal Cells during Mouse Embryogenesis. Cell Tissue Res. 2004, 318, 459–463. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Murai, I.; Goto, K.; Doi, S.; Zhou, H.; Setsu, G.; Shimatani, H.; Okamura, H.; Miyake, T.; Doi, M. Gpr19 Is a Circadian Clock-Controlled Orphan GPCR with a Role in Modulating Free-Running Period and Light Resetting Capacity of the Circadian Clock. Sci. Rep. 2021, 11, 22406. [Google Scholar] [CrossRef]
- Rao, A.; Herr, D.R. G Protein-Coupled Receptor GPR19 Regulates E-Cadherin Expression and Invasion of Breast Cancer Cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2017, 1864, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.R.; Hauser, A.S.; Vedel, L.; Strachan, R.T.; Huang, X.-P.; Gavin, A.C.; Shah, S.D.; Nayak, A.P.; Haugaard-Kedström, L.M.; Penn, R.B.; et al. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2019, 179, 895–908.e21. [Google Scholar] [CrossRef]
- Zafar, M.; Naqvi, S.N.U.H. Effects of STZ-Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. Int. J. Morphol. 2010, 28, 135–142. [Google Scholar] [CrossRef]
- Adeghate, E.; Al-Ramadi, B.; Saleh, A.M.; Vijayarasathy, C.; Ponery, A.S.; Arafat, K.; Howarth, F.C.; El-Sharkawy, T. Increase in neuronal nitric oxide synthase content of the gastroduodenal tract of diabetic rats. Cell. Mol. Life Sci. CMLS 2003, 60, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Elayat, A.A.; El-Naggar, M.M.; Tahir, M. An Immunocytochemical and Morphometric Study of the Rat Pancreatic Islets. J. Anat. 1995, 186, 629–637. [Google Scholar] [PubMed]
- Adeghate, E.; Saeed, Z.; D’Souza, C.; Tariq, S.; Kalász, H.; Tekes, K.; Adeghate, E.A. Effect of Nociceptin on Insulin Release in Normal and Diabetic Rat Pancreas. Cell Tissue Res. 2018, 374, 517–529. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, T.; Richardson, S.J.; Pugliese, A. Pancreas Pathology During the Natural History of Type 1 Diabetes. Curr. Diabetes Rep. 2018, 18, 124. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jun, H.S. Anti-Diabetic Actions of Glucagon-like Peptide-1 on Pancreatic Beta-Cells. Metabolism 2014, 63, 9–19. [Google Scholar] [CrossRef]
- Cryer, P.E. Hypoglycaemia: The Limiting Factor in the Glycaemic Management of Type I and Type II Diabetes. Diabetologia 2002, 45, 937–948. [Google Scholar] [CrossRef]
- Gepts, W.; De Mey, J. Islet Cell Survival Determined by Morphology An Immunocytochemical Study of the Islets of Langerhans in Juvenile Diabetes Mellitus. Diabetes 1978, 27 (Suppl. S1), 251–261. [Google Scholar] [CrossRef]
- Khan, D.; Vasu, S.; Moffett, R.C.; Irwin, N.; Flatt, P.R. Islet Distribution of Peptide YY and Its Regulatory Role in Primary Mouse Islets and Immortalised Rodent and Human Beta-Cell Function and Survival. Mol. Cell. Endocrinol. 2016, 436, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.; Galiatsatos, P.; Salas-Carrillo, R.; Thompson, M.J.; Andersen, D.K.; Elahi, D. Pancreatic Polypeptide Administration Enhances Insulin Sensitivity and Reduces the Insulin Requirement of Patients on Insulin Pump Therapy. J. Diabetes Sci. Technol. 2011, 5, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, Y.; Xiao, M.; Huang, Y.; Qi, M.; Kong, Z.; Chi, J.; Che, K.; Lv, W.; Dong, B.; et al. Impaired Glucose Tolerance Is Associated with Enhanced Postprandial Pancreatic Polypeptide Secretion. J. Diabetes 2022, 14, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Pettway, Y.D.; Saunders, D.C.; Brissova, M. The human α cell in health and disease. J Endocrinol. 2023, 258, e220298. [Google Scholar] [CrossRef] [PubMed]
- Gromada, J.; Høy, M.; Buschard, K.; Salehi, A.; Rorsman, P. Somatostatin Inhibits Exocytosis in Rat Pancreatic α-Cells by Gi2-Dependent Activation of Calcineurin and Depriming of Secretory Granules. J. Physiol. 2001, 535 Pt 2, 519–532. [Google Scholar] [CrossRef]
- Ramracheya, R.; Chapman, C.; Chibalina, M.; Dou, H.; Miranda, C.; González, A.; Moritoh, Y.; Shigeto, M.; Zhang, Q.; Braun, M.; et al. GLP-1 Suppresses Glucagon Secretion in Human Pancreatic Alpha-Cells by Inhibition of P/Q-Type Ca2+ Channels. Physiol. Rep. 2018, 6, e13852. [Google Scholar] [CrossRef]
- Marroquí, L.; Alonso-Magdalena, P.; Merino, B.; Fuentes, E.; Nadal, A.; Quesada, I. Nutrient Regulation of Glucagon Secretion: Involvement in Metabolism and Diabetes. Nutr. Res. Rev. 2014, 27, 48–62. [Google Scholar] [CrossRef]
- Brereton, M.F.; Vergari, E.; Zhang, Q.; Clark, A. Alpha-, Delta- and PP-Cells: Are They the Architectural Cornerstones of Islet Structure and Co-Ordination? J. Histochem. Cytochem. 2015, 63, 575–591. [Google Scholar] [CrossRef]
- Vejrazkova, D.; Vankova, M.; Lukasova, P.; Vcelak, J.; Bendlova, B. Insights Into the Physiology of C-Peptide. Physiol. Res. 2020, 69 (Suppl. S2), S237–S243. [Google Scholar] [CrossRef]
- Kiriyama, Y.; Nochi, H. Role and Cytotoxicity of Amylin and Protection of Pancreatic Islet β-Cells from Amylin Cytotoxicity. Cells 2018, 7, 95. [Google Scholar] [CrossRef]
- Ludvik, B.; Thomaseth, K.; Nolan, J.J.; Clodi, M.; Prager, R.; Pacini, G. Inverse Relation between Amylin and Glucagon Secretion in Healthy and Diabetic Human Subjects. Eur. J. Clin. Investig. 2003, 33, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Chwalba, A.; Dudek, A.; Otto-Buczkowska, E. Role of Amylin in Glucose Homeostasis. Austin Diabetes Res. 2019, 4, 1021. [Google Scholar]
- Hieronymus, L.; Griffin, S. Role of Amylin in Type 1 and Type 2 Diabetes. Diabetes Educ. 2015, 41, 47S–56S. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the Two Incretin Hormones: Similarities and Differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Karra, E.; Chandarana, K.; Batterham, R.L. The Role of Peptide YY in Appetite Regulation and Obesity. J. Physiol. 2009, 587 Pt 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.W.; Batterham, R.L.; Aylwin, S.J.B.; Patterson, M.; Borg, C.M.; Wynne, K.J.; Kent, A.; Vincent, R.P.; Gardiner, J.; Ghatei, M.A.; et al. Attenuated Peptide YY Release in Obese Subjects Is Associated with Reduced Satiety. Endocrinology 2006, 147, 3–8. [Google Scholar] [CrossRef]
- Böttcher, G.; Ahrén, B.; Lundquist, I.; Sundler, F. Peptide YY: Intrapancreatic Localization and Effects on Insulin and Glucagon Secretion in the Mouse. Pancreas 1989, 4, 282–288. [Google Scholar] [CrossRef]
- Holst, J.J.; Gasbjerg, L.S.; Rosenkilde, M.M. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021, 162, 1–10. [Google Scholar] [CrossRef]
- Li, Y.X.; Cheng, K.C.; Liu, I.M.; Niu, H.S. Myricetin Increases Circulating Adropin Level after Activation of Glucagon-like Peptide 1 (GLP-1) Receptor in Type-1 Diabetic Rats. Pharmaceuticals 2022, 15, 173. [Google Scholar] [CrossRef]
- Adeghate, E.A.; Singh, J.; Howarth, F.C.; Burrows, S. Control of Porcine Lacrimal Gland Secretion by Non-Cholinergic, Non-Adrenergic Nerves: Effects of Electrical Field Stimulation, VIP and NPY. Brain Res. 1997, 758, 127–135. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S. Large Reduction in the Number of Galanin-Immunoreactive Cells in Pancreatic Islets of Diabetic Rats. J. Neuroendocr. 2001, 13, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Adeghate, E.; Ponery, A.S. Ghrelin Stimulates Insulin Secretion from the Pancreas of Normal and Diabetic Rats. J. Neuroendocr. 2002, 14, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Ichim, C.; Todor, S.B.; Anderco, P.; Popa, M.L. The Importance of Microbiota and Fecal Microbiota Transplantation in Pancreatic Disorders. Diagnostics 2024, 14, 861. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Feng, H.; Mao, X.-L.; Deng, Y.-J.; Wang, X.-B.; Zhang, Q.; Guo, Y.; Xiao, S.-M. The Effects of Probiotics Supplementation on Glycaemic Control among Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. J. Transl. Med. 2023, 21, 442. [Google Scholar] [CrossRef]
- Xie, X.; Wu, C.; Ma, C.; Gao, D.; Su, W.; Huang, J.; Deng, K.; Yan, D.; Lin, H. Detecting Key Genes Relative Expression Orderings as Biomarkers for Machine Learning-Based Intelligent Screening and Analysis of Type 2 Diabetes Mellitus. Expert Syst. Appl. 2024, 255, 124702. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Kalantari, H.; Rezaei, A.; Maracy, M.R.; Salehi, M.; Bahador, A.; Hassannejad, N.; Narimani, M.; Sanei, M.H.; Bayat, B.; et al. Antidiabetic and Hypolipidemic Effects of Adropinin Streoptozotocin-Induced Type 2 Diabetic Rats. Bratisl. Med. J. 2016, 116, 296–301. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S.; Pallot, D.J.; Singh, J. Distribution of Vasoactive Intestinal Polypeptide, Neuropeptide-Y and Substance P and Their Effects on Insulin Secretion from the in Vitro Pancreas of Normal and Diabetic Rats☆. Peptides 2001, 22, 99–107. [Google Scholar] [CrossRef]
- Lotfy, M.; Singh, J.; Rashed, H.; Tariq, S.; Zilahi, E.; Adeghate, E. Mechanism of the Beneficial and Protective Effects of Exenatide in Diabetic Rats. J. Endocrinol. 2014, 220, 291–304. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Du, C.; Ng, Q.X.; Hu, C.; He, Y.; Ong, C.N. Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Res. 2017, 114, 135–143. [Google Scholar] [CrossRef]
- Chen, L.; Lu, J.; Hu, J.; Gong, X. Unveiling the multifaceted role of adropin in various diseases (Review). Int. J. Mol. Med. 2024, 54, 90. [Google Scholar] [CrossRef]
Adropin Expression in Pancreatic Endocrine Cells in Normal and Diabetic Rats | Effect of Adropin on Serum Levels of Insulin, Glucagon, PP, PYY, GIP, GLP-1, and Amylin in Normal and Diabetic Rats | ||
---|---|---|---|
β-cells | Expressed in normal and diabetic rats | Insulin and PP | No change |
α-cells | Expressed in normal and diabetic rats | Glucagon | Decreased (p > 0.05) |
PP-cells | Expressed in normal and diabetic rats | PYY and GIP | No change |
D-cells | Expressed in normal and diabetic rats | GLP-1 and amylin | Increased (p < 0.05) |
Group | Treatment |
---|---|
Normal untreated (NUT; n = 6) | Vehicle (PBS) |
Normal treated (NT; n = 6) | Adropin (dose: 2.1 μg/kg/day) |
Diabetes mellitus untreated (DMUT; n = 6) | Vehicle (PBS) |
Diabetes mellitus treated (DMT; n = 6) | Adropin (dose: 2.1 μg/kg/day) |
Primary Antibodies | Dilution | Company |
---|---|---|
Adropin (rabbit) | 1:100 | Thermo Fisher, Waltham, MA, USA |
Insulin (guinea pig) | 1:2000 | Dako, Glostrup, Denmark |
Glucagon (mouse) | 1:2000 | Abcam, Waltham, MA, USA |
Somatostatin (mouse) | 1:500 | Thermo Fisher, Waltham, MA, USA |
Pancreatic polypeptide (goat) | 1:100 | Abcam, Waltham, MA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.I.; D’Souza, C.; Tariq, S.; Adeghate, E.A. Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 9824. https://doi.org/10.3390/ijms25189824
Ali II, D’Souza C, Tariq S, Adeghate EA. Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus. International Journal of Molecular Sciences. 2024; 25(18):9824. https://doi.org/10.3390/ijms25189824
Chicago/Turabian StyleAli, Ifrah I., Crystal D’Souza, Saeed Tariq, and Ernest A. Adeghate. 2024. "Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus" International Journal of Molecular Sciences 25, no. 18: 9824. https://doi.org/10.3390/ijms25189824
APA StyleAli, I. I., D’Souza, C., Tariq, S., & Adeghate, E. A. (2024). Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus. International Journal of Molecular Sciences, 25(18), 9824. https://doi.org/10.3390/ijms25189824