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Abstract: Cys is one of the least abundant amino acids in proteins. However, it is often highly
conserved and is usually found in important structural and functional regions of proteins. Its unique
chemical properties allow it to undergo several post-translational modifications, many of which are
mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in
catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of
metabolism and signal transduction. In this review, we discuss Cys post-translational modifications
(PTMs) and their role in plant metabolism and signal transduction. These modifications include the
oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of
disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation,
S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we
discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples
of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and
localization are presented to highlight their importance in the regulation of plant metabolic and
signaling pathways.

Keywords: post-translational modification; cysteine; regulation; signal transduction; metabolism;
thiol; redox modification

1. Introduction

Protein post-translational modifications (PTMs) are chemical or enzymatic modifi-
cations of proteins that can affect various aspects of protein activity through changes in
structure, function, regulation, localization, interactions, or stability, to name a few exam-
ples [1]. A large number of PTMs have been described in plants, which is similar to the
situation for other living organisms [1–5]. Due to their sessile lifestyle, PTMs are especially
important for plants in which they serve as efficient regulatory mechanisms, allowing rapid
and often reversible cellular responses to changes in homeostasis, as well as adjustments
to alterations in metabolism, physiology, or external stimuli [2,5,6]. In plants, one of the
most widespread consequences resulting from modifications in their biotic or abiotic en-
vironment is an alteration in the cell redox status [7–10]. Such changes govern a variety
of redox signaling events that are involved in adjusting plant metabolism or signaling
pathways [7,9,11,12]. Redox signaling notably occurs via the oxidative modification of Cys
residues in proteins [13].

Cys is thought to be a comparatively recent addition to the genetic code [14] and
is involved in important structural and functional regions of proteins [15,16]. Since two
codons translate to Cys, the latter should theoretically represent 3.3% of the amino acids in
proteins [17]. However, it is underrepresented in organisms from all kingdoms of life [17].
Interestingly, the Cys content in proteins increases with the complexity of the organisms,
ranging from 0.4 to 0.5% in Archae to around 2.3% in mammals [17,18]. When it comes
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to photosynthetic organisms, analyses show a similar trend, with a Cys content ranging
from ~1.1% in cyanobacteria to ~1.5% in green algae and ~1.9% in land plants [17–19]. The
vast majority of proteins contain Cys. For instance, more than 92% of total plant protein
sequences contain at least one Cys, with a median of six residues/protein [18]. In most
organisms, the Cys distribution in protein sequences is also peculiar, with a preference
for the CXXC sequence pattern [17]. The CXXC motif is usually found in oxidoreductase
and metal-binding domains [17]. However, in contrast to other organisms, plant proteins
do not exhibit a high level of representation of this specific motif [17]. Cys also displays a
distinctive conservation pattern. In most proteins, Cys is either more than 90% conserved, or
less than 10% conserved, indicating a strong selective pressure to both maintain important
functional Cys and remove other ones [20]. The negative selection of Cys residues appears
to be stronger for isolated Cys present on protein surfaces [20].

Cys has physico-chemical properties that are unique among all protein amino acids.
Its side chain carries a thiol group (-SH), which can deprotonate as a consequence of various
interactions with its environment. This loss of a proton generates a thiolate (-S−), increasing
the nucleophilicity of the side chain [16]. This is a key determinant in Cys reactivity. The
average pKa of protein Cys residues exposed to the solvent is around 7.5, a much lower
value than that of buried Cys (around 9.5). This low pKa contributes to the fact that
surface Cys are much more reactive [20]. Indeed, all protein Cys residues are not equally
reactive. With a pKa value of 8.45 found for free Cys thiols, most iterations of Cys would be
expected to exist in their protonated form [21]. However, the protein microenvironment
can significantly affect Cys thiols’ pKa. For instance, basic amino acids, such as His, Arg
or Lys, and as metal ions adjacent to Cys residues tend to lower the pKa of Cys thiols,
stabilizing its thiolate form and promoting its reactivity [22,23]. The end-positioning of Cys
residues on α-helices is another factor that affects their pKa. It has long been known that
α-helices behave as dipoles [24]. Studies of the thioredoxin superfamily have shown that
the dipole properties of an α-helix, together with the localization of a Cys at the N-terminus
of the helix, contribute to lowering the thiol pKa, thereby enhancing its reactivity [25,26].
Another way by which the protein microenvironment might increase the reactivity of a
thiol group is by decreasing the activation energy during the transition state of the reaction
involving the thiol. This has been demonstrated in the case of mechanistic studies of
thiol/disulfide exchange [27,28]. In enzyme-catalyzed reactions, contrary to a polar solvent,
the hydrophobic environment provided by the protein does not stabilize the reactants in
relation to the reaction transition state. This process reduces the activation energy required
for the reaction to proceed, allowing a faster reaction rate [28].

The reactivity of thiols is a crucial factor responsible for the involvement of Cys
residues in multiple facets of protein function, including folding, catalysis, proteostasis,
and signal transduction [29]. The Cys sulfur atoms possess oxidation states ranging from −2
to + 4 [30,31], allowing a variety of redox post-translational modifications (PTMs). Disulfide
type reversible modifications of Cys residues, such as disulfide bridge or mixed disulfide
with low-molecular-weight thiols, are often referred to as redox or thiol switches [29,32].
These play an important role in the modulation of protein activity, function, and localiza-
tion in response to external stimuli. Redox signaling can involve reactive oxygen species
(ROS), reactive nitrogen species (RNS), reactive carbonyl species (RCS), and reactive sul-
fur species (RSS) [33]. The PTMs of Cys residues include S-sulfenylation, S-sulfinylation
and S-sulfonylation, disulfide bridge (S-S) formation, S-glutathionylation, persulfidation,
S-cyanylation, S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and
thiohemiacetal formation. An analysis of the literature shows the increasing complex-
ity of Cys modifications in plants and reveals evidence of a growing recognition of the
importance of these PTMs in the regulation of metabolism and signal transduction. For
reference, a searchable database catalogs modified proteins and PTM sites in several
model plants (Plant PTM Viewer 2.0, https://www.psb.ugent.be/webtools/ptm-viewer/,
(accessed on 30 July 2024)) [4]. Another database, based on a deep learning framework,
was recently established to facilitate protein Cys modifications in eukaryotes (pCysMod,
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http://pcysmod.omicsbio.info/, (accessed on 30 July 2024)) [34]. Unsurprisingly, many
plant proteins are identified as targets for multiple PTMs. Indeed, since multiple molecules
present in the same cell compartment at the same time are able to interact with reactive
thiols, multiple Cys modifications can compete with each other in vivo, adding a layer of
complexity in the understanding of Cys-mediated signaling in plant cells [33,35–37].

The aim of this review is to provide a comprehensive survey of the various PTMs of
Cys residues identified in plants. For each modification, we evaluate the current state of
knowledge regarding mechanisms facilitating PTM and its reversion, whether spontaneous
or enzymatic. For each PTM, examples of targets involved in metabolism and/or signal
transduction are identified and the implications of the modification in the regulation of these
targets are critically discussed in relation to their function. In some cases, gaps in knowledge
and possible future avenues of research on Cys PTMs in plants are also identified.

2. S-Sulfenylation

Under normal conditions, aerobic metabolic processes, such as photosynthesis and
respiration, constantly produce low levels of ROS as by-products. ROS are present in the cell
in different forms, such as O2

•− (superoxide radical), H2O2 (hydrogen peroxide), and •OH
(hydroxyl radical) [38]. Various biotic and abiotic stresses can disrupt redox homeostasis
by promoting significant increases in ROS, leading to oxidative stress. Basal and stress-
induced ROS production and detoxification in plants have been extensively reviewed
and the reader is therefore invited to consult the relevant publications and references
within [39–48]. ROS greatly differ in their reactivity, diffusion rate, and concentration in
cells [38]. They can also cause a range of reversible and irreversible damage to lipids, DNA,
and proteins, altering their function in cells [41,42]. Although they were initially thought to
be exclusively toxic molecules that lead to oxidative distress, it is now widely recognized
that ROS can also generate oxidative eustress, or ‘good stress’ [49], via essential signaling
functions [33,37,38,50].

2.1. S-Sulfenylation Is Promoted by Oxidative Conditions and Is a Stepping-Stone towards Other
Cys Redox PTMs

Among ROS, H2O2 has the longest half-life and the highest capacity for diffusion [41],
which makes it highly suitable for redox signaling. Indeed, H2O2 acts as a second messen-
ger in plants by diffusing in cells and across membranes via aquaporins, thereby allowing
both autocrine and paracrine signaling [45]. H2O2 is relatively stable and its reaction with
reduced free Cys or glutathione (GSH) is slow compared to some other ROS and RCS [49].
H2O2 generally reacts more easily with protein Cys, but its reactivity for thiol oxidation
is highly dependent on a favorable protein microenvironment reducing the activation en-
ergy [49]. This dependency on protein structure for reactivity determines the specificity of
H2O2-mediated redox signals [49]. Thiolates, which are more reactive than thiols towards
H2O2, can perform nucleophilic attacks on H2O2, causing reversible two-electron oxidation
to sulfenic acid (-SOH) [51], potentially altering enzyme function and activity (Figure 1) [42].
It is noteworthy that, in addition to H2O2, natural or artificial hydroperoxides and peroxyni-
trite can also cause thiol oxidation to sulfenic acid [31,52]. The latter is usually considered
highly unstable and acts as an intermediate towards several Cys redox PTMs (Figure 1A),
including, as discussed below, S-sulfinylation, S-sulfonylation, S-glutathionylation, S-S
formation, or persulfidation [22]. As discussed in Section 3 below, there is also an enzymatic
pathway responsible for the generation of S-sulfenylated Cys. This occurs in instances
where S-sulfinylated Cys can be reduced using sulfiredoxin (SRX) [53]. The stability of the
S-sulfenylated Cys is mainly determined by its molecular environment. The improvement
of sulfenic acid’s stability is caused by decreased solvent accessibility, the absence of a
proximal Cys that could induce the formation of a S-S, and the stabilization of the sulfenate
using an H-bond network with adjacent amino acids [22]. In addition, sulfenic acid has
unique reactivity since it can act both as a nucleophile and an electrophile [31]. For instance,
the nucleophilic reactions of sulfenic acid include its overoxidation to sulfinic acid [31]. For
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this, sulfenic acid performs a nucleophilic attack on H2O2, leading to irreversible sulfinic
and sulfonic forms of oxidation, as discussed below. Electrophilic sulfenic acid reactions
lead, for example, to Cys persulfidation, which involves a reaction with H2S and cannot
occur with a non-oxidized thiolate (see Section 6 below, [54]). Additionally, sulfenic acid
can react with a thiol to create an intramolecular or intermolecular S-S or a mixed disul-
fide [31] (see the S-S and S-glutathionylation sections below). The ability of sulfenic acid
to act as an electrophile has also been exploited by using its reactivity to 5,5-dimethyl-1,3-
cyclohexanedione (dimedone). This highly selective reaction has been used to develop
chemoselective dimedone-based probes, enabling the detection of sulfenylated proteins
in cells [55]. More recently, a more reactive benzo[c][1,2]thiazine-based (BTD) probe [56]
was used to identify the Arabidopsis thaliana (Arabidopsis) sulfenome [57]. Chemoselective
methods for surveying and identifying the different levels of Cys thiol oxidation have been
recently reviewed [58].
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Figure 1. Protein S-sulfenylation in plants. (A): The transition of Cys residues from a thiolate state
to an S-sulfenylated state. A Cys residue (yellow dot) in a deprotonated state (thiolate, S−) (top left
corner) undergoes oxidation to its sulfenic acid form (S-OH) upon exposure to oxidative conditions
caused by reactive oxygen species (ROS). Reductants such as dithiothreitol (DTT), ascorbate (ASC),
and thioredoxin (TRX) have been shown to reverse this reaction. The S-sulfenylated form allows
further Cys modifications, such as the generation of a reversible mixed disulfide using glutathione
(GSH) to yield S-glutathionylation (S-SG); a reaction with a protein Cys in thiolate form to generate a
reversible disulfide bridge (S-S); a reaction with H2S to generate a persulfidation (S-SH); and a higher
degree of oxidation towards the sulfinic acid form (SO2H). The latter reaction can be reversed with
an ATP-dependent sulfiredoxin (SRX). (B): The inhibition of plastidial triose phosphate isomerase
(pTPI) by S-sulfenylation. Under high-H2O2 conditions created by salt stress, pTPI becomes inactive
due to S-sulfenylation. The inability of pTPI to process triose phosphates leads to the formation
of methylglyoxal, which acts as a promoter of H2O2 formation. (C): The regulation of MAPK4 by
S-sulfenylation. MAPK4 is a negative regulator of resistance to Pseudomonas syringae. Under normal
conditions, the protein is active and suppresses resistance to the pathogen. Under oxidative stress
conditions, a Cys residue of the protein’s Common Docking (CD) motif becomes S-sulfenylated,
thereby disrupting MAPK4 function and enabling resistance to the pathogen. See the text for
additional details.
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2.2. S-Sulfenylation Is a Reversible Primary Cys Oxidation

The reversion of Cys thiol oxidation from sulfenic acid back to the thiol form is
possible (Figure 1). This can be achieved in vitro using a variety of reducing agents, such
as dithiothreitol (DTT), arsenite [31], or ascorbate in the case of 1-Cys peroxiredoxins
(PRXs) [59,60]. The pool of ascorbate is normally highly reduced in plants [61]. Thus,
the in vitro activity of ascorbate in the reduction of Cys sulfenic acid may have some
relevance in vivo, although this remains to be seen. Nevertheless, the role of ascorbate
in this process has been known for some time in animals [62]. The reduction of sulfenic
acid can also occur via other mechanisms [63]. Methionine sulfoxide reductase B1 (MSRB1)
is a 1-Cys reductase involved in the reduction of Met sulfoxide back to Met, allowing
proteins that carry oxidized Met to return to their basic state. In the process, the catalytic
Cys of MSRB1 becomes oxidized to sulfenic acid. The reaction of the S-sulfenylated
catalytic Cys with GSH leads to its S-glutathionylation (see Section 5 for mechanistic
details). The S-glutathionylated Cys can then be reduced back to its thiol form using
glutaredoxin (GRX) [63]. The study demonstrated that GRXC4 and GRXS12 can carry
out the reaction in vitro. In addition to GSH, TRX can act as an electron donor for the
reduction of S-sulfenylated Cys. While the latter work showed a lack of capacity for TRXh1
to reduce S-sulfenylated MSRB1 [63], MSRB2 could be used as a substrate. A subsequent
study provided strong evidence that S-sulfenylated MSRB1 could be reduced using TRX
CDSP32 under physiological conditions in a process that involved the formation of an
S-S [64]. More recently, the enzymatic reduction of protein sulfenic acid has also been
demonstrated in vitro for EF-Tu, a redox-sensitive chloroplastic translation elongation
factor of Arabidopsis [65]. The study identified that TRX f 1 mediated the reduction of
S-sulfenylated Cys149. Thus, various pathways may contribute to the conversion of Cys
sulfenic acid into its thiol form, and much remains to be investigated concerning the
possible differences in the efficiency of the various actors involved in the process.

2.3. S-Sulfenylation as a Redox-Control Mechanism in Plant Primary Metabolism

ROS-mediated oxidation modulates the activity of many enzymes involved in
metabolism and stress responses. Cellular oxidative conditions, as discussed above, are
conducive to protein S-sulfenylation. A survey of the Arabidopsis cell culture, sulfenylome,
revealed that more than 1000 proteins were S-sulfenylated in response to treatments with
H2O2 (up to 400 µM), with an average of 1.5 modifications/protein [57]. The study noted
a particularly significant enrichment in protein classes belonging to important metabolic
pathways, while several S-sulfenylated sites were predicted or proved to have functional
importance. Among these in vivo targets, cytosolic glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) had been previously shown to be strongly inhibited by H2O2 [66]. In
the case of GAPDH, S-sulfenylation can also lead to inhibitory S-glutathionylation (see
below). A decrease in cytosolic GAPDH activity, such as that documented in an Arabidopsis
knockout line, leads to decreased ATP and tricarboxylic cycle intermediate pools [67]. This is
consistent with the fact that oxidative stress generally inhibits several aspects of respiratory
metabolism [6]. Moreover, in plants and other systems, the oxidative inhibition of triose
phosphate metabolism enzymes in glycolysis has been linked to a redirection of C flux to
the oxidative pentose phosphate pathway (OPPP) involved in NADPH generation. [6,68].
This can be used by enzymes in the redoxin family in order to restore redox homeostasis.
The evolutionary conservation of this redox-controlled metabolic switch between glycolysis
and the OPPP may indicate the strategy has an ancient origin.

Lately, there have been other examples illustrating the potential for Cys S-sulfenylation
to act as a regulatory mechanism for metabolic enzymes in the chloroplast. An initial
investigation showed that the plastidial triosephosphate isomerase in Arabidopsis is in-
hibited by Cys74 S-sulfenylation, resulting from H2O2 accumulation induced by salt stress
(Figure 1B) [69]. A consequence of this inhibition was an accumulation of methylglyoxal [69],
which is known to promote H2O2 formation [70], thus creating a feedback loop. More
recently, the examination of the redox properties of plastidial NAD-dependent malate dehy-
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drogenase revealed four redox-active Cys [71]. It was determined that, following in vitro ox-
idative treatment, a great proportion of Cys129 was S-sulfenylated. This residue was further
found to be responsible for the reversible oxidative inhibition of the enzyme using a directed
mutagenesis study. Interestingly, reduced or oxidized nicotinamide adenine dinucleotide
cofactors offered a relatively high level of protection against plastidial NAD-dependent
malate dehydrogenase inhibition [71]. This proposed S-sulfenylation regulatory mechanism
could impact stromal compartment dicarboxylate metabolism in a redox-dependent manner.
However, this remains to be further established using in vivo approaches.

2.4. Involvement of Protein S-Sulfenylation in Stress Signal Transduction

In the past years, several proteomic surveys have illustrated the importance of
S-sulfenylation-dependent mechanisms in plant stress signaling [57,72–74]. Current ap-
proaches to study this topic take advantage of the above-mentioned dimedone-based sulfe-
nate probes in vivo. A recent publication illustrates the role played by the Respiratory Burst
Oxidase Homolog (RBOH) in protein S-sulfenylation during the response to pathogens [74].
The RBOH is a plasma membrane-localized NADPH oxidase that generates O2

•− in the
apoplast [75]. H2O2 is then formed upon the detoxification of O2

•− by a superoxide dismu-
tase present in the extracellular space [76]. RBOH is an important player involved in the
recognition of Pathogen-Associated Molecular Patterns (PAMPs) [77]. Upon recognition by
pathogen-derived signals, plasma membrane receptors trigger a phospho-relay signaling
cascade that leads to the activating phosphorylation of RBOH by Ca2+-dependent protein
kinases and Botrytis-induced kinase 1 (BIK1) [77,78]. Mitogen-activated protein kinase
(MAPK) cascades are also activated in this process, resulting in the transcriptional activa-
tion of PAMP-related genes [79]. ROS production, occurring during pathogen-triggered
RBOH activation, plays a role in setting off cellular oxidative conditions that govern
plant pathogen responses. This can lead to hormonal signaling, metabolic reprograming,
protein redox-PTMs, or cell death related to a hypersensitive response (HR) [74,80]. In
Nicotiana benthamiana, pathogen-derived signals induced a dramatic increase in protein S-
sulfenylation, which was attenuated by the silencing of RBOHB [74]. This strongly supports
the idea that RBOH has an important role in the control over S-sulfenylation in response
to pathogen stress. The study further demonstrated that pathogen signals induced HR in
leaves; this process was sensitive to dimedone. Since, as stated earlier, dimedone reacts
with S-sulfenylated residues, it was concluded that signaling via S-sulfenylation is key for
the HR in response to pathogens.

MAPK cascades mediate signal transduction in response to pathogens and a variety
of other stresses in plants. Several MAPKs are activated as a result of an increase in cellular
or extracellular H2O2 or other oxidative conditions [75]. In most cases, however, the
underlying mechanistic details remain to be established. Arabidopsis proteomic surveys,
aiming to identify in vivo targets of S-sulfenylation, revealed that several MAPKs, in
particular MAPK4, are modified in response to H2O2 [57,72]. Following the exposure of
the Arabidopsis cell culture to H2O2, MAPK4 was shown to be modified at Cys181, which
resides in the Common Docking (CD) motif, a signature MAPK protein interaction domain
(Figure 1C) [57]. Using a site-directed mutagenesis approach, Cys181 was demonstrated to
be critical for in vitro maximal kinase activity [57]. Further analyses were conducted using
transgenic plants transformed with MAPK4 variants, where Cys181 was replaced by Ser
(oxidation-insensitive) or Asp (putative S-sulfenylation-mimic) variants [81]. This study
demonstrated that the mutation of Cys181 into Asp disrupted the proper function of the
CD domain and that Cys181 is essential for adequate signal transduction in vivo. MAPK4
is involved in mediating plant responses to cold, salt, and pathogens, as well as to cell
division [82–84]. In particular, MAPK4 is a known suppressor of resistance to Pseudomonas
syringae [82]. A transgenic plant carrying the Cys181-to-Asp variant phenocopied a mapk4
insertion line, while the one carrying the Cys181-to-Ser variant behaved as the WT [81].
The study also further documented the importance of MAPK4 Cys181 in plant growth
and development. The studies discussed above offer evidence that S-sulfenylation is an
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important mode of signal transduction in plants and the approaches used in these works,
including the use of S-sulfenylation-mimic variants, offer potent tools with which to study
the in vivo relevance of this redox PTM. Nevertheless, while significant progress has been
made, the component(s) involved in the reduction of Cys181 remain to be identified.

3. S-Sulfinylation and S-Sulfonylation

Sustained oxidative conditions can lead to the spontaneous overoxidation of sulfenic
acid to sulfinic and sulfonic acid forms, which are typically associated with oxidative dis-
tress (Figure 2A). The production of sulfonic acid, which is the most highly oxidized species
of thiol, is completely irreversible. Sulfinate’s level of oxidation is generally irreversible,
except in the specific case of PRXs. The latter are thiol-dependent enzymes that decompose
peroxides using a peroxidatic (catalytic) Cys (CysP) (Figure 2B) [53]. During the catalytic
cycle of a PRX, its CysP becomes oxidized to the sulfenic acid form, which is normally
reduced using a resolving Cys (CysR) [85]. This leads to the formation of an S-S between
CysP and CysR, which is further reduced by thioredoxin (TRX) to complete the catalytic
cycle [85,86]. Interestingly, under oxidative conditions, sulfenic CysP can become further
oxidized to a sulfinic acid [53,85]. Such overoxidized CysP is catalytically inactive, but
can be reduced by an ATP-dependent SRX [87,88], which returns the CysP to its sulfenic
form [53,85]. However, upon overoxidation, plant PRX oligomerizes and acquires a novel
function as a chaperone (Figure 2B) [86,89], as documented in other systems [90]. This
chaperone activity in overoxidized, high-molecular-weight PRX has been documented
in vitro when using insulin and citrate synthase as substrates [91,92]. The physiological
relevance of PRX overoxidation and oligomerization has been studied. In most physio-
logical stress condition, there is little change in PRX status, whereas treatment with the
herbicide methyl viologen, an efficient ROS inducer [93], can effectively increase PRX’s
molecular weight [94]. In addition, PRX can be modified by other PTMs in ways besides
overoxidation [53,95]. Thus, further research will be needed to understand the interplay
between PRX PTMs, stress conditions, and PRX functions.

In addition to the above-described non-enzymatic oxidation of sulfenic acid, plant
cysteine oxidases (PCOs) can catalyze the addition of two oxygen atoms to a thiol group
to form a sulfinic acid [96]. PCOs can be classified into two groups [97]. Group A PCOs
are ubiquitous in plants and are not regulated by O2 tension, whereas the PCOs of Group
B are specific to spermatophytes and induced by O2 deficiency [97]. In Arabidopsis, a
family of five PCOs (AtPCO1 to AtPCO5) has been described, with a high affinity for Cys
residues localized at the N-termini of proteins [96]. While a systematic identification of
PCO targets needs to be conducted, recent progress has been made in the resolution of
the structure of PCOs and the elucidation of their catalytic mechanisms [98,99]. So far, the
evidence suggests that PCOs from Group A (e.g., AtPCO4 and AtPCO5) and Group B (e.g.,
AtPCO2) have significant similarities in terms of the structure of their catalytic sites, with a
cupin-like double-stranded β-helix containing a triad of His residues that coordinate metal
cofactors [98,99]. PCOs are involved in the oxidation of the N-terminal Cys residues of
specific proteins, leading to N-degron pathway-dependent proteolysis. The oxidation of
N-terminal Cys to the sulfinic acid form can lead to protein destabilization and degradation
through the N-end rule pathway, which is conserved in mammals, bacteria, and plants [100].
Indeed, the overoxidation of N-terminal Cys is required for its arginylation, which then
induces proteosomal degradation [100,101]. The role of Cys oxidation in the N-end rule
pathway in plants was recently reviewed [102].
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Figure 2. Protein S-sulfinylation and S-sulfonylation in plants. (A): The transition of Cys residues
from thiol to S-sulfonylated state. When fully protonated (left), Cys residues (yellow dots) are in the
thiol state (SH). Depending on conditions prevailing in the environment, the thiol can deprotonate to
form a nucleophilic thiolate (S−) sensitive to oxidation by H2O2 treatment. Sequential oxidations
of the thiolate by H2O2 (left to right) lead to its S-sulfenylation (SOH), S-sulfinylation (SO2H), and
S-sulfonylation (SO3H). The last step is considered irreversible. (B): The modulation of peroxiredoxin
functions by the oxidation status. Peroxiredoxin (PRX) detoxifies H2O2 to H2O using peroxidatic
(catalytic) Cys (CysP). The reaction oxidizes CysP to its sulfenic acid form, which can be reduced
back with the help of thioredoxin (TRX). In the presence of H2O2, the sulfenylated CysP can be
further oxidized to a sulfinic acid. This step is reversible in a reaction catalyzed by sulfiredoxin (SRX).
Sulfinylated PRX can lead to the formation of an oligomeric, catalytically inactive PRX displaying
in vitro chaperone functions. (C): The involvement of plant cysteine oxidases in O2 status signal
transduction. The transcription factor RAP2.12 positively regulates plant gene expression in response
to hypoxia. Under normoxic conditions, RAP2.12 has low stability because it is oxidized by a plant
cysteine oxidase (PCO), leading to sulfinylation of N-terminal Cys, which is then arginylated by a
tRNA-ARGINYL-TRANSFERASE (t-RNA AT). This process leads RAP2.12 to be degraded by the
proteasome. Under hypoxia conditions, PCO is inactivated. This leads to the stabilization of RAP2.12,
allowing the promotion of hypoxic-responsive gene expression. See the text for additional details.

The implication of Cys oxidation via PCOs in the signal transduction of oxygen defi-
ciency is supported by studies on RAP2.12, a member of group VII ETHYLENE RESPONSE
FACTORs (ERF-VIIs) (Figure 2C). ERF-VIIs are important transcription factors that pro-
mote the response to low O2 stress (hypoxia) [103]. They contain a highly conserved
Cys residue at the N-terminal [104]. In Arabidopsis, when O2 becomes limiting for the
maintenance of aerobic metabolism, AtPCO1 and AtPCO2 become less efficient for the
oxidation of RAP2.12. The kinetic properties of AtPCOs make them less active under the
physiological conditions prevailing in the hypoxic cell (pH, O2 concentrations), making
them excellent candidates to act as plant O2 sensors [105]. Thus, under normoxic conditions,
PCOs are active and oxidize the N-terminal Cys residue of ERF-VIIs, thereby promoting
their arginylation by tRNA-ARGINYL-TRANSFERASE and their degradation by the pro-
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teasome [98,106,107]. Low O2 availability lowers PCO activity, resulting in the increased
stability of ERF-VIIs, which can then fulfill their function as transcriptional activators of the
hypoxic response [107]. Furthermore, it was recently demonstrated that this PCO/ERF-VII
pathway is under the control of the metabolic energy sensor ‘Target Of Rapamycin’ through
a mechanism that allows the coordination of ERF-VII-mediated responses to hypoxia with
the energy status of the cell [108].

Oxygen sensing and signaling, achieved via PCO and the Cys/Arg branch of the N-
degron pathway, also play important roles in plant development [109]. Indeed, due to the
lack of internal O2 transport, plant tissues display diffusion-dependent O2 gradients and
some tissues, such as the shoot apical meristem (SAM), are normally in hypoxic state [109].
This situation may allow O2 concentration-dependent stabilization of transcription factors
in different cell types and, thus, the regulation of plant development [110], as documented
in the case of LITTLE ZIPPER 2 (ZPR2) [109]. ZPR2 has a conserved Cys at position 2 and is
a substrate of PCO after the removal of the N-terminal Met by a Met-aminopeptidase [109].
ZPR2 functions as an activator of leaf initiation. It acts by regulating class-III homeodomain-
leucine zippers (HD-ZIP III), which are necessary to initiate new primordia from SAM. Thus,
hypoxic conditions prevailing in the SAM stabilize ZPR2 and regulate SAM activity [109].

Another important plant process regulated by the overoxidation of Cys and the N-end
rule pathway is vernalization. Recombinant AtPCO1-5 can catalyze VERNALIZATION
2 (VRN2) oxidation to sulfinic acid in its N-terminal Cys2 residue in vitro [111], leading
to its destabilization and degradation. VRN2 is a major regulator of vernalization in
Arabidopsis [112]. It is constitutively expressed and stays enclosed in the meristems in
aerobic conditions and warm temperature [111]. Low temperatures reduce O2 diffusion
and therefore its availability for both respiration and the enzymatic activity of PCOs. The
cold also inhibits PCO activity and VRN2 oxidation [111]. These conditions lead to VRN2
stabilization and its subsequent accumulation in plant organs in response to hypoxia and
long-term cold exposure [111]. PCOs therefore contribute to stress response signaling
during hypoxia and cold exposure. Hence, the regulation of transcription factor stability
by catalyzed overoxidation provides an example of how, despite being usually associated
with oxidative distress, S-sulfinylation can play essential roles in oxidative eustress.

4. Disulfide Bridge Formation

Two protein Cys residues can form a covalent bond called S-S (Figure 3). The impor-
tance of S-S as a key element in protein structure and function has long been recognized. A
number of kinetically distinct pathways involving inter- or intramolecular reactions can
lead to their generation [113]. These include (i) two-electron Cys oxidation; (ii) one-electron
Cys oxidation, involving the formation of a thiyl radical; and (iii) thiol disulfide exchange
with a preformed S-S. In order for such covalent bonding to occur, the two intervening Cys
residues must come into close proximity (within a few nm) [114]. Once formed, the S-S is
a stable covalent bond between two sulfur atoms. Interestingly, the distance between the
sulfur atoms is significantly lower for stable structural disulfides compared to reversible,
usually regulatory ones (respectively, 2.05 Å vs. 2.18 Å) [115]. The generation of the S-S can
be facilitated by the thiolation of one of the Cys residues [28,113]. It can also be promoted
by the S-glutathionylation of one Cys, which can promote S-S formation with an adjacent
Cys [116] or the S-nitrosation of an adjacent Cys (see S-glutathionylation and S-nitrosation
sections below). As well, an oxidative environment, such as the conditions prevailing in
the lumen of the eukaryotic endoplasmic reticulum (ER), favors S-S formation and proper
protein folding [113,117]. The pathways and mechanisms of oxidative protein folding
have recently been thoroughly reviewed for plants [118]. In the ER lumen, the oxidative
protein folding of nascent proteins is catalyzed by protein disulfide isomerase (PDI). This
process consists of a disulfide relay system in which PDI is first oxidized by an oxidized
ER oxidoreductin (ERO) [119]. ERO uses O2 as an electron acceptor, producing H2O2 in
the process. Reduced PDI can also catalyze the reduction of S-S in misfolded proteins
(Figure 3A) [120].
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Figure 3. Reversible disulfide bridge formation in plants. (A): The reversible formation of disulfide
bridge (S-S). Oxidative conditions promoted by ROS and oxidized protein disulfide isomerase (PDIox)
in the endoplasmic reticulum favor S-S formation between two adjacent Cys iterations (yellow dots).
Thioredoxin (TRX) and glutaredoxins (GRX) reduce S-S concomitantly with the consumption of
reducing power (e−). In the ER, reduced PDI (PDIred) can reduce S-S on misfolded proteins. (B): The
importance of disulfide bridge formation for metabolic regulation in the light and the dark. In the
light (white background), the photosynthetic electron transport chain (ETC) generates reducing
power for the reduction of thioredoxins (TRXs) via ferredoxin (Fd) and ferredoxin thioredoxin reduc-
tase (FTR). Reduced TRX reduces disulfide bridges in targets in the chloroplast stroma. Activated
targets (pointed arrow) include enzymes of the Calvin–Benson–Bassham (CBB) cycle: fructose-1,6-
bisphosphatase (FBPase); sedoheptulose-1,7-bisphosphatase (SBPase); phosphoribulokinase (PRK);
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The oxidative pentose phosphate path-
way enzyme glucose-6-phosphate dehydrogenase (G6PDH) is inactivated (blunted arrow). At the
onset of dark conditions (gray background), targets become oxidized (S-S). In these conditions,
reduced TRX becomes inactive by transferring electrons to 2-Cys peroxiredoxin (2CP), thereby termi-
nating the activation of CBB cycle enzymes. Note that, in the light, 2CP detoxifies H2O2 generated
at the level of ETC and is maintained reduced by NADP-thioredoxin reductase C (NTRC) using
photosynthetic NADPH. Subscript red and ox, respectively, symbolize reduced and oxidized states.
See the text for additional details.

S-Ss notably contribute to maintaining protein structure and stability [15], but also
serve vital regulatory purposes [121]. An important aspect of the latter function is the
dynamic and reversible nature of S-S formation. Disulfide stability in proteins varies
depending on a few parameters, one of which is the dihedral angle of the bond [28]. This
feature is influenced by the tertiary structure of the protein. The most stable angle is found
at 90◦, and there is increasing strain on bonding as the angle diverges from this value [28].
However, the most important impact on disulfides in proteins is due to redox mechanisms
responsible for S-S formation via oxidation and their elimination via reduction (Figure 3A).
Since the early works on plant enzyme redox modifications, it has been recognized that
S-S reduction is mainly catalyzed by thioredoxins (TRXs) [122]. The Arabidopsis genome
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contains 41 TRX genes [123]. The plant TRX system and its role in metabolism and signaling
has been a major area of research and the subject of several extensive reviews in recent
years; therefore, the reader is directed to these resources for a more complete overview
of the topic [124–127]. In addition to TRXs, there is now evidence that GRXs can reduce
protein S-S [128]. Several reaction mechanisms using GSH as a reductant, have been
proposed [128].

4.1. Disulfide Bridge Reduction Is an Important Regulatory Mechanism That Links Light
Harvesting and CO2 Fixation in the Chloroplast

The redox regulation of metabolic enzymes by reversible S-S generation provides
sensing of environmental conditions and is especially important in the chloroplast stroma
(Figure 3B). This compartment contains the assimilatory enzymes of the Calvin–Benson–
Bassham (CBB) cycle, as well as enzymes of the glycolysis and the pentose phosphate
pathway (PPP), which use the products of photosynthesis. Plants thus need strict control
over these enzymes in order to quickly tune CO2 fixation to changes in excitation pres-
sure and to the light/dark cycle [129,130]. Four CBB cycle enzymes are redox-regulated
through reversible S-S formation: phosphoribulokinase (PRK) [131,132], heterotetrameric
GAPDH [133], fructose-1,6-bisphosphatase (FBPase) [134], and sedoheptulose-1,7-
bisphosphatase [135]. In all cases, enzyme activity is inhibited by S-S formation in dark con-
ditions. In addition, homotetrameric GAPDH and PRK are also regulated by interactions
with the redox-sensitive CP12 scaffold protein [136]. In this instance, S-S formation on CP12
serves to initiate an interaction between GAPDH, bound to NAD+, and CP12; this results in
a small decrease in GAPDH activity [137]. The formation of a ternary PRK/GAPDH/CP12
complex is then possible with oxidized PRK, resulting in a much larger decrease in activity
for both enzymes [137]. Upon illumination, the chloroplast electron transport chain pro-
vides electrons for the subsequent reduction of ferredoxin (Fd), used by Fd-dependent TRX
reductase (FTR), to reduce TRX [126,138]. Through a disulfide exchange mechanism, the
TRX system mediates the reduction of S-S on target enzymes [126]. A comparative study of
the reduction of different targets by the FTR/TRX system suggests that the final electron
transfer from TRX to the target enzyme is a rate-limiting step in this redox regulatory pro-
cess [139]. As noted above, CBB-cycle enzymes are activated by S-S reduction. In contrast,
the first enzyme in the PPP, plastidic glucose-6-phosphate dehydrogenase, is activated
upon the formation of an S-S between Cys149 and Cys157 [140]. This oxidation promotes a
change in conformation that improves enzyme efficiency. Conversely, the reduction of S-S
mediated by reduced TRX f 1 deactivates the enzyme.

4.2. Disulfide Bridge Formation in the Chloroplast under Dark Conditions

As illustrated above, the reduction of chloroplasts enzymes upon illumination is
relatively well characterized. However, oxidation mechanisms upon a switch to dark condi-
tions remain poorly understood. Nonetheless, recent studies are providing information that
help in the identification of players responsible for the oxidation of reduced targets in the
dark (Figure 3B). As seen above, chloroplast redox regulation is highly dependent on TRXs,
which must be reduced to catalyze target disulfide reduction in the light. In chloroplasts,
there is a second redox pathway, which uses NADPH-dependent TRX reductase C (NTRC).
NTRC is implicated in the antioxidant capacity of chloroplasts by reducing 2-Cys peroxire-
doxins (2CPs), which are oxidized while scavenging H2O2 [141]. Additionally, 2CPs can be
reduced, although less efficiently, by another plastidic TRX [142]. In the Arabidopsis ntrc
mutant, the reduction of 2CPs is therefore mediated by the Fd/FTR/TRX system, which
causes a depletion in reduced TRX, indirectly affecting the regulation of TRX targets [142].
Decreasing the level of 2CPs in the ntrc mutant background enabled the recovery of the
WT phenotype, indicating the important role of NTRC in chloroplast redox homeostasis,
i.e., regulating 2CPs [142]. Furthermore, a study using genetically encoded redox probes
provided further support for the key role of 2CPs in the oxidative inhibition of CBB cycle
function [143]. Thus, the Fd/FTR/TRX system for the regulation of CBB cycle enzymes
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and NTRC/2CPs for H2O2 detoxification are linked by the redox status of 2CPs [142]. By
draining electrons from TRXs, 2CPs allow the fast oxidation of TRXs in the dark, enabling
the inactivation of CBC enzymes within 15 min of darkness [144].

5. S-Glutathionylation

Glutathione synthesis and degradation in plants were recently extensively reviewed [47].
Briefly, the Glu–Cys ligase (GSH1) conjugates the γ-carboxyl group of Glu and the amino
group of Cys. Glutathione synthase (GSH2) then uses the resulting γ-glutamylcysteine and
Gly to produce glutathione. GSH2 activity is present in the cytosol and the plastid, whereas
the step catalyzed by GSH1 is solely localized in the chloroplast and redox-regulated [47].
Thus, glutathione synthesis is linked to the plastid redox state. This sensitivity to redox
is mediated by the formation of intramolecular S-S between Cys178 and Cys398, which
activates Arabidopsis GSH1 and has been proposed to act as a redox switch for glutathione
synthesis [145].

Glutathione is usually present in mM concentrations in plants, mostly in its monomeric
reduced form (GSH) [47]. Oxidative stress promotes the accumulation of its dimeric
oxidized form (GSSG). GSSG can be recycled to its reduced form by glutathione reductase
(GR), using the reducing power of NADPH [47]. GSH is involved in the cellular redox
buffer and the provision of electrons to the Foyer–Halliwell–Asada cycle during H2O2
detoxification [48]. The value of the GSH/GSSG ratio is therefore linked to the removal
of H2O2. In absence of stress, this ratio is normally very high [48]. The maintenance of
an appropriate GSH/GSSG ratio is dependent on GRs. Indeed, the lack of this activity in
the cytosol or organellar compartments leads to the accumulation of GSSG, which can be
documented using genetically encoded redox sensors [146,147].

A low cellular GSH/GSSG ratio promotes Cys S-glutathionylation [48,51]. This for-
mation of a mixed S-S between glutathione and an accessible protein Cys residue can
occur spontaneously [6]. However, with a pKa of 8.8, GSH is highly protonated and thus
weakly reactive in the physiological pH range, especially towards thiols [148]. Thus, the
S-glutathionylation reaction (Figure 4A) can involve GSH and a sulfenic acid, or result from
a disulfide exchange between GSSG and a thiolate residue [6,148,149]. Nitrosoglutathione
(GSNO) has also been shown to act as a mediator of protein S-glutathionylation [150].
When tested as an S-glutathionylation agent, GSNO was differently effective on vari-
ous targets [150]. In animals, S-glutathionylation appears to be at least partially cat-
alyzed. A study on human glyoxalase II revealed that this enzyme could mediate the
in vitro S-glutathionylation of specific targets [151]. The involvement of glyoxalase II
in S-glutathionylation has not been explored in plants so far. In addition, animal glu-
tathione S-transferase Pi (GST Pi) also promotes protein S-glutathionylation in vivo and
in vitro [152]. In contrast to animals, plants lack GST Pi [153]. There is nevertheless a
study that has documented the catalysis of S-glutathionylation in plants. In this research,
plant GRXC2 stimulated the S-glutathionylation of the Leu-rich receptor Ser/Thr protein
kinase BAK1, using GSSG as substrate [154]. By this means, GRXC2 inhibited BAK1 ki-
nase activity [154]. This mechanism could potentially allow the redox regulation of the
brassinosteroid signaling pathway, in which BAK1 is active [154,155]. However, the in vivo
significance of BAK1 S-glutathionylation remains to be established. There are several
examples of the regulatory role of protein S-glutathionylation in glycolytic and respiratory
metabolism, as reviewed recently [6].
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deglutathionylation and regulation by S-glutathionylation. S-glutathionylation (S-SG) occurs on
deprotonated (S−) Cys (yellow dot) in a glutaredoxin (GRX)-catalyzed reaction with oxidized glu-
tathione (GSSG), or spontaneously in a reaction involving nitrosoglutathione (GSNO). It can also occur
spontaneously between sulfenylated Cys (S-OH) and reduced glutathione (GSH). Deglutathiony-
lation is catalyzed by GSH-dependent GRX or by thioredoxin (TRX). The S-glutahionylation of a
Cys residue protects the protein from ROS-dependent oxidation towards the S-sulfinylated form
(-SO2H, top of the panel). S-glutathionylation protects α-amylase 3 (AMY3) from overoxidation and
inhibits its activity towards starch degradation. AMY3 activity is recovered after stress. It also has an
inhibitory effect on cytosolic NADP-dependent isocitrate dehydrogenase (cICDH), which is active in
nitrogen assimilation. (B): The involvement of the S-glutathionylation of SAL1 in expression of plastid
redox-associated nuclear genes. SAL1 is a 3′-phosphoadenosine 5′-phosphate (PAP) phosphatase
that controls the degradation of PAP to AMP in the chloroplast. In oxidative stress conditions, the
S-glutathionylation of SAL1 induces the formation of an intramolecular disulfide bridge (S-S) which
participates in increasing PAP levels. According to a model, PAP is exported to the nucleus, where it
binds to a 5′–3′ exoribonuclease (XRN) involved in the inhibition of RNA polymerase II (RNA polII)
transcription of plastid redox-associated nuclear genes (PRANGs). PAP binding to XRN relieves the
inhibition of RNA polII, allowing PRANG transcription. See the text for additional details.

S-glutathionylation is fully reversible (Figure 4A). In vitro, strong reductants such as
DTT are commonly used to induce non-enzymatic protein deglutathionylation [66,156].
In vivo, reducing conditions such as a high GSH/GSSG ratio promote the removal of
glutathione (deglutathionylation) [157]. A study on human PDIs showed a limited capacity
for deglutathionylation in vitro [158]; however, this has not been explored in plants. Some
evidence for protein deglutathionylation by cyanide has also been provided in mammalian
cells [159]. However, so far, this possibility does not appear to have been reported in
plants. Deglutathionylation is most likely catalyzed by GRXs in vivo [48,160,161]. Plant
genomes encode large GRX gene families, ranging from approximatively 30 genes in
Arabidopsis, Oryza sativa (rice), and Populus trichocarpa (poplar) to 85 in Triticum aestivum L.
(wheat) [162,163]. Two catalytic mechanisms have been described for the removal of the
glutathione moiety on proteins by GRXs [160]. The reduction of the mixed S-S between
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glutathione and a protein first involves a nucleophilic attack of the modified Cys by a
thiolated GRX Cys active site. In the monothiol mechanism, the resulting S-glutathionylated
GRX is subsequently reduced by GSH, generating GSSG in the process. In the dithiol
mechanism, a second Cys attacks the mixed S-S between the GRX and the glutathione,
resulting in the formation of an S-S between the two Cys of the GRX and the liberation of
GSH. The reduction of the S-S on the GRX later allows it to become active in a new catalytic
cycle. In addition to GRXs, TRXs have also been implicated in the deglutathionylation
of plant proteins in vitro [66,161]. TRXs and GRXs are related proteins involved in thiol–
disulfide exchange [164]. Their substrate specificity is considered to be broad, and they
may exhibit some limited overlap. The precise determinants of GRX and TRX substrate
specificity remain poorly understood, and will need to be better characterized in the future.
Nevertheless, a recent modeling study has shown that electrostatic complementarity could
play an important role in determining interactions between the different redoxin isoforms
and their interaction partners [165]. Studies conducted in vitro on two Arabidopsis cytosolic
GAPDH isoforms show that TRX can catalyze the deglutathionylation of GAPDH in a
GSH-independent manner, although less efficiently than GRX [66].

5.1. S-Glutathionylation as a Means of Protecting Metabolic Enzymes against
Irreversible Oxidation

Because of its reversibility, and the fact that deglutathionylation restores an intact
thiol, S-glutathionylation has long been recognized as a means of protecting protein Cys
against the irreversible oxidation of thiols due to S-sulfonylation (Figure 4A) [149,166].
This protective function has been documented for plant metabolic enzymes. Between
a few tens and a few hundreds of proteins have been identified as S-glutathionylation
targets in various plant proteomic surveys [167–171]. Among these, metabolic enzymes are
usually abundantly represented. An example of S-glutathionylation serving as a protective
mechanism against irreversible oxidation comes from a study of ascorbate peroxidases
(APXs) in the red alga Galdieria partita and in Nicotiana tabacum (tobacco) [172]. APX is
responsible for H2O2 detoxification in the Foyer–Halliwell–Asada cycle, but may become
inactive in absence of ascorbate due to irreversibly oxidized Cys residues [172]. The
S-glutathionylation of several APX Cys residues was demonstrated in vitro in the presence
of H2O2 and GSH, and it was suggested that S-glutathionylation has a protective role under
oxidative stress conditions in vivo [172]. S-glutathionylation was also shown to protect
Arabidopsis chloroplastic α-amylase 3 (AMY3) activity from overoxidation in vitro [161]. It
is thought that this mechanism could allow the recovery of AMY3 function (stress-induced
starch degradation) after exposure to oxidative conditions generated under stress [161].
Excess H2O2 can also cause the irreversible inactivation of GAPDH, a key glycolytic enzyme
which is also involved in signaling. This enzyme possesses a catalytic Cys that is highly
sensitive to inactivation by H2O2. In this case also, S-glutathionylation was shown to
mitigate the effects of oxidative distress in vitro [66].

5.2. Metabolic Enzymes Targeted by Regulatory S-Glutathionylation under Oxidative Conditions

There are numerous examples of S-glutathionylated enzymes in plant primary
metabolism. As seen above, there are multiple cases of redox regulation in chloroplast
metabolism. Enzyme sensitivity to reducing power in the organelle is also mediated by
S-glutathionylation [51]. An analysis of the conservation of S-glutathionylated sites in
chloroplast proteins provided evidence for the evolutionary conservation of some target
proteins [171]. This indicates an ancient origin for the implication of S-glutathionylation
in chloroplastic stress response. As an example, the S-glutathionylation of at least three
chloroplastic AMY3 Cys residues has been described in Arabidopsis (Figure 4A) [161].
Among these, Cys499 and Cys587 were previously shown to be involved in a regulatory
S-S, reversible by TRX, in a process similar to redox-modified CBB cycle enzymes [173].
In a proposed model, S-glutathionylation of one Cys in the pair led to the formation
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of the S-S, resulting in the spontaneous deglutathionylation of the other [161]. AMY3
deglutathionylation and S-S reduction were, respectively, promoted by GRX and TRX [161].

The implication of reversible S-glutathionylation in the regulation of glycolytic and
respiratory metabolism was reviewed a short while ago [6]. More recently, the cytosolic
NADP-dependent isocitrate dehydrogenase (cICDH) was shown to be subject to regu-
latory S-glutathionylation (Figure 4A) in a study that provided an example of GSNO
as an S-glutathionylation agent [174]. By generating 2-oxoglutarate, used as a carbon
skeleton in N assimilation, cICDH plays a key function at the interface between C and N
metabolisms [175]. The sensitivity of cICDH was demonstrated by decreases in extractable
cICDH activity in leaves of the Arabidopsis mutants impacted by H2O2 detoxification or
GSSG reduction [174]. Furthermore, in vitro cICDH activity was inhibited in the presence
of GSSG and GSNO, or after treatment with H2O2 plus GSH [174]. In these assays, GSNO
appeared to be particularly effective. Detailed analyses revealed that GSNO induced the
S-glutathionylation of cICDH on Cys363. Following treatments with GSNO, there was also
evidence for the S-nitrosation of the protein, although the targeted Cys residue(s) could not
be identified. ICDH activity could be restored by GRXC1 and GRXC2 and, less efficiently,
by TRXs [174].

5.3. Involvement of S-Glutathionylation in Signaling

3′-phosphoadenosine 5′-phosphate (PAP) is a product of sulfotransferases [176,177]. In
some instances, PAP has been described as a potent retro-inhibitor of these enzymes [178]. It
is also a product and an inhibitor of the stromal acyl carrier protein synthase [179]. PAP also
partakes in retrograde signaling between the chloroplast and the nucleus, as it regulates
plastid redox-associated nuclear genes (PRANGs) [180]. PAP is degraded to AMP by the
chloroplastic PAP phosphatase SAL1 [181,182]. Under normal conditions, low levels of
PAP are therefore controlled by SAL1 activity in a process that involves S-glutathionylation
(Figure 4B). Under stress-induced oxidative conditions, Arabidopsis SAL1 activity decreases
in conjunction with its dimerization, its S-glutathionylation, and the formation of an
intramolecular S-S between evolutionarily conserved Cys167 and Cys190 [183]. Treatment
of SAL1 with GSSG in vitro promoted S-glutathionylation of Cys119 and Cys190 and down-
regulated monomeric and dimeric SAL1 activity. These experiments also revealed the
existence of a mechanism by which a prior Cys S-glutathionylation induced the formation
of a S-S between Cys167 and Cys190 by means of a thiol disulfide exchange, leading to the
downregulation of SAL1 [183]. This inhibition of SAL1 leads in turn to an increased steady
state level of PAP, which acts as a chloroplast-to-nucleus retrograde signal [181]. Later
studies have led to the development of a model where PAP accumulation allows it to bind
to and inhibit 5′–3′ exoribonucleases involved in PRANGs expression by the degradation
of uncapped RNAs, interference with RNA polymerase II function, and/or silencing [182].

6. Protein Persulfidation

Hydrogen sulfide (H2S) is an important intermediate in the plant sulfate assimilatory
pathway [184] as well as a gaseous pollutant that can be absorbed by plants [184–186]. It
has recently emerged as a signaling molecule in plants [35,187,188]. The modification of a
protein thiol by H2S is called persulfidation. In the literature, it is also sometimes referred
to as protein persulfuration or protein sulfhydration. However, the latter terminology
is considered incorrect since no hydration reaction is involved [54]. This PTM allows
H2S-based signal transduction. The production of H2S occurs in several subcellular com-
partments. During sulfate assimilation, it is generated in plastids by sulfite reductase [184]
and transferred to O-acetylserine (OAS) by OAS(thiol)lyases (OSTLs) to generate Cys
(Figure 5A) [184,189,190]. Apart from the sulfur assimilation pathway, the production of in-
tracellular H2S by several other plant pathways has been recently reviewed [189,190]. These
mainly involve the catabolism of Cys by L-Cys desulfhydrases (LCDs), D-Cys desulfhy-
drases (DCDs), and the cytosolic OSTL homolog DES1 (Figure 5A). LCDs and DCDs
produce H2S, ammonia, and pyruvate in the cytosol, while DES1 breaks down Cys into H2S
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and OAS. Other enzymes are involved, such as the mitochondrial β-cyanoalanine synthase
(CAS), which catalyzes the conversion of Cys and hydrogen cyanide (HCN) into H2S
and β-cyanoalanine. In addition, a small family of 3-mercaptopyruvate sulfurtransferases
(MSTs) characterized in Arabidopsis [191] also generate H2S, using 3-mercaptopyruvate as
sulfur donor and reduced TRX or GRX as electron donors (Figure 5A). Furthermore, upon
reaction with reduced Cys or GSH, they, respectively, generate Cys persulfide (Cys-SSH)
and glutathione persulfide (GSSH) [191].
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Figure 5. Protein persulfidation in plants. (A): Pathways controlling cellular H2S together with the
mechanisms of persulfidation. In the top of the panel, pathways that promote cellular H2S levels are
represented. These include uptake from the environment, SO4

2− assimilation, 3-mercaptopyruvate
sulfurtransferases (MSTs), and the catabolism of free Cys by L-Cys desulfhydrases (LCDs), D-Cys
desulfhydrases (DCDs), and the cytosolic O-acetylserine (thiol)lyase (OSTL) homolog DES1. OSTL
consumes H2S for Cys synthesis. Note that H2S is used, although HS− is probably present in
physiological conditions. The bottom of the panel represents the two pathways implicated in
protein persulfidation. The direct persulfidation pathway modifies Cys residues (yellow dots) in
the S-sulfenylated form (S-SH) using free H2S. Other mechanisms of direct persulfidation (dotted
arrow) do not have strong experimental support. The transpersulfidation pathway allows the transfer
of a persulfide group from MST to a thiolated Cys (S−). (B): Metabolic targets of persulfidation
in plants. The effect of persulfidation is represented (pointed arrow: increased activity; blunt
arrow: inhibition). Some target names are abbreviated: ACO, aminocyclopropane-carboxylic acid
oxidase; APX: cytosolic ascorbate peroxidase; G6PDH, glucose-6-phosphate dehydrogenase; GAPDH:
cytosolic glyceraldehyde 3P dehydrogenase. Increased nuclear localization has also been reported as
a result of GAPDH persulfidation. (C): The involvement of persulfidation in signal transduction. H2S
serves to activate DES1 by persulfidation. Upon abscisic acid (ABA) stimulation, DES1-derived H2S
modifies Open Stomata 1/Sucrose nonfermenting 1-RELATED PROTEIN KINASE2.6 (OST1/SnRK2-
6), which is inhibited by NO signaling and responsible for the inhibitory phosphorylation of the KAT1
potassium channel in the guard-cell membrane. The phosphorylation of KAT1 inhibits potassium
transport, leading to stomatal closure. In a regulatory negative feedback loop, the modification
of Respiratory Burst Oxidase Homolog D (RBOHD) by H2S activates the process, leading to ROS
formation and the inhibition of DES1. See the text for additional details.
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6.1. Addition of Sulfide on Cys Results from Direct Persulfidation or Transpersulfidation

Several mechanisms can lead to the spontaneous persulfidation of Cys (Figure 5A).
In aqueous solutions, H2S dissociates in hydrosulfide (HS−, pKa = 7.0 at 25◦) and sulfide
anions (S2−, pKa = 17–19 at 25 ◦C) [54]. Thus, even if we use the term H2S in this review, the
more nucleophilic HS− is probably the most abundant form at physiological pH values [54].
HS− can perform a nucleophilic attack on an oxidized thiol, such as with a sulfenic acid or a
disulfide, but cannot react with a reduced thiol [192]. Other means of protein persulfidation
have been discussed [54], such as those involving radical sulfur species (RSSH•–) or inor-
ganic polysulfide (-S-Sn-S-); however, the relevance of these reactions in plants still remains
to be clearly established. Experimentally, p-methoxyphenyl(morpholino)phosphinodithioic
acid (GYY4137) and NaHS are used as sulfide donors for protein modification and physio-
logical studies [185,193–195].

In Arabidopsis, the ability of MSTs to catalyze a transpersulfidation reaction (transfer
of a sulfide from one protein to another, Figure 5A) has been demonstrated in vitro using
roGFP2 as a model protein substrate [191]. In this reaction, MST becomes persulfidated on
its catalytic Cys following interactions with its substrate 3-mercaptopyruvate. This occurs
in the absence of TRX or GRX. The transfer of sulfide occurs from MST to a thiolate residue
on roGFP2. Following a rearrangement, the persulfidated Cys forms a disulfide bridge
with a nearby thiol, resulting in the generation of H2S [191]. Interestingly, the catalytic Cys
of MST is also subject to inhibitory oxidation by H2O2. The persulfidation of this residue
also has a protective role against the irreversible oxidation of the MST [191].

Cys modification by persulfidation is reversible in vitro with artificial reducing agents
such as DTT and tris(2-carboxyethyl)phosphine (TCEP) [194,196]. In animals, redoxins can
reduce protein persulfides and their levels are controlled by the thioredoxin system [54,197].
It is quite possible that this process also takes place in plants; however, this remains to be
formally demonstrated.

6.2. Metabolic Targets of Cys Persulfidation

Over the past decade, high-throughput proteomic methods have been developed
and used to survey the extent of protein persulfidation in plants [198–201]. Based on
a biotin switch method, a large number of persulfidated proteins have been identified
in Arabidopsis, showing the widespread occurrence of this PTM in leaves and roots as
well as its regulation by environmental conditions [199,200]. The comparison of various
proteomic studies revealed that persulfidation seems far more abundant in Arabidopsis
than S-nitrosylation or S-glutathionylation [202].

Persulfidation has been implicated in the regulation of key enzymes in the metabolic
pathways such as Gln synthetase in N assimilation, G6PDH in the OPPP, GAPDH in
glycolysis, cytosolic ascorbate peroxidase (APX) in the ascorbate–glutathione cycle, and
aminocyclopropane-carboxylic acid oxidase (ACO) in ethylene synthesis (Figure 5B) [194,203].
In a study of APX, in vitro activity was shown to be modestly stimulated by persulfidation,
whereas Gln synthetase was inhibited by treatment with NaHS at nM concentrations [194].
For ACO, the incubation of recombinant proteins with NaHS led to reversible inhibition by
the persulfidation of Cys60, and treatments of Solanum lycopersicum (tomato) plants with the
H2S donor further supported the inhibition of in vivo enzyme activity by persulfidation [203].
In a recent study on Arabidopsis and tomato G6PDHs, persulfidation was shown to play an
important role in the regulation of the activity of these enzymes, which catalyze C entry in
the OPPP [204]. G6PDH modification was detected on Cys155 in Arabidopsis G6PDH6 and
Cys159 in tomato G6PDHC. The same residues were also shown to be sensitive to oxidation
by H2O2. G6PDHs are structurally relatively well conserved between plants and animals.
The fact that the persulfide-modified residues are only found in cytosolic isoforms suggests
plant- and isoform-specific modification [204]. In vitro and in vivo treatments with NaHS,
inducing the persulfidation of G6PDH6 and G6PDHC, enhanced enzyme activity. This effect
was reversed in the presence of DTT. Further analyses indicated that G6PDH persulfidation
increased the affinity of NADP, used as a substrate, and promoted enzyme oligomerization
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towards the formation of tetramers. In addition, the exposure of Arabidopsis seedlings to
salt stress caused the oxidation of Cys155 and resulted in decreased enzyme activity. How-
ever, in the presence of NaSH, competition between oxidation and persulfidation occurred,
highlighting the potential of Cys155 persulfidation in the protection of G6PDH activity under
oxidative conditions, although mechanistic details remain to be clarified.

The persulfidation of Arabidopsis cytosolic GAPDH C1 was shown to reversibly
increase enzyme activity in vitro [194]. Proteomic surveys have shown that cytosolic
and chloroplastic GAPDH isoforms are modified in vivo by persulfidation [199]. The
relative localization to the nucleus and the cytoplasm of GAPDH isoforms C1 and C2
was compared in WT and the des1 mutant of Arabidopsis [205]. Decreased localization to
the nucleus was reported in the des1 background, whereas treatment of the mutant with
NaHS increased nuclear localization. These results support the hypothesis of preferential
nuclear localization upon GAPDH persulfidation [205]. Moonlighting functions and nuclear
localization have been reported before for animal and plant GAPDHs under various
stress conditions [206]. In Arabidopsis, the persulfidation of GAPDH appears likely to
promote its migration to the nucleus. However, its nuclear function still remains to be
deciphered [205,206].

6.3. Cys Persulfidation Involvement in ABA-Mediated Stomatal Movement

A wide variety of signaling functions have been shown to be impacted by persul-
fidation in plants, including in abiotic stress tolerance [35,188,207]. In particular, it has
been implicated in drought stress signaling by regulating abscisic acid- (ABA-) mediated
stomatal movement (Figure 5C) [208–210]. The ABA regulation of guard-cell function
implicates a complex network of signals, comprising protein kinases and H2O2-, NO-, and
H2S-regulated steps [208,211]. Initial investigations showed that, in the guard cell, ABA
induces the production of ROS, which is linked to the activity of NADPH oxidases RBOHD
and F [212]. The synthetic H2S donor GYY4137 was then shown to inhibit the activity
of the Nicotiana tabacum inward-rectifying K+ channel [193]. Among the protein kinases
involved in ABA signal transduction, Open Stomata 1/Sucrose nonfermenting 1-RELATED
PROTEIN KINASE2.6 (OST1/SnRK2.6) is responsible for mediating the phosphorylation
of Thr306 on the inward K+ channel KAT1, thereby reducing K+ uptake by the guard cell
and promoting stomatal closure in Arabidopsis [213]. Recently, it was demonstrated that
ABA signaling induces the persulfidation of Cys44 and Cys205 on DES1, a major source
of H2S in the cytosol [209]. This PTM leads to the enhancement of DES1 activity in an
autoactivating mechanism. The production of H2S by DES1 leads to the persulfidation
of RBOHD on Cys825 and Cys890, thereby stimulating their activity and promoting the
production of ROS [209]. In turn, the oxidation of the persulfidated Cys residues on DES1
due to the rise of ROS provides a negative feedback mechanism, leading to a decrease
in DES1 activity [209]. DES1 mediated H2S production in guard cells also contributes to
the mediation of ABA signaling by promoting the persulfidation of OST1/SnRK2.6 on
Cys131 and Cys137 [208]. Interestingly, the persulfidation of this key protein kinase increases
its activity [208], while S-nitrosylation on Cys137, which is close to the catalytic site, is
inhibitory [214]. This complex cross-talk between H2S and NO signals, acting as second
messengers in various aspects of plant physiology, has been recently reviewed [215]. So
far, there is strong evidence that, in guard cells, the two molecules collaborate in the fine
regulation of components of ABA signaling [187].

7. S-Cyanylation

S-cyanylation is a PTM resulting from the reaction of HCN on a protein Cys residue
(Figure 6). HCN is a pollutant naturally present at low levels in the environment, where its
presence is often the result of human activity [216]. It is volatile and can dissociate into H+

and CN− when dissolved in aqueous solutions (pKa = 9.2). Therefore, in the physiological
pH range, HCN mainly occurs in its undissociated form. HCN can be formed enzymatically
or non-enzymatically in a variety of living systems, from bacteria to mammals [217–219]. It
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is widely recognized as a poisonous compound due to its enzyme inhibitory effects, the
most important of which act on cytochrome c oxidase [220], although its physiological
function as a gasotransmitter is also currently debated [219].
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Figure 6. Protein S-cyanylation in plants. The main pathways involved in the generation of HCN
are represented. HCN can also be taken from the environment. The reaction of β-cyanoalanine
synthase (CAS) consumes HCN in plants. S-cyanylation (purple symbols) occurs mainly on Cys
residues (yellow dots) engaged in disulfide bonds. Among the few targets of S-cyanylation identified
in plants, the glycolytic enzyme Enolase 2 (ENO2) was shown to be activated via modification. Other
targets were identified, and some were involved in pathways leading to ethylene synthesis. As
indicated by question marks, many effects of S-cyanylation are still largely unknown. See text for
additional details.

In plants, a number of pathways, many of which relate to stress defense, are implicated
in the generation of HCN (Figure 6). The latter is produced during the synthesis of ethylene
by 1-aminocyclopropane-1-carboxylate (ACC) oxidase [221]. Therefore, biotic and abiotic
stresses, as well as developmental situations that promote ethylene synthesis [222], result
in HCN formation. The hydrolysis of cyanogenic glycosides by β-glycosidase is another
source of HCN in a relatively large number of plant families [217,220]. This so-called
cyanogenesis mechanism is thought to be an effective deterrence strategy upon wounding
or attack by herbivores [220]. HCN is also formed during the synthesis of the phytoalexin
camalexin [223] and in a reaction that uses glyoxylate and hydroxylamine [224]. However,
the enzymatic mechanism responsible for this reaction remains elusive. Plant cellular HCN
can be detoxified by CAS [225,226]. However, this reaction also produces HS−, which, at
high concentrations, can inhibit cytochrome c oxidase [227]. In addition, as seen above,
HS− is also a protein Cys modifier.

In animal and plant systems, HCN has been reported to form protein adducts in vivo
by S-cyanylation [228,229]. HCN’s nucleophilic properties allow a non-enzymatic attack of
S-Ss, including those present in proteins [219,230,231]. As a result, the bond is broken and S-
cyanylation most likely occurs on the Cys residue which is the farthest from an electrophilic
group [230,232]. It is thought that HCN can also attack the mixed disulfide bridge between
GSH and Cys, resulting in the deglutathionylation of the Cys. in vitro, protein S-cyanylation
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is promoted by the use of an oxidative treatment (e.g., H2O2), presumed to induce S-S
formation [229]. Although the CN adduct can be eliminated in vitro [233], S-cyanylation is
regarded as an irreversible PTM in living systems [229].

There is still limited information available on the occurrence and the physiological
relevance of protein S-cyanylation in plants. Nevertheless, in a ground-breaking study, the
feeding of an Arabidopsis cas-null mutant with ACC was used to increase endogenous
HCN levels in order to detect S-cyanylated proteins [229]. This strategy allowed the
identification of 163 targets. Among the modified proteins, there was an enrichment of
metabolic enzymes involved in non-photosynthetic and photosynthetic carbon metabolism.
One of the identified targets was Enolase 2 (ENO2), which catalyzes the penultimate step
of the cytosolic glycolytic pathway. ENO2 was shown to be activated by S-cyanylation
on Cys346, hinting to the possible involvement of HCN in the regulation of glycolytic flux
(Figure 6). Interestingly, the locus LOS2/ENO2, which encodes for ENO2, also produces
a truncated form of the protein, C-MYC BINDING PROTEIN1 (LOS2), which serves as a
transcriptional regulator. The effect of HCN on this protein is however unknown. Among
the other S-cyanylation targets identified in this study were Met synthase 1 and 2, as well
as S-adenosyl-homocysteine hydrolase 1 (Figure 6). These enzymes are involved in Met
and S-adenosyl Met metabolism. Their modification by S-cyanylation could therefore
impact methylation reactions, gene silencing, or ethylene synthesis [229]. However, this
still remains to be established. More recently, another proteomic study using the cas-null
mutant confirmed that enzymes involved in Met and S-adenosyl Met metabolism are the
preferred targets of S-cyanylation in plant roots [234].

Obviously, much remains to be performed to further understand the physiological
relevance of these findings. This will require a careful examination of the function of
S-cyanylation targets. In addition, future research efforts will need to consider the fact that
S-cyanylation only affects oxidized Cys residues (involved in S-S or mixed disulfide bonds).

8. S-Nitrosation

Nitric oxide (NO) is a gaseous free radical that can easily diffuse across membranes.
In plants, NO synthesis can be achieved through several pathways, most of which involve
the reduction of nitrite [235]. Several details in plant NO production are not yet fully
understood. Although sequences with homology to animal nitric oxide synthase (NOS)
have been found in plants, the role of NOS in plants NO synthesis remains elusive [235]. It
appears that metabolic routes involving the reduction of NO2

− are more likely to contribute
to the production of plant NO (Figure 7A). A reaction involving nitrate reductase (NR),
which catalyzes the reduction of NO3

− to NO2
−, has been implicated in the process [235].

To produce NO, electrons from NR are supplied to NO-forming nitrite reductase (NOFNiR),
leading to the reduction of NO2

− to NO [235]. Hence, NR mutants (e.g., nia1 and nia2 in
Arabidopsis) are often used to decrease NO production in planta [236]. There is another
pathway, in which the reduction of NO2

− to NO by the mitochondrial electron transport
chain under anaerobic conditions has been documented [237]. Following its formation,
NO can be scavenged by plant hemoglobins (Phytoglobins, Pgbs), which are induced
by O2 deficiency. The evidence for this was initially provided by studies in transgenic
Medicago sativa (alfalfa) roots [238] and Zea mays (maize) cell cultures [239] with different
Pgb expression levels. Under O2 deficiency conditions, NO levels were inversely correlated
to Pgb expression level in both cases.
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Figure 7. Protein S-nitrosation in plants. (A): The generation of NO in plants and the modification
of Cys by direct S-nitrosation. NO can be formed from NO2

− by a pathway that involves nitrate
reductase (NR) and NO-forming nitrite reductase (NOFNiR). It can also be formed by reduction of
NO2

− by the mitochondrial electron transport chain. NO can be scavenged by phytoglobin. The direct
reactions of NO with Cys (yellow dots) thiolate (S−), thyil (•S) or thiol (SH) can lead to S-nitrosation
(SNO). (B): Protein transnitrosation by S-nitrosoglutahione. S-nitrosoglutahione (GSNO) is a stable
form of NO with can be used in the transnitrosation of proteins. GSNO is catabolized by GSNO
reductase (GSNOR), which is susceptible to inhibition by GSNO and oxidized glutathione (GSSG)
and stimulated by H2S. (C): The regulation of fructose-1,6-bisphosphatase (FBPase) by reversible
S-nitrosation. In its reduced form (SH, top left), FBPase is active. High GSNO levels promote the
S-nitrosation of FBPase (top right), whereas high glutathione (GSH) levels revert it. The S-nitrosated
FBPase can undergo the formation of a disulfide bridge (S-S, bottom) that inhibits FBPase activity. S-S
reduction by thioredoxin (TRX) occurs in the light and restores FBPase activity. (D): The regulation
of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) by S-nitrosation. NPR1 is a
receptor for the phytohormone salicylic acid (SA), which transcriptionally regulates systemic acquired
resistance through the induction of Pathogenesis-Related (PR) genes. In the absence of pathogen stress,
NPR1 is S-nitrosated by GSNO and sequestered in the cytosol in the form of large oligomers with an
inter-subunit S-S. Upon pathogen attack, TRXh5 promotes the monomerization of NPR1 by reducing
inter-subunit S-S and catalyzing its denitrosation. In turn, reduced monomeric NPR1 can enter the
nucleus, where it promotes PR gene transcription. See the text for additional details.
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8.1. Mechanisms Involved in Protein S-Nitrosation

NO can react directly with protein Cys to produce a PTM called S-nitrosation. This
denomination is used here to describe the modification of a Cys residue by NO instead of
the commonly used S-nitrosylation, as the latter refers to the modification of a metal by
NO [240]. NO plays an important role in plants, animals, and bacteria as a second messen-
ger and controls a wide variety of biological functions [241]. Direct protein S-nitrosation
(Figure 7A) occurs via different reaction mechanisms of NO with protein Cys and has been
reviewed in some detail [240,242]. These reactions are complex and probably facilitated by
additional redox reactions occurring under physiological conditions [242]. Briefly, direct
S-nitrosation can be the result of (i) a thiolate reaction with the nitrosonium cation (NO+)
formed by NO oxidation by transition metals, (ii) the reaction of NO with a protein thyil
radical, or (iii) a Cys thiol reaction with NO, in which the participation of a second NO
molecule leads to the production of a nitrosated Cys and HNO [243]. A transnitrosation
reaction can also lead to S-nitrosation [241]. The latter can be associated with the denitrosa-
tion of the NO donor [244]. Although all these mechanisms promote protein S-nitrosation,
it is important to note that S-nitrosation, induced by different reactions (e.g., radical reaction
and transnitrosation), does not necessarily have the same protein target specificity [241,245].
However, this issue is understudied in plants.

In plant tissues, GSNO acts as a stable NO reservoir for spontaneous protein
S-nitrosation [246]. GSNO is recognized as the main NO donor for transnitrosation re-
actions (Figure 7B), although some enzymes, such as human GAPDH, may also possess
trans-nitrosase activity [247]. Mechanisms affecting cellular GSNO will therefore indi-
rectly impact S-nitrosation. The spontaneous reaction of the glutathione thiyl radical with
NO has been described as a pathway leading to the formation of GSNO [247]. In plants,
it is assumed that the main enzyme regulating levels of GSNO is S-nitrosoglutathione
reductase (GSNOR), a cytosolic class III alcohol dehydrogenase implicated in GSNO
catabolism [246,248,249]. GSNOR catalyzes the NADH-dependent reduction of GSNO
to GSSG and NH3 [248]. This enzyme has three conserved solvent-accessible Cys that are
sensitive to redox modifications. A study on Lotus japonicus revealed that LjGSNOR1 and
LjGSNOR2 can be modestly activated by persulfidation and inhibited by
S-glutathionylation [250]. However, the latter reaction was slow (several h) and required
mM concentrations of GSSG. It is thus unclear if the S-glutathionylation of GSNOR is
relevant in vivo. Arabidopsis GSNOR is also inhibited by H2O2 in vitro and by conditions
promoting oxidative stress in vivo [251]. Interestingly, tomato GSNOR is reversibly inhib-
ited by the S-nitrosation of solvent-accessible Cys271 [252,253]. This inhibition has been
proposed to be involved in a mechanism that would allow proper NO signaling during
nitrosative burst by allowing initial GSNO accumulation [252]. More recently, enzymes
belonging to the aldo-keto reductase (AKR) family were identified as NADPH-dependent
GSNO reductases in mammals [254] and Arabidopsis [255]. Two Arabidopsis AKR4C
are significantly upregulated in a GSNOR null mutant, which displays a higher NADPH-
dependent GSNO reduction rate than the WT, suggesting that AKR4Cs are involved in
GSNO homeostasis and compensate for the loss of GSNOR [255].

8.2. Protein Denitrosation

The current knowledge on plant denitrosation was recently extensively reviewed [256].
Briefly, protein denitrosation can involve enzymatic or non-enzymatic reactions
(Figure 7B–D). In Arabidopsis, cytosolic TRXh5 can catalyze the denitrosation of spe-
cific proteins [257]. The implication of other TRXs in plant protein denitrosation remains
to be tested; however, the high amino acid sequence similarity between TRX isoforms
suggest that it is likely [256,257]. Despite their sequence similarities, TRX isoforms dif-
fer in their subcellular localization and specific interactions, which could influence their
substrate specificity [256]. PRX IIE is involved in a trans-denitrosation mechanism for the
bZIP67 transcription factor [244]. Protein denitrosation activity was documented for animal
SRX [258] and GRX [259], but the relevance of these enzymes in plant protein denitrosation
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remains to be investigated. Some enzymes, such as GAPDH [260] and GSNOR [261], can
be denitrosated in an enzyme-independent way by direct reaction between GSH and the
S-nitrosated thiol, resulting in GSNO production (see example below).

8.3. Targets of Protein S-Nitrosation in Plant Metabolism

Plant protein S-nitrosation has now been studied for over 20 years using proteomic
surveys employing the biotin switch technique [262–264]. Several hundred S-nitrosated pro-
teins, together with S-nitrosation sites, have been identified. Among these, the Arabidopsis
GAPC1 isoform of cytosolic GAPDH is known to be strongly inhibited by GSNO-mediated
S-nitrosation on its catalytic Cys149 [260]. GAPC1 denitrosation is promoted in vitro by
GSH, but not by the TRX system [260]. Furthermore, the GSH-dependent denitrosation is
influenced by the GSH/GSNO ratio, but unaffected by the GSH/GSSG ratio [260]. These
results contrast with the mechanism taking place in animal GAPDH, which is effectively
denitrosated by TRX and resistant to GSH-mediated denitrosation [265,266]. Although
S-nitrosation is currently more studied than denitrosation, the latter certainly deserves to
be more thoroughly investigated, as there appears to be some protein- and/or organism-
specific mechanisms at work.

S-nitrosation can also be involved in cooperative Cys modification for metabolic
regulation. This remarkable mechanism has been documented with Pisum sativum (pea)
FBPase. This CBB cycle enzyme can be S-nitrosated by GSNO in light conditions (Figure 7C),
when the enzyme is normally present in its reduced form (see Figure 3B) [267]. When
fully reduced, FBPase is active. A high GSNO/GSH ratio promotes the S-nitrosation
of FBPase Cys153. This S-nitrosation can be reversed if the GSH concentration increases
(i.e., under low GSNO/GSH), leading to the formation of GSNO. If conditions do not
favor GSH-dependent denitrosation, the presence of the S-nitrosated Cys153 induces a
rapid S-S between Cys153 and adjacent Cys173 with the concomitant loss of NO. The newly
formed S-S effectively inactivates the enzyme. In the absence of TRX activity, such as in
dark conditions, the enzyme is kept in this oxidized and inactive form. Under conditions
where light favors TRX reduction, the S-S can then be reduced and the enzyme becomes
active [267]. FBPase has long been known to be regulated by reversible S-S formation. The
effects of its S-nitrosation provide additional sensitivity to environmental factors that may
affect the NO status and the chloroplastic GSNO/GSH ratio, allowing fine-tuning of the
CBB cycle function.

8.4. Involvement of S-Nitrosation in Signal Transduction Pathways

S-nitrosation also plays an important role in signal transduction by affecting other
major PTMs (e.g., sumoylation, phosphorylation or acetylation) that are involved in bio-
chemical regulation. This topic was recently reviewed [268]. At the physiological level, it
is now recognized that S-nitrosation plays a role in important aspects of plant hormone
signaling [269]. This is, for example, the case for the ABA signaling during stomatal closure.
As discussed above, the activity of protein kinase OST1/SnRK2.6, which is involved in
the regulation of the KAT1 inward K+ channel, is stimulated by persulfidation (Figure 5C).
Investigations into the regulation of this protein kinase demonstrated the negative regula-
tion of ABA signaling by NO [214]. In particular, gsnor1-3, an Arabidopsis mutant with
increased NO accumulation, was insensitive to the closure of stomata induced by ABA.
Further investigations demonstrated that OST1/SnRK2.6 activity was inhibited in vitro
in the presence of the NO donor GSNO. This inhibition was caused by the S-nitrosation
of conserved Cys137, which was stimulated in vivo as a result of ABA treatment. It is
possible that this work has even deeper significance. Indeed, S-nitrosation of Cys137 could
be relevant to the regulation of other evolutionary-related protein kinases [214].

A second example of the importance of S-nitrosation in signaling is found in SA signal
transduction. In this process, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1
(NPR1) is regulated by reversible S-nitrosation (Figure 7D). NPR1 is a key regulator of SA
signaling and systemic acquired resistance (SAR); it was first identified using a genetic



Int. J. Mol. Sci. 2024, 25, 9845 24 of 47

screen that aimed to identify genetic lesions causing a lack of the systemic response normally
induced by Pseudomonas syringae [270]. SA, which is involved in the positive regulation
of SAR [271], binds to NPR1 [272]. Under normal conditions, NPR1 can be found as
a high-molecular-weight oligomer with inter-subunit S-S (Figure 7D) [273]. NPR1 is S-
nitrosated by GSNO on Cys156, which promotes its oligomerization and sequestration in
the cytoplasm [274]. Upon a pathogen attack, there is an increase in endogenous SA and
SA binding to NPR1. Upon SA accumulation, TRXh5 catalyzes the conversion of NPR1
oligomers to monomers, which are translocated to the nucleus to activate the expression
of pathogenesis-related genes [273]. The monomerization of NPR1 involves TRXh5 in two
ways: it reduces the inter-subunit S-S [274] and catalyzes its denitrosation [257].

9. S-Carbonylation by Reactive Carbonyl Species

Membrane lipids are a major target of oxidation, especially under stress conditions,
due to their abundance and proximity to ROS and free radical production sites, such as
RBOH and mitochondrial and chloroplastic electron transport chains [41,275–277]. This
leads to the oxidative degradation of polyunsaturated fatty acids (PUFAs) and subsequent
oxylipin production (Figure 8A). Oxylipins are also produced enzymatically, mainly by
lipoxygenases (LOXs) that act on linoleic acid and α-linolenic acid (Figure 8A) [275,278].
This enzymatic pathway can lead to the production of important stress signaling molecules
such as cis-(+)-12-oxophytodienoic acid (OPDA) and jasmonic acid (JA) [275,278]. Oxylipins
also comprise more than a dozen species containing a reactive electrophilic α,β-unsaturated
carbonyl moiety; they are collectively termed reactive carbonyl species (RCS) [279]. RCS
include, but not exclusively, compounds such as acrolein, OPDA, 4-hydroxy-2-nonenal
(HNE), and malondialdehyde (MDA) [279]. In this review, we follow the restrictive defini-
tion of RCS given in the review by Mano [279]. Nevertheless, it is important to note that
RCS definitions appear to vary between authors and that species such as methylglyoxal
or some aldehydes are regularly referred to as RCS, although they are not included in the
previous definition [279]. The latter publication also specifies the terms reactive electrophile
species and oxylipins, which are sometimes interchanged with RCS in the literature [279].

Since the lipid composition and the abundance of PUFAs vary between subcel-
lular membranes, some, such as the chloroplast, appear to be major RCS production
sites [280,281]. Furthermore, the hypothesis of stress- or compartment-specific RCS sig-
natures (usually referred to as oxylipin signature) is increasingly supported by the lit-
erature [278,282–284]. RCS production, effect, target specificity, and detoxification vary
between members of the RCS group and this was recently reviewed [280,285].

In plants, RCS can be detoxified enzymatically. Various enzymes are involved, and
they display some specificity towards the structure of their RCS substrate(s). Enzyme
activities such as aldehyde dehydrogenase, aldehyde reductase, aldo-keto reductase, 2-
alkenal reductase, alkenal/one oxidoreductase, and glutathione transferase Tau (GST τ)
are implicated in RCS detoxification [286]. In a survey of the in vitro activity of 23 GST
τ isoforms with different RCS, acrolein and HNE were the preferred substrates out of
11 isoforms [286]. Non-enzymatic RCS scavenging also occurs and involves the formation
of a conjugate between RCS and polyphenols [287] or GSH. RCS detoxification by the GSH
pool (Figure 8A) under conditions of a high GSH/GSSG ratio is illustrated in a study of
Arabidopsis overexpressing GR. The overexpression of GR led to higher levels of GSH and
a higher GSH/GSSG ratio, which were associated with an enhanced RCS detoxification
capacity compared to the WT [288].
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Figure 8. Protein S-carbonylation in plants. (A): The generation of reactive carbonyl species (RCS)
and their reaction with protein Cys residues. Two main pathways are involved in the generation of
RCS. The non-enzymatic pathway results from the attack of membrane-derived unsaturated fatty
acids (marked with blue dots) by reactive oxygen species. The enzymatic pathway proceeds via
lipoxygenase (LOX). Both pathways can produce a variety of reactive electrophilic α,β-unsaturated
carbonyl compounds, collectively termed RCS. The detoxification of RCS can occur and is often
associated with reduced glutathione (GSH) consumption. RCS can modify Cys residues (yellow dots)
in thiolate form (-S−), leading to protein S-carbonylation. The modification is widely considered
irreversible as the decarbonylation reaction, indicated with a question mark, is still hypothetical in
plants. (B): The regulation of thioredoxin by S-carbonylation. The RCS cis-(+)-12-oxophytodienoic
acid (OPDA) is formed enzymatically in the LOX pathway. Thioredoxin f 1 (TRX) is responsible
for the reduction of disulfide bridges on fructose-1,6-bisphosphatase (FBPase), thereby activating
the enzyme. The in vitro modification of TRX with OPDA (S-OPDAylation) renders TRX unable to
activate FBPase. See the text for additional details.

9.1. Interrelations between RCS and ROS Signaling

RCS are produced downstream of ROS and their production is increased during
oxidative stress [280]. Like ROS, RCS can cause both eustress (signaling) and distress
(damage) [285,289]. In a study on Chlamydomonas reinhardtii, acrolein treatment at a low
dose significantly upregulated the genes involved in GSH, S, and ascorbate metabolism,
and the redox homeostasis enzymes leading to acclimation to ROS [289]. However, RCS
distress, caused by higher doses of acrolein, led to the loss of cell viability [289]. RCS could
thus act downstream of ROS as signal in plant stress responses [281,285,290–293]. However,
it remains to be seen whether any of these effects involve Cys carbonylation.

Nevertheless, there is evidence that RCS impacts the redox network. RCS may af-
fect the cellular glutathione contents and redox state, as illustrated with high-acrolein
treatments [289,293,294]. As discussed above, RCS enzymatic or non-enzymatic detox-
ification, consuming GSH, could deplete the GSH pool and increase the GSSG/GSH
ratio. This could indirectly impact redox-sensitive Cys PTMs, for instance, by altering
protein S-glutathionylation [294]. However, a formal demonstration of this effect has yet to
be provided.

RCS have a longer half-life than ROS and their shared characteristics with lipids allow
them to diffuse through membranes [295]. The greater diversity of RCS compared to ROS
could contribute to allowing for a greater specificity of downstream ROS signaling [290].
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Thus, RCS should be considered in the pursuit of understanding how stress-specific and
compartment-specific signaling pathways are generated [281,296].

9.2. Protein Thiols Modification by RCS and S-OPDAylation

RCS electrophilic β carbon allows the covalent modification of targets such as nucleic
acids and proteins [281]. Because of its reactivity, Cys is a prominent RCS target, although
other protein amino acids (e.g., His, Lys) can also be modified [297,298]. RCS can modify
Cys residues via a Michael reaction mechanism, resulting in primary protein carbonyla-
tion [278]. The reactivity of the RCS modifier, as well as its availability, is controlled by
its formation/scavenging rates, which are thought to control the nature of protein car-
bonyls [280,281]. Furthermore, protein carbonyls can undergo secondary reactions, leading
to irreversible and complex protein modifications [281]. Thus, protein carbonylation is
traditionally considered irreversible. However, some reports in animals show some sup-
port for thiol-dependent decarbonylation [299,300]. In plants, protein decarbonylation is
still poorly characterized. In a report, MDA-induced protein carbonylation was partially
reversed, but the mechanism remains elusive [301]. It is possible that the reversibility of
Cys carbonylation varies in relation to the function of the target protein and/or the primary
and secondary modifications induced by RCS.

The effect of RCS modifications on the specific targets of the redox network in plants
was recently reviewed [278] and Cys modifications of specific targets are beginning to be
identified [302,303]. Nevertheless, progress in this area is still limited, perhaps due to the
complexity of the detection of primary and secondary modifications. The cytotoxic and
reactive species acrolein and HNE are among the most studied RCS [277,294]. There are
reports that these compounds may cause specific enzyme inhibition in plants [294,304].
So far, no direct evidence links these inhibitions to Cys modification. However, this
hypothesis certainly deserves consideration since the enzyme activity of several reported
RCS targets [294] is known to be sensitive to Cys oxidation.

OPDA is structurally related to the cyclopentenone prostaglandin hormones found
in animals [303]. Prostaglandins are known to exert some of their physiological functions
through the oxidation of Cys thiols [305]. In plants, recent studies demonstrated that OPDA
can react with protein thiols, resulting in S-OPDAylation [303]. In vitro TRXf 1 modification
by OPDA was detected and Cys modification was documented by mass spectrometry.
This S-OPDAylation led to the inhibition of TRXf 1 to reductively activate fructose-1,6-
bisphosphatase (Figure 8B) [303]. The subsequent inhibitory S-OPDAylation of chloroplast
TRXm4 and cytosolic TRXh3 and h5 was also detected [306]. The data suggest a unified
mode of action for OPDA on TRXs. However, individual S-OPDAylated residues were not
confirmed by mass spectrometry in the latter study.

ODPA is a precursor of jasmonic acid, a phytohormone implicated in responses
to biotic and abiotic stress [307]. Similarly to OPDA, which is reported to modulate
key elements in plants redox regulation [306], cyclopentenone prostaglandins target the
essential components of the redox regulation network in animal cells under stress [305,308].
Prostaglandin regulatory mechanisms, exerted by protein redox PTM, provide a perspective
and a possible working model worth exploring in terms of the action mode of OPDA
in plants.

10. S-Acylation

In plants, the chloroplast is the main site for de novo fatty acid production [309].
S-acylation (also known as S-palmitoylation) consists of the reversible modification of a
Cys residue by a fatty acid, usually palmitic acid (C16) or stearic acid (C18), through a
thioester bond [310]. Among the known lipid modifications of proteins, S-acylation is
unique because of its reversibility, thus making it a dynamic means of regulation [310,311].
S-acylation is not a trivial PTM in plants. A recent study in different Arabidopsis tissues
identified 1849 Cys residues modified by S-acylation on 1094 different proteins using
an acyl-resin-assisted capture (acyl-RAC) strategy [312]. The meristem and the silique
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contained the most acylated proteins. While about half of protein acylation was contributed
by a single tissue, this rate was found to be only 6.5% in all tissues studied, indicative of
a certain tissue specificity level. S-acylation is catalyzed by a family of enzymes called
protein S-acyl transferases (PATs, also called DHHCs) that contain an Asp-His-His-Cys
(DHHC) motif shown to be necessary for activity [313]. This motif is conserved in PATs
found in microorganisms, animals, and plants [314–316]. PATs are membrane proteins
that are distributed in several different cellular membrane compartments (Figure 9A) [317].
The Arabidopsis genome contains 24 PATs, with half of them being targeted to the plasma
membrane [317], while the rest localize to different endomembrane systems. This situation
contrasts with yeast and mammalian PATs, which are predominantly localized to the ER
and Golgi [317]. Another unique feature of S-acylation is that it does not occur on conserved
sites or consensus sequence motifs [318]. It is rather thought that it is influenced by the
ability of the catalytic site of PATs to access their target Cys [319]. It is currently unknown
if PATs are redox-regulated, but the possible modification of the conserved Cys in the
DHHC motif could have an impact on S-acylation activity. Recently, a proteomic survey
identified PAT24 as a persulfidation target in Arabidopsis roots [200]. Pat24 mutants display
an altered root hair phenotype, indicating that S-acylation, catalyzed by PAT24, plays an
important role in root hair growth [320].

10.1. S-Acylation Appears to Be Critical for Target Proteins Membrane Localization

The effect of S-acylation on proteins that lack transmembrane helices (TMHs) is an
increase in their hydrophobicity, thereby promoting their association with membranes
(Figure 9A). For example, among all S-acylation target proteins identified in Arabidopsis,
the vast majority (73%) lacked TMH [312]. Accordingly, this suggests that S-acylation may
significantly influence the cellular membrane distribution for target proteins. However,
many proteins already associated with membranes can also be S-acylated [321]. It is thus
unlikely that the function of protein S-acylation is limited to membrane anchoring. Early
studies suggested that S-acylation of a Cys residue in close proximity to a transmembrane
domain (TMD) may serve to influence the conformation of the TMD within the mem-
brane [322]. However, recent investigations of this effect in plants suggest that a careful
validation of the epitope-tag methods used to study these phenomenon is warranted before
drawing strong conclusions [310]. Nevertheless, several studies document the impacts of
S-acylation on the regulation of signal transduction and cell wall metabolism.

The cellulose synthase complex (CSC) is responsible for the synthesis of the most
abundant plant polymer. The CSC is a large transmembrane protein complex consisting of
at least 18 cellulose synthase (CESA) subunits [323]. It is located at the plasma membrane
where it consumes UDP–glucose on the cytoplasmic side and generates nascent cellulose mi-
crofibrils on the apoplastic side. Multiple CESA subunits were found to be S-acylated [324],
with an estimated 100 S-acylated Cys per CSC. Out of the twenty-six Cys in Arabidopsis
CESA7, four Cys of the Variable Region 2 (VR2) and two others, found at the C-terminal
end (CT), were S-acylated and were studied using a site-directed mutagenesis approach in
transgenic lines. This indicated that VR2 region Cys residues were important in terms of
plant cellulose contents [324], and that, while VR2 and CT Cys are not essential for CSC
assembly at the endomembrane level up to the Golgi vesicles, they are required for correct
localization to the plasma membrane [324]. Thus, the S-acylation of the CSC subunits may
control cellulose production by allowing the correct intracellular trafficking of the complex
to the proper site for cellulose production after its assembly on endomembranes.
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Figure 9. Protein S-acylation in plants. (A): S-acylation and de-S-acylation. The membrane-localized
protein S-acyl transferase (PAT) catalyzes the addition of an acyl group (red jagged line) onto a Cys
(yellow dot) thiol present on a soluble protein. The addition allows the S-acylated protein to become
membrane-associated. The reverse reaction (de-S-acylation) is catalyzed by ABHD17-like acyl protein
thioesterases (ABAPT) or acyl protein thioesterases (APT), which release the acyl group and solubilize
the protein. (B): The involvement of S-acylation in the regulation of SLAC1. In the guard-cell plasma
membrane, the slow anion channel 1 (SLAC1) is a key element in abscisic acid-dependent stomatal
closure. The channel is activated by phosphorylation. A double lipid modification (N-myristoylation
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on a Gly (green dot) and S-acylation) allow the membrane localization of otherwise soluble Cal-
cineurin B-like protein 5 (CBL5) and Ca2+-regulated protein kinase CPK6. This allows the recruitment
of Calcineurin B-like protein-interacting protein kinase 11 (CIPK11) by CBL5 and the phosphoryla-
tion (activation) of SLAC1. (C): The involvement of S-acylation in Pi deficiency signalization. The
non-specific phospholipase C4 (NPC4) is S-acylated on a C-terminal Cys. Its phospholipase activity
allows it to generate diacylglycerol that acts in Pi deficiency signalization. (D): The involvement of
the de-S-acylation of transcription factor NACsa in signal transduction. Under normal conditions,
the transcription factor NACsa is sequestered to the plasma membrane by S-acylation. In drought
conditions, an increase in H2O2 activates monomeric acyl protein thioesterase 1 (APT1) to take its
tetrameric form. Tetrameric APT1 deacylates NACsa and releases it from the membrane, allowing its
translocation to the nucleus, where it activates the transcription of Glyoxalase 1 (GLX1). This promotes
a glutathione build-up, acting to inhibit H2O2 accumulation. See the text for additional details.

The importance of protein S-acylation can further be illustrated by its impact on several
signaling pathways in plants, as previously reviewed [318]. In recent years, there has been
mounting evidence that Ca2+ sensing and signaling proteins are S-acylated. It was shown
that the S-acylation of several Ca2+ sensor Calcineurin B-like proteins (CBLs) is required for
their membrane positioning and their signaling function in ion homeostasis. For example,
the proper localization of Arabidopsis CBL6 was shown to depend on the S-acylation of
several Cys residues at the N-terminus of the protein [325]. This also impacted the correct
targeting of CBL6-interacting protein kinases in planta, implying that the modification of
CBL6 is responsible for the targeting of the protein complex [325].

In another study, CBL5 and the Ca2+-regulated protein kinase CPK6 were shown
to be subject to a double lipid modification (N-myristoylation and S-acylation), which
was required for the proper localization of the two proteins to the plasma membrane
(Figure 9B) [326]. The dual modification allowed the recruitment of Calcineurin B-like
protein-interacting protein kinase 11 (CIPK11) by CBL5 in a process that is involved in
the regulation of guard-cell slow anion channel 1 (SLAC1) (Figure 9B). SLAC1 is a key
element in ABA-dependent stomatal closure. Further studies using heterologous expression
in Xenopus oocytes indicate that the dual lipid modification of CBL5 is critical for the
activation of SLAC1 via phosphorylation by the CBL5/CIPK11 complex [326]. Thus, this
example illustrates the impact of N-myristoylation and S-acylation on the regulation of
stomatal function.

S-acylation is also involved in plant responses to phosphate (Pi) deficiency (Figure 9C).
Arabidopsis non-specific phospholipase C4 (NPC4) is a promiscuous enzyme that hy-
drolyzes membrane phospholipids, generating a free head group and diacylglycerol, which
is involved in signaling [327]. The importance of NPCs in plant signaling for growth devel-
opment and stress has recently been reviewed [328]. In NPC4, the S-acylation of Cys533,
located at the C-terminal extremity, was shown to be necessary for its plasma membrane
association [329]. Palmitate was identified as the main modifier. Using a mutation analysis
strategy, the S-acylation of Cys533 was shown to be responsible for successfully restoring
NPC4 function in an npc4 mutant [329]. These data strongly support the involvement of a
single S-acylation site in the proper localization of NPC4, thereby allowing it to access its
substrate(s) and fulfill its signaling functions.

10.2. De-S-Acylation Players and Evidence of Their Involvement in Plant Signal Transduction

In animals, two distinct types of proteins, acyl protein thioesterases (APT) [330] and
ABHD17-family depalmitoylases [331], have been implicated in the de-S-acylation of pro-
teins by cleaving the Cys–fatty acid thioester bond. A group of 11 Arabidopsis hydrolases,
named ABHD17-like acyl protein thioesterases (ABAPTs), was recently identified. They
share a conserved ABHD region with mammalian ABHD17 proteins and were shown to cat-
alyze de-S-acylation in plants and act using a similar catalytic mechanism (Figure 9A) [332].

Plants seemingly share poor sequence homology with mammalian APT1 and
APT2 [310]. Nonetheless, a few studies support the role of APT1 in plant de-S-acylation
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(Figure 9A,D) [333,334]. In Medicago species, NACsa is a transcription factor localized at
the plasma membrane through Cys26 S-acylation (Figure 9D) [333]. Under drought stress
condition, APT1 catalyzes NACsa de-S-acylation, thereby promoting its translocation to
the nucleus and the transcription of glyoxalase I (GLXI). GLXI activation increases the
GSH/GSSG ratio [333]. These data indicate that APT1 is a mediator of cellular redox
potential under drought. Interestingly, APT1 is itself redox-regulated. Its sequence contains
three redox-sensitive Cys—Cys20, Cys22 and Cys23—that can be S-glutathionylated in
control conditions [334]. The S-glutathionylation of APT1 promotes its inactive, monomeric
form. Drought increases intracellular H2O2, leading to oxidative stress and promoting the
formation of a tetrameric APT1 complex with de-S-acylase activity. The de-S-acylation
of NACsa leads to increased GLXI and a higher GSH/GSSG ratio, contributing to the
restoration of redox homeostasis and promoting S-glutathionylation and the inactivation
of APT1 [334]. As a result, APT1 behaves as an effective redox sensor during drought.

Recently, de-S-acylation was identified as a key mechanism in hormone cross-talk.
Brassinosteroids (BRs) are important plant hormones, mainly involved in plant growth
and development [335], while salicylic acid (SA) is associated with plant defense and stress
responses [336]. BR signaling involves the interaction of brassinosteroid insensitive 1 (BRI1)
receptors and brassinosteroids signaling kinases (BSKs) at the plasma membrane [335]. The
binding of BRs to BRI1 leads to its activation and the phosphorylation of BSKs, initiating the
BRs signaling cascade [335]. In normal conditions, BSKs are maintained at the plasma mem-
brane by S-acylation, allowing their interaction with BRI1 [337]. Stresses, such as pathogen
infection, induce an important increase in SA biosynthesis and signaling [336]. SA increases
the expression of ABAPT11 [337]. This promotes the de-S-acylation of BSKs, reducing their
membrane localization and thus impairing their function in BR signalization [337].

11. Prenylation

Protein prenylation has been known to take place in plants for quite some time (see
the review by [338]). Protein prenylation is the irreversible covalent modification of a Cys
residue by isoprenoids. The known modifiers are 15- (farnesyl moiety) or 20- (geranylger-
anyl moiety) carbon chains. These isoprenoids are formed by the condensation of 5-carbon
units (isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate) that are
produced by two plant isoprenoid biosynthetic routes, namely, the mevalonate pathway in
the cytoplasm and the methylerythritol 4P pathway in the chloroplast (Figure 10A) [339].
Protein modification by isoprenoids is catalyzed by protein prenyltransferases. These en-
zymes are classified as farnesyl transferases (FTs), geranylgeranyl transferases (GGT1s), and
Rab-geranylgeranyl transferases (RGGTs, also called GGT2s), depending on their specificity
for various isoprenoids (Figure 10A) [340]. Protein prenylation is widely considered as a
means of anchoring proteins in membranes, in particular in the secretory pathway [341,342].
Prenylation occurs at the C-terminal end of proteins in a consensus site. In the case of FT
and GGT1, they modify the consensus Cys-a-a-X motif, where a represents an aliphatic
residue and X any amino acid [343]. This prenylation step directs the modified protein to
the endoplasmic reticulum (ER), where it is followed by the proteolytic removal of the aaX
sequence, which is catalyzed by STE24 or RCE1 endoproteases (Figure 10A) [342]. The
resulting free carboxyl residue of the prenylated Cys then becomes available for methyla-
tion by a protein-S-isoprenylcysteine O-methyltransferase (ICMT) [342]. The subcellular
localization of the post-prenylation processing machinery supports ER membrane local-
ization for proteins with the Cys-a-a-X motif; however, they can also follow the secretory
pathway [342].

The RGGT/GGT2 class recognizes targets that are bound to the Rab Escort Protein
and carry consensus sequences such as Cys-Cys, Cys-X-Cys, Cys-Cys-X, Cys-Cys-X-X, and
Cys-Cys-X-X-X, in which both iterations of Cys present in the motif can be modified [344].
Despite the above-described classification of protein prenyltransferases in two categories,
distinguished by consensus sequences, protein substrate recognition may not be strictly
exclusive [345]. An extensive searchable protein prenylation database that includes plants
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is available to facilitate research on this topic (https://mendel.imp.ac.at/PrePS/index.html,
accessed on 30 July 2024) [346].
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Figure 10. Protein prenylation in plants. (A): Pathways responsible for prenyl group synthesis and
mechanism of protein prenylation. Prenyl groups (blue colored structure representing isoprenoid
C15 or C20 chains) are synthesized by the mevalonate or the methylerythritol 4P pathways. Farne-
syl transferases (FTs), geranylgeranyl transferases (GGT-1s), and Rab-geranylgeranyl transferases
(RGGTs/GGT-2s) modify the Cys (yellow dot) present in a Cys-A-A-X (A = aliphatic and X = any
amino acid) motif located at the C terminus, directing the protein to the ER membrane. The prote-
olytic removal of C-terminal the AAX sequence is catalyzed by STE24 or RCE1 endo-proteases, and a
methylation of the prenylated Cys is performed by a protein-S-isoprenylcysteine O-methyltransferase
(ICMT). (B): The involvement of prenylation in the formation of an oxidative pentose phosphate
pathway (OPPP) in the ER. Prenylated 6-phosphogluconolactonase (PGL2) is localized to the ER
membrane and interacts with ER S-acylated (red jagged line) phosphogluconate dehydrogenase
(PGD). PGL2 recruits glucose-6P dehydrogenase 5.4 (G6PD5.4) to the membrane. The result con-
stitutes a metabolon containing the first three steps of the OPPP in ER the lumen. This mode of
organization could improve C flux in the OPPP. See the text for additional details.

Plant protein prenylation has been the subject of numerous reviews, including a
recent one on its involvement in plant stress responses [343] and another on its signal-
ing aspects [347]. We chose to only focus on a single recent study exemplifying the im-
pact of prenylation in metabolism. This concerns the organization of the OPPP enzymes
(Figure 10B). OPPP commits carbon to the generation of NADPH and carbon skeletons
used in redox homeostasis and anabolic pathways [348]. Traditionally, this pathway has
been thought to operate in the cytosol and the plastid stroma [348], while some steps
have also been found in the peroxisome [349]. In Arabidopsis, one of the isoforms of the
second OPPP enzyme (6-phosphogluconolactonase, PGL2) contains a C-terminal Cys-a-a-X
motif [350], indicating its possible prenylation. Additionally, all three phosphogluconate
dehydrogenases (PGD, the third step of the OPPP) can be S-acylated [312,350]. In an
intriguing study, the presence of PGL2 at the ER was documented. Moreover, this subcel-
lular localization was shown to be dependent on the Cys residue of the Cys-a-a-X motif.
Furthermore, there is evidence that PGL2 recruits G6PD5.4 in specific ER subdomains.
G6PD5.4 is a functional isoform of glucose-6P dehydrogenase, arising by the alternative

https://mendel.imp.ac.at/PrePS/index.html
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splicing of G6PD5 and by carrying an N-terminal extension serving as ER membrane
anchor. Additional evidence suggests that S-acylated PGD2 may interact with the first
two OPPP enzymes [350]. Thus, a combination of G6PD5.4 N–terminal ER membrane
targeting, together with PGL2 prenylation and PGD2 S-acylation, allows the constitution
of a metabolon regrouping the first three steps of the OPPP on the cytosolic side of the
ER membrane. It is hypothesized that this mode of organization should improve the
metabolic flux in the OPPP (Figure 10B). Since the significance of this organization also
depends on the proportion of OPPP enzymes involved in the ER metabolon relative to
other subcellular localizations, the study by Linnenbrügger [350] opens up exciting future
research opportunities.

12. CoAlation

Coenzyme A (CoA) is an ubiquitous cofactor in prokaryotes and eukaryotes [351]. Its
five steps biosynthetic pathway from panthothenate has been elucidated for Arabidop-
sis [352,353]. Protein modification by CoA (CoAlation) was first described in animal [354]
cells and shortly after in bacteria and Amoebozoa [355,356]. These studies were greatly
facilitated by the use of an anti-CoA antibody able to detect protein CoAlation. This PTM
can occur spontaneously. It is promoted by oxidative stress conditions in vivo and fully re-
versible in vitro using DTT [354–356]. A large number of CoAlation targets were identified,
many of which were involved in metabolic processes [354,355]. Such a widespread and
evolutionary ancient occurrence of the protein CoAlation suggests that it could also occur in
plants. However, the evidence for this is still extremely limited. A study on soybean protein
Tyr phosphatase, performed by mass spectrometry, suggested the possible CoAlation of
the recombinant enzyme produced in E. coli, in addition to its S-glutathionylation [167].
The characterization of this PTM does not appear to have been pursued. It is unknown so
far if this finding is only a reflection of the experimental conditions [167].

13. Thiohemiacetal Formation

Thiohemiacetal formation is the result of a Cys nucleophilic attack on an acyl group. It
is a reversible reaction, for example, being involved in the catalytic mechanism of a number
of dehydrogenases [357,358]. In this case, the thiohemiacetal is a reaction intermediate
involving a covalent bond between an enzyme’s catalytic Cys and its substrate [358]. In
less common instances, however, thiohemiacetal formation may have regulatory functions.
For instance, in plants, thiohemiacetal formation is involved in the regulation of betaine
aldehyde dehydrogenase (BADH). BADH catalyzes the oxidation of betaine aldehyde
(BAL), which constitutes the last step in the biosynthetic pathway of the major plant osmo-
protectant glycine betaine (GB) [359]. BADH catalytic Cys291 forms a thiohemiacetal as part
of its catalytic mechanism. Interestingly, in a structural study of Spinacia oleracea (spinach)
BADH, it was shown that Cys450, a non-catalytic residue, also undergoes thiohemiacetal
formation with BAL [360]. This reaction hinders substrate binding, effectively inhibiting
BADH activity. This mechanism was discussed as a possible regulatory mechanism that
would prevent excessive NAD+ consumption during GB synthesis [360].

Studies on plant mitochondrial alternative oxidase (AOX) provide other evidence for
the possible involvement of thiohemiacetal formation in regulatory mechanisms. AOX
is an inner mitochondrial membrane dimeric terminal oxidase. It diverts electrons from
the cytochrome pathway, bypassing complexes III and cytochrome c oxidase and thereby
reducing respiratory ATP yield [361]. The reversible formation of an inter-subunit S-S is
involved in AOX regulation. AOX carrying the S-S is inactive. When NAD(P)H levels are
high in the mitochondrial matrix, there is reduction of the disulfide bridge, leading to AOX
with basal activity. Pyruvate, as well as various matrix α-ketoacids such as glyoxylate,
oxaloacetate, and α-ketoglutarate, then interact with the reduced thiols and fully activate
AOX. The formation of a thiohemiacetal between the reduced Cys residues and the α-keto
acid has long been suspected to be involved in this regulation [362,363]. A site-directed
mutagenesis study led to the proposition of a model for the activation of Arabidopsis AOX
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by pyruvate [363]. In this model, the S-S involving Cys78 in both subunits would block
the access of pyruvate to a reaction with this residue, whereas the reduction of the bond
would allow the Cys78 thiol to interact with pyruvate. This is consistent with the increased
AOX activity obtained after the substitution of Cys78 by Glu, which possesses a side chain
able to mimic a thiohemiacetal [363,364]. This mutant is also insensitive to pyruvate [363].
However, the detection of a thiohemiacetal by mass spectrometry remains elusive in AOX
and its crystal structure is not available [364]. Thus, although converging results suggest
that AOX regulation by pyruvate occurs via the formation of a thiohemiacetal, the exact
mechanism still remains to be elucidated.

14. Conclusions

The chemical properties of Cys residues make them reactive to a wide variety of PTMs.
With this review, we wanted to cover the range of Cys PTMs present in plants. In some
cases, for example, with the reversible formation of S-S, substantial research advances have
been made over the years and it is now possible to provide an already broad overview
of the involvement this process in plant biochemistry. For several other PTMs, such
as persulfidation, S-cyanylation, S-glutathionylation, S-nitrosation, S-carbonylation, and
CoAlation, we are still very much in the early steps in our exploration of their implication
in the molecular physiology of plants. Future progress on these issues is undoubtedly going
to benefit from current advances in specialized proteomic and chemistry techniques, the
setting up of resources like specialized PTM databases, and the development of analytical
and predictive bioinformatics tools. A point of particular interest is the fact that certain Cys
residues can be modified by multiple PTMs under a variety of conditions (see, for example,
the GAPDH catalytic Cys mentioned in this review). This exemplifies the sometimes
complex interactions that can take place between different PTMs for a given Cys residue.
We believe that we are currently only scratching the surface of this complexity.
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317. Batistič, O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. Plant
Physiol. 2012, 160, 1597–1612. [CrossRef]

318. Turnbull, D.; Hemsley, P.A. Fats and function: Protein lipid modifications in plant cell signalling. Curr. Opin. Plant Biol. 2017, 40,
63–70. [CrossRef]

319. Rodenburg, R.N.P.; Snijder, J.; van de Waterbeemd, M.; Schouten, A.; Granneman, J.; Heck, A.J.R.; Gros, P. Stochastic palmi-
toylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat. Commun. 2017, 8, 1280.
[CrossRef]

320. Zhang, Y.L.; Li, E.; Feng, Q.N.; Zhao, X.Y.; Ge, F.R.; Zhang, Y.; Li, S. Protein palmitoylation is critical for the polar growth of root
hairs in Arabidopsis. BMC Plant Biol. 2015, 15, 50. [CrossRef]

321. Blaskovic, S.; Blanc, M.; van der Goot, F.G. What does S-palmitoylation do to membrane proteins? FEBS J. 2013, 280, 2766–2774.
[CrossRef]

322. Joseph, M.; Nagaraj, R. Interaction of peptides corresponding to fatty acylation sites in proteins with model membranes. J. Biol.
Chem. 1995, 270, 16749–16755. [CrossRef] [PubMed]

323. Purushotham, P.; Ho, R.; Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science
2020, 369, 1089–1094. [CrossRef] [PubMed]

324. Kumar, M.; Wightman, R.; Atanassov, I.; Gupta, A.; Hurst, C.H.; Hemsley, P.A.; Turner, S. S-Acylation of the cellulose synthase
complex is essential for its plasma membrane localization. Science 2016, 353, 166–169. [CrossRef] [PubMed]

325. Zhang, C.X.; Beckmann, L.; Kudla, J.; Batistic, O. N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6.
FEBS Lett. 2017, 591, 3745–3756. [CrossRef]

326. Saito, S.; Hamamoto, S.; Moriya, K.; Matsuura, A.; Sato, Y.; Muto, J.; Noguchi, H.; Yamauchi, S.; Tozawa, Y.; Ueda, M.; et al.
N-myristoylation and S-acylation are common modifications of Ca2+-regulated Arabidopsis kinases and are required for activation
of the SLAC1 anion channel. New Phytol. 2018, 218, 1504–1521. [CrossRef]

327. Fan, R.; Zhao, F.; Gong, Z.; Chen, Y.; Yang, B.; Zhou, C.; Zhang, J.; Du, Z.; Wang, X.; Yin, P.; et al. Insights into the mechanism of
phospholipid hydrolysis by plant non-specific phospholipase C. Nat. Commun. 2023, 14, 194. [CrossRef]

328. Ali, U.; Lu, S.; Fadlalla, T.; Iqbal, S.; Yue, H.; Yang, B.; Hong, Y.; Wang, X.; Guo, L. The functions of phospholipases and their
hydrolysis products in plant growth, development and stress responses. Prog. Lipid Res. 2022, 86, 101158. [CrossRef]

329. Yang, B.; Zhang, K.; Jin, X.; Yan, J.; Lu, S.; Shen, Q.; Guo, L.; Hong, Y.; Wang, X.; Guo, L. Acylation of non-specific phospholipase
C4 determines its function in plant response to phosphate deficiency. Plant J. 2021, 106, 1647–1659. [CrossRef]

330. Dekker, F.J.; Rocks, O.; Vartak, N.; Menninger, S.; Hedberg, C.; Balamurugan, R.; Wetzel, S.; Renner, S.; Gerauer, M.; Schölermann,
B.; et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 2010, 6, 449–456. [CrossRef]

331. Lin, D.T.S.; Conibear, E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and
subcellular localization. Elife 2015, 4, e11306. [CrossRef]

332. Liu, X.; Li, M.; Li, Y.; Chen, Z.; Zhuge, C.; Ouyang, Y.; Zhao, Y.; Lin, Y.; Xie, Q.; Yang, C.; et al. An ABHD17-like hydrolase
screening system to identify de-S-acylation enzymes of protein substrates in plant cells. Plant Cell 2021, 33, 3235–3249. [CrossRef]
[PubMed]

333. Duan, M.; Zhang, R.; Zhu, F.; Zhang, Z.; Gou, L.; Wen, J.; Dong, J.; Wang, T. A Lipid-Anchored NAC Transcription Factor Is
Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. Plant Cell 2017, 29, 1748–1772.
[CrossRef] [PubMed]

https://doi.org/10.3390/ijms25115898
https://doi.org/10.1128/MCB.01080-08
https://doi.org/10.1146/annurev-arplant-050718-100202
https://doi.org/10.1042/BST20190703
https://doi.org/10.1146/annurev.biochem.73.011303.073954
https://doi.org/10.1038/s41477-022-01164-4
https://www.ncbi.nlm.nih.gov/pubmed/35681017
https://doi.org/10.1083/jcb.200206120
https://www.ncbi.nlm.nih.gov/pubmed/12370247
https://doi.org/10.1111/j.1600-0854.2009.00925.x
https://www.ncbi.nlm.nih.gov/pubmed/19453970
https://doi.org/10.3390/pathogens10060669
https://doi.org/10.1111/tpj.15769
https://doi.org/10.1104/pp.112.203968
https://doi.org/10.1016/j.pbi.2017.07.007
https://doi.org/10.1038/s41467-017-01461-z
https://doi.org/10.1186/s12870-015-0441-5
https://doi.org/10.1111/febs.12263
https://doi.org/10.1074/jbc.270.28.16749
https://www.ncbi.nlm.nih.gov/pubmed/7622487
https://doi.org/10.1126/science.abb2978
https://www.ncbi.nlm.nih.gov/pubmed/32646917
https://doi.org/10.1126/science.aaf4009
https://www.ncbi.nlm.nih.gov/pubmed/27387950
https://doi.org/10.1002/1873-3468.12880
https://doi.org/10.1111/nph.15053
https://doi.org/10.1038/s41467-023-35915-4
https://doi.org/10.1016/j.plipres.2022.101158
https://doi.org/10.1111/tpj.15260
https://doi.org/10.1038/nchembio.362
https://doi.org/10.7554/eLife.11306
https://doi.org/10.1093/plcell/koab199
https://www.ncbi.nlm.nih.gov/pubmed/34338800
https://doi.org/10.1105/tpc.17.00044
https://www.ncbi.nlm.nih.gov/pubmed/28684428


Int. J. Mol. Sci. 2024, 25, 9845 46 of 47

334. Ji, T.; Zheng, L.H.; Wu, J.L.; Duan, M.; Liu, Q.W.; Liu, P.; Shen, C.; Liu, J.L.; Ye, Q.Y.; Wen, J.Q.; et al. The thioesterase APT1 is a
bidirectional-adjustment redox sensor. Nat. Commun. 2023, 14, 2807. [CrossRef]
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